ON COMMUTATIVITY OF BANACH ALGEBRAS WITH ENDOMORPHISMS

Mohamed MOUMEN and Lahcen TAOUFIQ
Communicated by Ayman Badawi

MSC 2010 Classifications: 47L10, 16U80, 08A35.
Keywords and phrases: Banach algebras, Commutativity, Endomorphism.

Abstract

This article focuses on decomposing a Banach algebra \mathcal{X} via its endomorphisms. In particular, we show that if a Banach algebra \mathcal{X} has an injective continuous endomorphism f such that $f\left(\left[x^{n}, y^{m}\right]\right)$ is in the center of $\mathcal{X}, Z(\mathcal{X})$, for two integers $n=n(x, y), m=m(x, y)$ and sufficiently many x, y, then for all x in \mathcal{X} either x in $Z(\mathcal{X})$ or $f(x)$ in $Z(\mathcal{X})$. To demonstrate the importance of our theorem assumptions, we will provide several examples.

1 Introduction

Let \mathcal{X} be a Banach algebra with center $Z(\mathcal{X})$. Recall that \mathcal{X} is prime, if for any $x, y \in \mathcal{X}$, $x \mathcal{X} y=0$ implies either $x=0$ or $y=0$. The Lie product and Jordan product of $x, y \in \mathcal{X}$ are noted by $[x, y]$ and $x \circ y$ respectively, where $[x, y]=x y-y x$ and $x \circ y=x y+y x$. A derivation is an additive mapping, denoted as d, defined on the set \mathcal{X}. It satisfies the property $d(x y)=d(x) y+x d(y)$ for all $x, y \in \mathcal{X}$. If $d(x)=[a, x]$ for all $x \in \mathcal{X}$, then d is called an inner derivation induced by an element a in \mathcal{X}. For more examples, please refer to sources such as [[3], [5]]. In the case of Banach algebras, Yood [12] proved that if a semiprime Banach algebra \mathcal{X} having two nonvoid open subsets \mathcal{H}_{1} and \mathcal{H}_{2} verify for all $(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}$ there is $(n, m) \in \mathbb{N}^{*} \times \mathbb{N}^{*}$ such that $\left[x^{n}, y^{m}\right]=0$, then \mathcal{X} must be commutative. Inspired by Yood's result, Mohamed Moumen, Lahcen Taoufiq, and Lahcen Oukhtite [10] proved that if a prime Banach algebra, denoted by \mathcal{X}, has a continuous derivation d and satisfies the condition $d\left(x^{n} y^{m}\right)+\left[x^{n}, y^{m}\right] \in Z(\mathcal{A})$ for integers n and m determined by x and y, and for a sufficiently large number of x and y, then \mathcal{X} is commutative (see [6], [7], [8] and [9] for further information and examples).

Motivated by these results, the purpose of this article is to establish the results with a similar conclusion, but with other identities. For example, we have proven that a prime Banach algebra \mathcal{X} is equal to $Z(\mathcal{X}) \cup\{x \in \mathcal{X} \mid f(x) \in Z(\mathcal{X})\}$ under certain conditions. These conditions include the existence of two non-empty open subsets \mathcal{H}_{1} and \mathcal{H}_{2} and an injective continuous endomorphism f which verifies for any pair (x, y) of $\mathcal{H}_{1} \times \mathcal{H}_{2}$, there exist two strictly positive integers n and m such that $f\left(\left[x^{n}, y^{m}\right]\right)$ in $Z(\mathcal{X})$. In this context, other similar results have been found.

In this article, we will utilize the following commonly-known results without specifically mentioning them.
Remark. Let \mathcal{X} be a prime Banach algebra.

1. If $x \in Z(\mathcal{X})$ and $x y \in Z(\mathcal{X})$, then $x=0$ or $y \in Z(\mathcal{X})$.
2. $Z(\mathcal{X})$ does not admit any zero divisors.
3. If d is a non zero derivation of \mathcal{X} such that $[d(x), x] \in Z(\mathcal{X})$ for all $x \in \mathcal{X}$ (in particular if $d(\mathcal{X}) \subset Z(\mathcal{X})$), then \mathcal{X} is commutative.

2 Main results

Our main results rely heavily on the lemma presented by Bonsall and Duncan in their work [2].

Lemma 2.1. Let \mathcal{X} be a real or complex Banach algebra and $S(t)=\sum_{i=0}^{n} t^{i} s_{i}$ a polynomial in the real variable t with coefficients in \mathcal{X}. Iffor an infinite set of real values of $t, P(t) \in C$, where C is a closed linear subspace of \mathcal{X}, then every s_{i} lies in C.

Theorem 2.2. Let f be an injective and continuous endomorphism of a prime Banach algebra \mathcal{X}, such that:

$$
\left(\forall x \in \mathcal{H}_{1}\right)\left(\forall y \in \mathcal{H}_{2}\right)\left(\exists n \in \mathbb{N}^{*}\right)\left(\exists m \in \mathbb{N}^{*}\right) \text { such that } f\left(\left[x^{n}, y^{m}\right]\right) \in Z(\mathcal{X})
$$

Then, $\mathcal{X}=Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X}))\left(\right.$ where \mathcal{H}_{1} and \mathcal{H}_{2} are two non-void open subsets of $\left.\mathcal{X}\right)$.
Proof. For any pair of natural numbers (n, m), we establish the following set:
$O_{n, m}=\left\{(x, y) \in \mathcal{X}^{2} \mid f\left(\left[x^{n}, y^{m}\right]\right) \notin Z(\mathcal{X})\right\}$ and $F_{n, m}=\left\{(x, y) \in \mathcal{X}^{2} \mid f\left(\left[x^{n}, y^{m}\right]\right) \in Z(\mathcal{X})\right\}$.
We assert that every $F_{n, m}$ is a closed set in $\mathcal{X} \times \mathcal{X}$. To prove this, we examine a sequence $\left(\left(x_{k}, y_{k}\right)\right)_{k \in \mathbb{N}} \subset F_{n, m}$ that converges to $(x, y) \in \mathcal{X} \times \mathcal{X}$. Given that $\left(\left(x_{k}, y_{k}\right)\right)_{k \in \mathbb{N}} \subset F_{n, m}$, it follows that

$$
f\left(\left[\left(x_{k}\right)^{n},\left(y_{k}\right)^{m}\right]\right) \in Z(\mathcal{X}) \text { for all } k \in \mathbb{N}
$$

Since $\left(\left[\left(x_{k}\right)^{n},\left(y_{k}\right)^{m}\right]\right)_{k \in \mathbb{N}}$ converges to $\left[x^{n}, y^{m}\right]$ and f is continuous, we can conclude that $f\left(\left[x^{n}, y^{m}\right]\right) \in Z(\mathcal{X})$. This means that $F_{n, m}$ is a closed set and $O_{n, m}$ is open. Assuming that $O_{n, m}$ is dense for all (n, m), the Baire category theorem states that their intersection must also be dense. However, this contradicts the fact that $\left(\cap O_{n, m}\right) \cap\left(\mathcal{H}_{1} \times \mathcal{H}_{2}\right)$ is empty. Therefore, we can conclude that there exists p and q in \mathbb{N}^{*} such that $O_{p, q}$ is not a dense set. Furthermore, there exists a non-empty open subset $O \times O^{\prime}$ in $F_{p, q}$ where $f\left(\left[x^{p}, y^{q}\right]\right) \in Z(\mathcal{X})$ for all $x \in O$ and $y \in O^{\prime}$. Now, we consider $y_{0} \in O$ and $y \in \mathcal{X}$ we have $y_{0}+t y \in O$ for all sufficiently small real $t \in \mathbb{R}$ and $f\left(\left[x^{p},\left(y_{0}+t y\right)^{q}\right]\right) \in Z(\mathcal{X})$.
The expression $\left(y_{0}+t y\right)^{q}$ can be written as:

$$
\left(y_{0}+t y\right)^{q}=A_{q, 0}\left(y_{0}, y\right)+t A_{q-1,1}\left(y_{0}, y\right)+\ldots+t^{q} A_{0, q}\left(y_{0}, y\right)
$$

While

$$
\left[x^{p},\left(y_{0}+t y\right)^{q}\right]=\left[x^{p}, A_{q, 0}\left(y_{0}, y\right)\right]+t\left[x^{p}, A_{q-1,1}\left(y_{0}, y\right)\right]+\ldots+t^{q}\left[x^{p}, A_{0, q}\left(y_{0}, y\right)\right] \in Z(\mathcal{X})
$$

and
$f\left(\left[x^{p},\left(y_{0}+t y\right)^{q}\right]\right)=f\left(\left[x^{p}, A_{q, 0}\left(y_{0}, y\right)\right]\right)+t f\left(\left[x^{p}, A_{q-1,1}\left(y_{0}, y\right)\right]\right)+\ldots+t^{q} f\left(\left[x^{p}, A_{0, q}\left(y_{0}, y\right)\right]\right) \in Z(\mathcal{X})$.
Lemma 2.1 implies that the coefficient $f\left(\left[x^{p}, y^{q}\right]\right)$ of t^{q} in this polynomial belongs to $Z(\mathcal{X})$.
Consequently, for all $(x, y) \in O \times \mathcal{X}$

$$
f\left(\left[x^{p}, y^{q}\right]\right) \in Z(\mathcal{X})
$$

Now, fix $y \in \mathcal{X}$, if we continue with the same method, we discover that $f\left(\left[x^{p}, y^{q}\right]\right)$ belongs to $Z(\mathcal{X})$ for all values of x and y in \mathcal{X}.
Assuming that x belongs to the set \mathcal{X}, when we substitute z with x^{p}, we get $f\left(\left[z,(y+t z)^{q}\right]\right)$ belonging to $Z(\mathcal{X})$ for any y in \mathcal{X} and any t in the real numbers. Since

$$
P(t)=f\left(\left[z,(y+t z)^{q}\right]\right)=\sum_{k=0}^{q} t^{k} f\left(\left[z, A_{q-k, k}(z, y)\right]\right)
$$

where $A_{q-k, k}(z, y)$ denotes the sum of all terms in which y appears exactly $q-k$ times and z appears exactly k times. By Lemma 2.1 we have $f\left(\left[z, A_{q-k, k}(z, y)\right]\right) \in Z(\mathcal{X})$ for all $0 \leq$ $k \leq q$. The coefficient of t in this polynomial is $f\left(\left[z, A_{q-1,1}(z, y)\right]\right)$, where $A_{q-1,1}(z, y)=$ $\sum_{k=0}^{q-1} z^{q-1-k} y z^{k}$, then $\left[z, A_{q-1,1}(z, y)\right]=\sum_{k=0}^{q-1}\left[z, z^{q-1-k} y z^{k}\right]=\left[z^{q}, y\right]$.
Therefore, for all $x, y \in \mathcal{X}$, we have

$$
f\left(\left[x^{p q}, y\right]\right) \in Z(\mathcal{X})
$$

We have two cases:
$\boldsymbol{\nabla}$ If $x^{p q} \in Z(\mathcal{X})$ for all $x \in \mathcal{X}$, we will show that \mathcal{X} is commutative. For this:
Let $x \in \mathcal{X}$ and a be non-zero element of $Z(\mathcal{X})$ we have $(a+t x)^{p q} \in Z(\mathcal{X})$ for all $t \in \mathbb{R}$. Then $(a+t x)^{p q}=\sum_{k=0}^{p q}\binom{p q}{k} t^{k} a^{p q-k} x^{k} \in Z(\mathcal{X})$ (because $a \in Z(\mathcal{X})$). By using Lemma 2.1, we conclude that $a^{p q-k} x^{k} \in Z(\mathcal{X})$ for all $0 \leq k \leq p q$. In particular, for $k=p q-1$ we have $x a^{p q-1} \in Z(\mathcal{X})$, by Remark 1, we have $x \in Z(\mathcal{X})$ because $a^{p q-1} \in Z(\mathcal{X}) \backslash\{0\}$. Then \mathcal{X} is commutative.
$\boldsymbol{\nabla}$ If there is $x \in \mathcal{X}$ such that $x^{p q} \notin Z(\mathcal{X})$, we shall prove that $f(x) \in Z(\mathcal{X})$. We have $f\left(\left[x^{p q}, y\right]\right) \in Z(\mathcal{X})$ for all $y \in \mathcal{X}$, we replace y by $x y$ and we obtain $f(x) f\left(\left[x^{p q}, y\right]\right) \in Z(\mathcal{X})$. By Remark 1, $f\left(\left[x^{p q}, y\right]\right)=0 \forall y \in \mathcal{X}$ or $f(x) \in Z(\mathcal{X})$. Suppose that $f(x) \notin Z(\mathcal{R})$, then $f\left(\left[x^{p q}, y\right]\right)=0$ for all $y \in \mathcal{X}$. Since f is injective, then $\left[x^{p q}, y\right]=0$ for all $y \in \mathcal{X}$ that is $d(\mathcal{X}) \in Z(\mathcal{X})$ where d is the inner derivation associated by $x^{p q}$. According to Remark 3 we conclude that \mathcal{X} must be commutative, contradiction. Hence $f(x) \in Z(\mathcal{R})$.

Theorem 2.3. Consider a prime Banach algebra \mathcal{X} that can be either real or complex. Let f denote an injective continuous endomorphism. Suppose that

$$
\left(\forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}\right)\left(\exists(n, m) \in \mathbb{N}^{*} \times \mathbb{N}^{*}\right) \text { such that } f\left(x^{n} y^{m}\right) \in Z(\mathcal{X})
$$

where \mathcal{H}_{1} and \mathcal{H}_{2} are two non void open subsets of \mathcal{X}. Then $\mathcal{X}=Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X}))$.
Proof. We define the following sets for all $n, m \in \mathbb{N}^{*}$

$$
O_{n, m}=\left\{(x, y) \in \mathcal{X}^{2} \mid f\left(x^{n} y^{m}\right) \notin Z(\mathcal{X})\right\} \text { and } F_{n, m}=\left\{(x, y) \in \mathcal{X}^{2} \mid f\left(x^{n} y^{m}\right) \in Z(\mathcal{X})\right\}
$$

Using the Baire category theorem on the sets $O_{n, m}$, we can conclude, as we did before, that there exist two integers p and q (excluding zero) such that:

$$
f\left(x^{p} y^{q}\right) \in Z(\mathcal{X}) \text { for all }(x, y) \in \mathcal{X}^{2}
$$

By substituting x with x^{q} and y with y^{p} in the final expressions, we can derive:

$$
f\left(x^{p q} y^{p q}\right) \in Z(\mathcal{X}) \text { for all }(x, y) \in \mathcal{X}^{2} .
$$

We also have

$$
f\left(y^{p q} x^{p q}\right) \in Z(\mathcal{X}) \text { for all }(x, y) \in \mathcal{X}^{2}
$$

As a result

$$
f\left(\left[x^{p q}, y^{p q}\right]\right) \in Z(\mathcal{X}) \text { for all }(x, y) \in \mathcal{X}^{2} .
$$

Therefore, according to Theorem 2.2, we reach the desired conclusion.
Theorem 2.4. Let \mathcal{X} be a real or complex prime Banach algebra and \mathcal{H}_{1} and \mathcal{H}_{2} two non-void open subsets. If an injective and continuous endomorphism f satisfies: $\left(\forall x \in \mathcal{H}_{1}\right)\left(\forall y \in \mathcal{H}_{2}\right)$ $\left(\exists n \in \mathbb{N}^{*}\right)\left(\exists m \in \mathbb{N}^{*}\right)$ such that $f\left(x^{n} \circ y^{m}\right) \in Z(\mathcal{X})$
then, $\mathcal{X}=Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X}))$.
Proof. The proof for this outcome follows a similar approach to Theorem 2.2.
Corollary 2.5. Let \mathcal{X} be a real or complex prime Banach algebra and \mathcal{H}_{1} and \mathcal{H}_{2} two non-void open subsets of it. If one of the following conditions is true:

1. $\left(\forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}\right)\left(\exists(n, m) \in \mathbb{N}^{*} \times \mathbb{N}^{*}\right)$ such that $x^{n} y^{m} \in Z(\mathcal{X})$
2. $\left(\forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}\right)\left(\exists(n, m) \in \mathbb{N}^{*} \times \mathbb{N}^{*}\right)$ such that $\left[x^{n}, y^{m}\right] \in Z(\mathcal{X})$
3. $\left(\forall(x, y) \in \mathcal{H}_{1} \times \mathcal{H}_{2}\right)\left(\exists(n, m) \in \mathbb{N}^{*} \times \mathbb{N}^{*}\right)$ such that $x^{n} \circ y^{m} \in Z(\mathcal{X})$
then \mathcal{X} must be commutative.
Proof. We can take $f=I$ where I is the identical application of \mathcal{X}.
The next example proves that \mathcal{X} must be prime in the assumption of Theorem 2.2.

Example 2.6. Let $\mathcal{X}=\left\{\left.\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. It is noteworthy that \mathcal{X} is a Banach algebra when its norm is defined as $\|M\|=|a|$, where $M=\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$. However, it is not a prime algebra, as shown by the equation:

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \text { for all } a \in \mathbb{R}
$$

If n and m are both greater than 1 , then it is found that the commutator of x^{n} and y^{m} is equal to 0 for any values of x and y in \mathcal{X}. It is important to note that although this is true, \mathcal{X} is not a commutative set.

It is not redundant to demonstrate that both hypotheses, \mathcal{H}_{1} and \mathcal{H}_{2}, are open, as shown in the following example.
Example 2.7. Consider the field of real numbers \mathbb{R} and let \mathcal{X} be $\mathcal{M}_{2}(\mathbb{R})$ equipped with regular matrix addition and multiplication. Also, consider the norm defined by $\|A\|_{1}=\max _{1 \leq j \leq 2} \sum_{1 \leq i \leq 2}\left|a_{i, j}\right|$ for all $A=\left(a_{i, j}\right)_{1 \leqslant i, j \leqslant 2} \in \mathcal{X}$. This makes \mathcal{X} a prime unital Banach algebra.

Let $\mathcal{F}_{1}=\left\{\left.\left(\begin{array}{cc}t & 0 \\ 0 & t\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}$ and $\mathcal{F}_{2}=\left\{\left.\left(\begin{array}{cc}t^{2} & 0 \\ 0 & t^{2}\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}$. It is worth noting that \mathcal{F}_{1} is not open in \mathcal{X}. To prove this, we need to show that the complement of \mathcal{F}_{1}^{c} is not closed. For this, consider the sequence $\left(\left(\begin{array}{cc}1+\frac{1}{n} & \frac{-1}{n} \\ \frac{1}{n} & 1+\frac{1}{n}\end{array}\right)\right)_{n \in \mathbb{N}^{*}}$, which belongs to \mathcal{F}_{1}^{c} and converges to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \notin \mathcal{F}_{1}^{c}$. Therefore, \mathcal{F}_{1}^{c} is not closed, implying that \mathcal{F}_{1} is not open in \mathcal{X}.

Furthermore, we have

$$
A^{n} \circ B^{m}=\left(\begin{array}{cc}
2 a^{n} b^{2 m} & 0 \\
0 & 2 a^{n} b^{2 m}
\end{array}\right) \in Z(\mathcal{X})
$$

for all $A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \in \mathcal{F}_{1}, B=\left(\begin{array}{cc}b^{2} & 0 \\ 0 & b^{2}\end{array}\right) \in \mathcal{F}_{2}$ and for all $(m, n) \in \mathbb{N}^{2}$. However, it should be noted that \mathcal{X} is not commutative.

This example demonstrates that $\mathbb{Z} / 3 \mathbb{Z}$ cannot be used in place of $\mathbb{K}=\mathbb{R}$ or \mathbb{C}.
Example 2.8. Consider the Banach algebra $\left(\mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z}),+, \times,.\right)$ consisting of 2×2 matrices with coefficients in $\mathbb{Z} / 3 \mathbb{Z}$ and usual matrix addition and multiplication. The norm is defined by $\|A\|_{1}=\sum_{1 \leq i, j \leq 2}\left|a_{i, j}\right|$ for any $A=\left(a_{i, j}\right)_{1 \leqslant i, j \leqslant 2} \in \mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z})$, where $|$.$| is the norm defined on$ $\mathbb{Z} / 3 \mathbb{Z}$ by $|\overline{0}|=0,|\overline{1}|=1$, and $|\overline{2}|=2$.

Note that the subset $\mathcal{H}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in \mathbb{Z} / 3 \mathbb{Z}\right\}$ is open in $\mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z})$. In fact, for any $A \in \mathcal{H}$, the open ball $B(A, 1)=\left\{X \in \mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z})\right.$ such that $\left.\|A-X\|_{1}<1\right\}$ is contained in \mathcal{H}, showing that \mathcal{H} is a non-empty open subset of $\mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z},+, \times,$.$) .$

For positive integers m and n, we have the following properties:

1. $A^{n} B^{m} \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
2. $A^{n} \circ B^{m} \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
3. $\left[A^{n}, B^{m}\right] \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
4. $A^{n} \in Z(\mathcal{X})$ for all $A \in \mathcal{H}$

However, note that while $\mathcal{M}_{2}(\mathbb{Z} / 3 \mathbb{Z})$ is not commutative.

3 Applications

In this section, we will discuss some applications of Theorem 2.2.

Application 1

Consider the set \mathcal{X}, which is comprised of all $n \times n$ strictly upper triangular matrices with either real or complex values, where n is greater than or equal to 2 . The norm $\|\cdot\|_{1}$ of \mathcal{X} is defined as the sum of the absolute values of all elements in the matrix. Using the usual matrix operations and this norm, it can be easily verified that \mathcal{X} is a non-commutative real Banach Algebra.

It should be noted that for any $(x, y) \in \mathcal{X}^{2},\left[x^{n}, y^{n}\right]$ is a member of the center of \mathcal{X}. This implies, according to Theorem 2.2, that \mathcal{X} is not prime.

Application 2

Let's consider the field of complex numbers, denoted by \mathbb{C}. We have a set of 2×2 matrices with matrix addition and multiplication, denoted by $\mathcal{X}=\mathcal{M}_{2}(\mathbb{C})$. For any $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{X}$, we define $\|A\|_{2}=\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}\right)^{\frac{1}{2}}$. This makes $\left(\mathcal{X},\|\cdot\|_{2}\right)$ a normed linear space.

We can observe that $\mathcal{H}=\left\{\left.\left(\begin{array}{cc}e^{i t} & 0 \\ 0 & e^{-i t}\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}$ is an open subset of \mathcal{B} (refer to Application 3.1 in [11]). It's worth noting that $\left[A^{n}, B^{m}\right]=0$ for all $A, B \in \mathcal{H}$ and for all $n, m \in \mathbb{N}^{*}$. From Theorem 2.2, we can conclude that \mathcal{X} is not a Banach algebra under the defined norm.

4 Conclusion

In this article, we studied the effects of topology and endomorphism on the Banach algebra.

5 Acknowledgements

The authors would like to express their heartfelt gratitude to the referees for providing numerous helpful comments.

References

[1] E. C. Posner: Derivations in Prime rings. Proc. Amer. Math. Soc. 8, 1093-1100 (1957).
[2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, (1973).
[3] H. E. Bell: On some commutativity theorems of Herstein. Arch. Math. (Basel) 24(1), 34-38 (1973).
[4] Herstein, I. N.: the Lie structure of an assosiative ring, Journal of Algebra, 14, 561-571, (1970)
[5] J. H. Mayne. mappings of prime rings. Canad. Math. Bull., 2(1)(1984), 122-126.
[6] M. Moumen and L. Taoufiq. Characterization of the center of a prime Banach algebra by its homoderivations, Boletim da Sociedade Paranaense de Matemática (to appear).
[7] M. Moumen and L. Taoufiq, Commutativity Theorems and projection on the center of a Banach algebra , Tatra Mt. Math. Publ. 83 (2023), 119-130, DOI: 10.2478/tmmp-2023-0009.
[8] M. Moumen and L. Taoufiq, Derivations Mapping into The Jacobson radical of a Banach algebra, Journal of Algebra and Related Topics (2022) (to appear).
[9] M. Moumen, L. Taoufiq and A. Boua, On prime Banach algebras with continuous derivations, Mathematica, 65(88), no1, 2023, pp. 122-132.
[10] M. Moumen, L. Taoufiq and L. Oukhtite, Some differential identities on prime Banach algebras, Journal of Algebra and Its Applications (2022), doi:10.1142/S0219498823502584.
[11] Shakir Ali and Abdul Nadim Khan, On Commutativity Of Banach Algebras With Derivations, Bull Aust.Math.Soc.91(2015), 419-425 doi:10.1017/S0004972715000118.
[12] Yood, B: Commutativity theorems for Banach algebras. Mich. Math. J. 37(2), 203-210 (1990).

Author information

Mohamed MOUMEN and Lahcen TAOUFIQ, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco.
E-mail: mohamed.moumen@edu.uiz.ac.ma, l.taoufiq@uiz.ac.ma
Received: 2022-06-22
Accepted: 2023-07-30

