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Abstract : In this paper we analyse an orthogonal pseudospectral collocation semidiscrete discretization the r-variable
of the nonhomogeneous wave axial symmetric and continuous in the variable t. The analysis is based on an approximation
property converges to the Gauss-Radau interpolation operator. We investigate the stability and the convergence.

1 Introduction

Spectral methods are techniques for approximating the solutions of partial differential equations.
Their main characteristic is that the discrete solutions are sought in high degree polynomial
spaces. In this sense, the precision of its methods is limited only by the regularity of the approx-
imate function, unlike other types of approximation such as finite differences or finite elements.
We know that the distance of an analytical function from a polynomial space of degree ≤ N
decreases with the parameter N . In this paper we present a novel approach, based on an orthog-
onal pseudo spectral collocation semidiscrete discretization of the r-variable, for the numerical
solution of the problem proposed and continuous in the variable t. In this method the order of
the matrix is less than the order of the matrix in the other methods.

We consider the nonhomogeneous wave equation with axial symmetric in a finite domain Λ

with the general initial conditions
utt − α(urr + 1

rur) = f (r, t) , in Λ× (0,∞)

u(r, t) = u0(r),

ut(r, t) = u1(r),
in Λ, t = 0

(1.1)

where Λ = [0, 1] , α is a positive real number, f ∈ L2
1 (Λ) , where :

L2
1 ( Λ) =

{
f : Λ→ R measurable /

∫
Λ

(f(r))
2
rdr <∞

}
, (1.2)

u0 and u1 are smooth on Λ , we denote by ‖.‖L2
1(Λ)

and (., .) the norm and inner product in L2
1 (Λ)

and the standard Sobolev space H1
1 (Λ).

In this work we construct approximate solution to the problem (1.1) in the form

uN (r, t) =
N∑

n=0

an(t)ln(r), (1.3)

where the Lagrangian interpolates ln(r), 0 ≤ n ≤ N, are defined at the points rj ∈ Λ,
0 ≤ j ≤ N . The grid made by rj , 0 ≤ j ≤ N, is denoted by

∑
N+1 .

The choice of the form (1.3) for the solution, added to some technics lead to a linear system
of second-order ordinary differential equations which can be written in a matricial form as
ΓD2a+ Aa = F , where A is a square symmetric positive defined matrix and Γ is a diagonal
invertible matrix and the operator D2 = d2

dt2 . We write a = Pv where P is an orthogonal
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matrix such that P−1
(
Γ−1A

)
P = C is a diagonal matrix, then we obtain a system of N

second-order ordinary differential equations D2vj(t) + cjvj(t) = hj(t), j = 0, N , we can use
Lagrange’s method of undetermined parameters to solve for each component vj(t) of v , finally
we conclude the expressions of functions an(t) and for which we obtain the approximation
solution uN .[4, 10].

2 Discretization of the problem

2.1 Continuous problem, weak form.

The variational formulation of problem (1.1), it is written :{
find u ∈ H1

1 (Λ), such that ∀v ∈ H1
1 (Λ), (utt, v) + a1(u, v) = (f, v)

}
. (2.1)

where the bilinear form a(., .) is given by:

a1(u, v) =

∫ 1

0
∂ru∂rvrdr, (2.2)

see[8].Where the pivot space of the problem (1.1) is the space L2
1 (Λ) , the variational space is

H1
1 (Λ) =

{
v/ v, ∂rv ∈ L2

1 (Λ)
}
, (2.3)

the corresponding norm is defined as

‖v‖2
L2

1(Λ)
=

∫
Λ

v2rdrdt, (2.4)

the semi norm is defined as
|v|2H1

1 (Λ)
=

∫
Λ

((∂rv)
2rdrdt,

and the norm of the variational space

‖v‖2
H1

1 (Λ)
= ‖v‖2

L2
1(Λ)

+ |v|2H1
1 (Λ)

.

2.2 Discrete spaces

The approximate spaces is essentially generated by the finite dimensional subspace of L2
1(Λ),

IPN (Λ) is the approximate spaces of the space H1
1 (Λ).In this work we consider the quadrature

formula and introduce a bilinear form a1N which approach the form a1 and we approximate
(., .)N for (., .) , where N represent in spectral method the degree of polynomials. Here, the
discrete product is defined for all functions g and h continuous on Λ by

(g, h)N =
N∑
k=0

g(rk)h(rk)ωk. (2.5)

2.3 Discrete problem, variational formulation

The variational formulation (2.1) is written :{
find uN ∈ IPN (Λ) such that

∀vN ∈ IPN (Λ), (uttN , vN )N + a1N (uN , vN ) = (fN , vN )N
(2.6)

where u0N and ∂tu0N are the interpolating polynomial of the initial conditions u and ∂tu at the
Gauss-Radau nodes and the bilinear form a1N (., .) is given by:

a1N (uN , vN ) = (∂ruN , ∂rvN )N =
N∑
k=0

(∂ruN∂rvN ) (rk)ωk, (2.7)

(uttN , vN )N =
N∑
k=0

(uttNvN ) (rk)ωk. (2.8)
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The equation is now what are the necessary tools to insure the existence and uniqueness of
the approximate solution which verify the variational formulation (2.6).

2.4 The spectral method

In this section we describe the spectral element method applied to subsection 2.3 of the algorithm
given in the introduction. The spectral method is based on a weak formulation of the considered
problem. The approximate solution representation then is given by :

uN (r, t) =
N∑

n=0

an(t)ln(r), ln(r) ∈ IPN (Λ),

the Lagrangian interpolates ln(r), 0 ≤ n ≤ N are defined on the interval Λ with r ∈ Λ,where
the points rk are the roots of the polynomial AN (r) , AN (r) = 2

N !
dN

drN
((r − 1)(r2 − r))N .

2.5 Orthogonal polynomials

We work in the interval Λ = [0, 1] and we use the polynomials

On(r) =
2
n!

dn

drn
((r2 − r)n), n ≥ 0,

occur from the Legendre polynomials with change of variable, each polynomial On has the
degree n and in L2

1(Λ) satisfies the following property:∫ 1

0
O2

n(r)rdr =
2

2n+ 1
, (2.9)

also we use the polynomials

An(r) =
2
n!

dn

drn
((r − 1)(r2 − r)n), n ≥ 0 (2.10)

with the degree n+ 1, which satisfies in L2
1(Λ) the following property:∫ 1

0
A2

n(r)rdr =
n+ 1

4(n+ 1)2 − 1
, n ≥ 0, (2.11)

also we have ∫ 1

0
A′n(r)A

′
n(r)rdr = 2n+ 2. (2.12)

2.6 Weighted quadrature formula

Proposition 2.1. Gauss-Radau weigthed quadrature formula for the Lebesgue measure. There
exists a unique set of N + 1 nodes rn, n = 0, N in Λ , and N + 1 positive real numbers
ωn, n = 0, N such that the following exactness property holds :

∀ϕ ∈ IP2N−1 (Λ) ,

∫ 1

0
ϕ(r)rdr =

N∑
n=0

ϕ (rn)ωn,

where rn, n = 0, N are the roots of polynomial AN (r) and the weights are given by:

ωn =
rn

(n+ 1)2O2
N (rn)

, ...., n = 0, N

see[5]

Proposition 2.2. The polynomial q2N−1 with degree (2N − 1) has the form

q2N−1(r) = A2
N−1(r) + α(N)ON−1(r)AN (r),

where α(N) = − (N+1)(2N−1)
N(2N+1) .
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Lemma 2.3. The polynomial AN−1(r) ∈ IPN (Λ) verify the double inequality,

‖AN−1(r)‖
2
L2

1(Λ)
≤ (AN−1(r), AN−1(r))N ≤ 2 ‖AN−1(r)‖

2
L2

1(Λ)
(2.13)

using (2.9) and (2.11) we find

I1 =

∫ 1

0
A2

N−1(r)rdr =
N

4N2 − 1
, (2.14)

I2 =

∫ 1

0
ON−1(r)AN (r)rdr = − N

(4N2 − 1)
, (2.15)

using the exact quadrature formula we can write:∫ 1

0
q2N−1(r)rdr =

N∑
n=0

q2N−1(rn)wn

= I1 + α(N)I2

=
N∑

n=0

A2
N−1(rn)wn

= (AN−1(r), AN−1(r))N ,

α(N)I2 =
N+1

4N2+1 ≤ I1 that’s give the result (2.13).

Proposition 2.4. By using (2.10) we can write the solution in the following form

UN (r, t) =
N−1∑
n=0

an(t)An(r),

and by using (2.11) we find

‖UN (r, t)‖2
L2

1(Λ)
≤ C

(
ln(4N2 − 1)

)
, (2.16)

see[2].

2.7 Existence and uniqueness of solution

Proposition 2.5. The bilinear form a1N (·, ·) satisfies the following properties of continuity:

∀vN ∈ PN (Λ) ,∀uN ∈ PN (Λ) , |a1N (uN , vN )| ≤ |uN |H1
1 (Λ)
· |vN |H1

1 (Λ)
, (2.17)

and ellipticity
∀uN ∈ PN (Λ) , |a1N (uN , vN )| ≥ |uN |2H1

1 (Λ)
. (2.18)

Proof. a1N (uN , vN ) = (∂ruN , ∂rvN )N the degree of polynomials ∂ruN , ∂rvN is less than or
equal to 2N−2 then (∂ruN , ∂rvN )N =

∫ 1
0 ∂ruN∂rvNrdr , by the Schwartz inequality we obtain

the desired results.

2.8 Stability estimation

Proposition 2.6. The solution uN in the IPN (Λ) satisfies the inequality of stability

(fN , uN )N ≤ C1
(
ln(4N2 − 1)

) 1
2 ‖fN‖L2

1(Λ)
. (2.19)

Proof. Using(2.6), (2.13),(2.16) and (2.14), yields the desired results.
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3 Numerical experiment

The variables r and t play different role, to separate these variables we consider the solution
u(r, t) and f(r, t) as functions of the variable t, its values are in the function space defined in Λ,
we consider u defined by

u : [0,∞)→ H2
1 (Λ)

t → u(t)

then we can not u(r, t) = u(t)(r), the variational formulation can be written as{
find uN in IPN (Λ), such that

∀vN ∈ IPN (Λ),
(

d2

dt2uN (t), vN
)
+ a1N (uN (t), vN ) = (fN , vN )N

(3.1)

the formulation (3.1) is true for all vN ∈ IPN (Λ), then it is true for vm(r) = lm(r), m =
0, N where (lm(r))0≤m≤N form a basis to the polynomial space IPN (Λ), the degree of the
polynomial uN (t)vN is 2N and the degree of the polynomial ∂ruN (t)∂rvN is 2N − 2,with
respect the variable r, then we can write (3.1) as:


find uN ∈ IPN (Λ), such that

∀lm ∈ IPN (Λ),
N∑
k=0

(
N∑

n=0
a

′′

n((t)ln(rk)lm(rk)ωk

)
+

N∑
k=0

(
N∑

n=0
an(t)l′n(rk)l

′
m(rk)ωk

)
=

N∑
k=0

fN (t, rk)lm(rk))ωk, m = 0, N

(3.2)
(3.2) is equivalent to,
a′′m(t)ωm +

N+1∑
n=1

(
N∑
k=0

l′n(rk)l
′
m(rk)ωk

)
an(t) = fN (rm, t)ωm, m = 1, N in Λ ∩

∑
N+1×IR∗+{

uN (r, t) = uN0(r)

ut(r, t) = uN1(r)
r ∈ Λ , t = 0

(3.3)
We obtain a linear system, then we can write this system in a matricial form:

ΓD2a+Aa = F, (3.4)

Where A is a symmetric positive defined matrix with order N + 1, its elements have the form:

αmn =
N∑
k=0

l′n(rk)l
′
m(rk)ωk, n = 0, N

}
,m = 0, N

Γ is a diagonal invertible matrix, its elements are define as:

γmn =

{
wm, n = m

0, n 6= m
, m, n = 0, N

F is a known vector where:

F = (g0(t), g1(t), g2(t), ....., gN−1(t), gN (t))t

hm(t) = f(rm, t)ωm, m = 0, N

and the vector a is an unknown vector where

a = (a0(t), a1(t), a2(t), ....., aN−1(t), aN (t))t
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where the operator,

D =
d2

dt2
,

multiplying (3.4) by the invertible matrix Γ−1 of Γ , then we obtain

Da2 + Γ
−1Aa = Γ

−1F, (3.5)

the matrix Γ−1A has positive eigenvalues and there exists an orthogonal invertible matrix P such
that,

P−1 (
Γ
−1A

)
P = C,

where C is a diagonal matrix, the elements of the diagonal are the eigenvalues αm,m = 0, N of
the matrix Γ−1A, if we consider the vector v such that

a = Pv,

then the system (3.5) becomes

PD2v + (Γ−1A)Pv = Γ
−1F, (3.6)

multiplying (3.6) by the matrix P−1 we obtain,

D2v + Cv = P−1
Γ
−1F, (3.7)

The matricial form (3.7) has N + 1 linear equations defined as

v
′′

m(t) + αmvm(t) = hm(t), αm > 0, (3.8)

where hm(t) =
N∑
j=0

p−1 (m, j)Γ
−1 (m, j) gj(t), 0 ≤ m ≤ N,

p−1 (m, j) are the elements of the inverse matrix P−1. To solve the equations (3.8), we may write
the solution in the closed form :

vm(t) =

∫ t

0
sin(αm(t− s))hm(s)ds+ sin(αmt+ γm), 0 ≤ m ≤ N, (3.9)

or sin(αmt+ γm) = cm cos(αmt) + dm sin(αmt), where cm = sin(γm) and dm = cos(γm) are
constants to be determined, using the initial conditions then (3.9) may be written in the following
form:

vm(t) =
∫ t

0 sin(αm(t− s))hm(s)ds+ sin(αmt+ γm),

sin(γm) =

(
N∑
j=0
p−1 (m, j)u0(rj)

)
, cos(γm) =

(
N∑
j=0
p−1 (m, j)u1(rj)

)
,

(3.10)

Finally we obtain the functions,

am(t) =
N∑
j=0

pmj

(∫ t

0
sin(αm(t− s))hm(s)ds+ sin(αmt+ γm)

)
, 0 ≤ m ≤ N,

where pnj , 0 ≤ n, j ≤ N are the elements of the matrix P and the approximation solution is

uN (r, t) =
N∑

m=0

 N∑
j=0

pmj

(∫ t

0
sin(αm(t− s))hm(s)ds+ sin(αmt+ γm)

) lm(r),

see[1, 7].
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3.1 Error estimation

Definition 3.1. The polynomial space PN (Ω) dense in the space of continuous functions on Ω

hence in L2
1 (Ω) then any function u ∈ L2

1 (Ω) admits the expansion

u (r, t) =
∞∑
n=0

an(t)An(r) , (3.11)

Where Ω = Λ× IR∗+.

Proposition 3.2. The following estimate holds between the exact solution u in H1
1 (Λ) and the

approximation solution uN ∈ PN (Λ) verify,

‖u− uN‖L2
1(Ω) ≤

(
1

2(2N + 1)(2N + 3)− C

)
‖f − fN‖L2

1(Ω2)
(3.12)

Proposition 3.3. Suppose that the functions a(l)n (t), l = 0, 1, 2 and n ∈ IN are bounded on IR+,
that is there exists a real positive number M such that

∣∣∣a(l)n (t)
∣∣∣ ≤ M, for t ∈ IR+, then there

exists a real positive number C such that:

‖utt − uNtt)‖L2
1(Ω) ≤ C ‖u− uN‖L1

1(Ω) , (3.13)

where Ω = Λ× IR+.

Proof. Using the ellipticity condition (2.1) and (2.2)we can write

(utt − uttN , u− uN ) + a1(u− uN , u− uN ) = (f − fN , u− uN ),

∫
Λ

( ur − urN )2rdr =

∫
Λ

(( utt − uttN ) (uN − u))rdr +
∫

Λ

((f − fN ) (u− uN ))rdr, (3.14)

using Schwartz inequality in the right hand side of (3.14) then we find,

‖ur − urN‖2
L1(Ω) ≤

(
( utt − uttN ) + ‖f − fN )‖L2

1(Ω2)

)
‖u− uN‖L1(Ω) , (3.15)

using (2.11), (2.12) and (3.13) then we obtain,

2(2N + 1)(2N + 3) ‖u− uN‖2
L2

1(Ω) ≤
(
C ‖u− uN‖L1

1(Ω) + C ‖f − fN‖L2
1(Ω)

)
‖u− uN‖L2

1(Ω)

‖u− uN‖L2
1(Ω) ≤

1
2(2N + 1)(2N + 3)− C

‖f − fN‖L2
1(Ω)

3.2 Figures illustrations

The figures 1 and 2 present the true and the approximate solution u and uN respectively,
and figures 3 and 4 present the true and the approximate function bk = u(r, t), r = r(k),
k = 0, N and ak ,k = 0, N respectively, these plots occur when N = 5 and the test function is
: u(r, t) = − cos (πr)) sin(πt).

These plots are occurred when N = 5 and (r, t) ∈ [0, 1]× [0, 3].
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