ON COMMUTATIVITY OF BANACH ALGEBRAS WITH ENDOMORPHISMS

Mohamed MOUMEN and Lahcen TAOUFIQ

Communicated by Ayman Badawi

MSC 2010 Classifications: 47L10, 16U80, 08A35.

Keywords and phrases: Banach algebras, Commutativity, Endomorphism.

Abstract: This article focuses on decomposing a Banach algebra \mathcal{X} via its endomorphisms. In particular, we show that if a Banach algebra \mathcal{X} has an injective continuous endomorphism f such that $f([x^n, y^m])$ is in the center of \mathcal{X} , $Z(\mathcal{X})$, for two integers n = n(x, y), m = m(x, y) and sufficiently many x, y, then for all x in \mathcal{X} either x in $Z(\mathcal{X})$ or f(x) in $Z(\mathcal{X})$. To demonstrate the importance of our theorem assumptions, we will provide several examples.

1 Introduction

Let \mathcal{X} be a Banach algebra with center $Z(\mathcal{X})$. Recall that \mathcal{X} is prime, if for any $x, y \in \mathcal{X}$, $x\mathcal{X}y = 0$ implies either x = 0 or y = 0. The Lie product and Jordan product of $x, y \in \mathcal{X}$ are noted by [x, y] and $x \circ y$ respectively, where [x, y] = xy - yx and $x \circ y = xy + yx$. A derivation is an additive mapping, denoted as d, defined on the set \mathcal{X} . It satisfies the property d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{X}$. If d(x) = [a, x] for all $x \in \mathcal{X}$, then d is called an inner derivation induced by an element a in \mathcal{X} . For more examples, please refer to sources such as [[3], [5]]. In the case of Banach algebras, Yood [12] proved that if a semiprime Banach algebra \mathcal{X} having two nonvoid open subsets \mathcal{H}_1 and \mathcal{H}_2 verify for all $(x, y) \in \mathcal{H}_1 \times \mathcal{H}_2$ there is $(n, m) \in \mathbb{N}^* \times \mathbb{N}^*$ such that $[x^n, y^m] = 0$, then \mathcal{X} must be commutative. Inspired by Yood's result, Mohamed Moumen, Lahcen Taoufiq, and Lahcen Oukhtite [10] proved that if a prime Banach algebra, denoted by \mathcal{X} , has a continuous derivation d and satisfies the condition $d(x^ny^m) + [x^n, y^m] \in Z(\mathcal{A})$ for integers n and m determined by x and y, and for a sufficiently large number of x and y, then \mathcal{X} is commutative (see [6], [7], [8] and [9] for further information and examples).

Motivated by these results, the purpose of this article is to establish the results with a similar conclusion, but with other identities. For example, we have proven that a prime Banach algebra \mathcal{X} is equal to $Z(\mathcal{X}) \cup \{x \in \mathcal{X} \mid f(x) \in Z(\mathcal{X})\}$ under certain conditions. These conditions include the existence of two non-empty open subsets \mathcal{H}_1 and \mathcal{H}_2 and an injective continuous endomorphism f which verifies for any pair (x, y) of $\mathcal{H}_1 \times \mathcal{H}_2$, there exist two strictly positive integers n and m such that $f([x^n, y^m])$ in $Z(\mathcal{X})$. In this context, other similar results have been found.

In this article, we will utilize the following commonly-known results without specifically mentioning them.

Remark. Let X be a prime Banach algebra.
1. If x ∈ Z(X) and xy ∈ Z(X), then x = 0 or y ∈ Z(X).
2. Z(X) does not admit any zero divisors.
3. If d is a non zero derivation of X such that [d(x), x] ∈ Z(X) for all x ∈ X (in particular if d(X) ⊂ Z(X)), then X is commutative.

2 Main results

Our main results rely heavily on the lemma presented by Bonsall and Duncan in their work [2].

Lemma 2.1. Let \mathcal{X} be a real or complex Banach algebra and $S(t) = \sum_{i=1}^{n} t^{i} s_{i}$ a polynomial in the real variable t with coefficients in \mathcal{X} . If for an infinite set of real values of t, $P(t) \in C$, where C is a closed linear subspace of \mathcal{X} , then every s_i lies in C.

Theorem 2.2. Let f be an injective and continuous endomorphism of a prime Banach algebra \mathcal{X} , such that:

$$(\forall x \in \mathcal{H}_1) \ (\forall y \in \mathcal{H}_2) \ (\exists n \in \mathbb{N}^*) \ (\exists m \in \mathbb{N}^*) \ such \ that \ f([x^n, y^m]) \in Z(\mathcal{X})$$

Then, $\mathcal{X} = Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X}))$ (where \mathcal{H}_1 and \mathcal{H}_2 are two non-void open subsets of \mathcal{X}).

Proof. For any pair of natural numbers (n, m), we establish the following set:

$$O_{n,m} = \{(x,y) \in \mathcal{X}^2 \mid f([x^n, y^m]) \notin Z(\mathcal{X})\} \text{ and } F_{n,m} = \{(x,y) \in \mathcal{X}^2 \mid f([x^n, y^m]) \in Z(\mathcal{X})\}.$$

We assert that every $F_{n,m}$ is a closed set in $\mathcal{X} \times \mathcal{X}$. To prove this, we examine a sequence $((x_k, y_k))_{k \in \mathbb{N}} \subset F_{n,m}$ that converges to $(x, y) \in \mathcal{X} \times \mathcal{X}$. Given that $((x_k, y_k))_{k \in \mathbb{N}} \subset F_{n,m}$, it follows that

$$f([(x_k)^n, (y_k)^m]) \in Z(\mathcal{X})$$
 for all $k \in \mathbb{N}$.

Since $([(x_k)^n, (y_k)^m])_{k \in \mathbb{N}}$ converges to $[x^n, y^m]$ and f is continuous, we can conclude that $f([x^n, y^m]) \in Z(\mathcal{X})$. This means that $F_{n,m}$ is a closed set and $O_{n,m}$ is open. Assuming that $O_{n,m}$ is dense for all (n,m), the Baire category theorem states that their intersection must also be dense. However, this contradicts the fact that $(\cap O_{n,m}) \cap (\mathcal{H}_1 \times \mathcal{H}_2)$ is empty. Therefore, we can conclude that there exists p and q in \mathbb{N}^* such that $O_{p,q}$ is not a dense set. Furthermore, there exists a non-empty open subset $O \times O'$ in $F_{p,q}$ where $f([x^p, y^q]) \in Z(\mathcal{X})$ for all $x \in O$ and $y \in O'$. Now, we consider $y_0 \in O$ and $y \in \mathcal{X}$ we have $y_0 + ty \in O$ for all sufficiently small real $t \in \mathbb{R}$ and $f([x^p, (y_0 + ty)^q]) \in Z(\mathcal{X}).$

The expression $(y_0 + ty)^q$ can be written as:

$$(y_0 + ty)^q = A_{q,0}(y_0, y) + tA_{q-1,1}(y_0, y) + \dots + t^q A_{0,q}(y_0, y)$$

While

$$[x^{p}, (y_{0} + ty)^{q}] = [x^{p}, A_{q,0}(y_{0}, y)] + t[x^{p}, A_{q-1,1}(y_{0}, y)] + \dots + t^{q}[x^{p}, A_{0,q}(y_{0}, y)] \in Z(\mathcal{X})$$

and

$$f([x^{p},(y_{0}+ty)^{q}]) = f([x^{p},A_{q,0}(y_{0},y)]) + tf([x^{p},A_{q-1,1}(y_{0},y)]) + \dots + t^{q}f([x^{p},A_{0,q}(y_{0},y)]) \in Z(\mathcal{X})$$

Lemma 2.1 implies that the coefficient $f([x^p, y^q])$ of t^q in this polynomial belongs to $Z(\mathcal{X})$. Consequently, for all $(x, y) \in O \times \mathcal{X}$

$$f([x^p, y^q]) \in Z(\mathcal{X}).$$

Now, fix $y \in \mathcal{X}$, if we continue with the same method, we discover that $f([x^p, y^q])$ belongs to $Z(\mathcal{X})$ for all values of x and y in \mathcal{X} .

Assuming that x belongs to the set \mathcal{X} , when we substitute z with x^p , we get $f([z, (y+tz)^q])$ belonging to $Z(\mathcal{X})$ for any y in \mathcal{X} and any t in the real numbers. Since

$$P(t) = f([z, (y+tz)^{q}]) = \sum_{k=0}^{q} t^{k} f([z, A_{q-k,k}(z, y)])$$

where $A_{q-k,k}(z,y)$ denotes the sum of all terms in which y appears exactly q-k times and z appears exactly k times. By Lemma 2.1 we have $f([z, A_{q-k,k}(z, y)]) \in Z(\mathcal{X})$ for all $0 \le k \le q$. The coefficient of t in this polynomial is $f([z, A_{q-1,1}(z, y)])$, where $A_{q-1,1}(z, y) =$ $\sum_{k=0}^{q-1} z^{q-1-k} y z^k, \text{ then } [z, A_{q-1,1}(z, y)] = \sum_{k=0}^{q-1} [z, z^{q-1-k} y z^k] = [z^q, y].$ Therefore, for all $x, y \in \mathcal{X}$, we have

$$f([x^{pq}, y]) \in Z(\mathcal{X}).$$

We have two cases:

▼ If $x^{pq} \in Z(\mathcal{X})$ for all $x \in \mathcal{X}$, we will show that \mathcal{X} is commutative. For this:

Let $x \in \mathcal{X}$ and a be non-zero element of $Z(\mathcal{X})$ we have $(a + tx)^{pq} \in Z(\mathcal{X})$ for all $t \in \mathbb{R}$.

Then $(a + tx)^{pq} = \sum_{k=0}^{pq} {pq \choose k} t^k a^{pq-k} x^k \in Z(\mathcal{X})$ (because $a \in Z(\mathcal{X})$). By using Lemma 2.1,

we conclude that $a^{pq-k}x^k \in Z(\mathcal{X})$ for all $0 \leq k \leq pq$. In particular, for k = pq - 1 we have $xa^{pq-1} \in Z(\mathcal{X})$, by Remark 1, we have $x \in Z(\mathcal{X})$ because $a^{pq-1} \in Z(\mathcal{X}) \setminus \{0\}$. Then \mathcal{X} is commutative.

▼ If there is $x \in \mathcal{X}$ such that $x^{pq} \notin Z(\mathcal{X})$, we shall prove that $f(x) \in Z(\mathcal{X})$. We have $f([x^{pq}, y]) \in Z(\mathcal{X})$ for all $y \in \mathcal{X}$, we replace y by xy and we obtain $f(x)f([x^{pq}, y]) \in Z(\mathcal{X})$. By Remark 1, $f([x^{pq}, y]) = 0 \ \forall y \in \mathcal{X} \text{ or } f(x) \in Z(\mathcal{X})$. Suppose that $f(x) \notin Z(\mathcal{R})$, then $f([x^{pq},y]) = 0$ for all $y \in \mathcal{X}$. Since f is injective, then $[x^{pq},y] = 0$ for all $y \in \mathcal{X}$ that is $d(\mathcal{X}) \in Z(\mathcal{X})$ where d is the inner derivation associated by x^{pq} . According to Remark 3 we conclude that \mathcal{X} must be commutative, contradiction. Hence $f(x) \in Z(\mathcal{R})$.

Theorem 2.3. Consider a prime Banach algebra X that can be either real or complex. Let f denote an injective continuous endomorphism. Suppose that

$$(\forall (x,y) \in \mathcal{H}_1 \times \mathcal{H}_2) \ (\exists (n,m) \in \mathbb{N}^* \times \mathbb{N}^*) \text{ such that } f(x^n y^m) \in Z(\mathcal{X}),$$

where \mathcal{H}_1 and \mathcal{H}_2 are two non void open subsets of \mathcal{X} . Then $\mathcal{X} = Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X}))$.

Proof. We define the following sets for all $n, m \in \mathbb{N}^*$

$$O_{n,m} = \{(x,y) \in \mathcal{X}^2 \mid f(x^n y^m) \notin Z(\mathcal{X})\} \text{ and } F_{n,m} = \{(x,y) \in \mathcal{X}^2 \mid f(x^n y^m) \in Z(\mathcal{X})\}.$$

Using the Baire category theorem on the sets $O_{n,m}$, we can conclude, as we did before, that there exist two integers p and q (excluding zero) such that:

$$f(x^p y^q) \in Z(\mathcal{X})$$
 for all $(x, y) \in \mathcal{X}^2$.

By substituting x with x^q and y with y^p in the final expressions, we can derive:

$$f(x^{pq}y^{pq}) \in Z(\mathcal{X})$$
 for all $(x, y) \in \mathcal{X}^2$.

We also have

$$f(y^{pq}x^{pq}) \in Z(\mathcal{X})$$
 for all $(x, y) \in \mathcal{X}^2$.

As a result

$$f([x^{pq}, y^{pq}]) \in Z(\mathcal{X})$$
 for all $(x, y) \in \mathcal{X}^2$.

Therefore, according to Theorem 2.2, we reach the desired conclusion.

Theorem 2.4. Let X be a real or complex prime Banach algebra and \mathcal{H}_1 and \mathcal{H}_2 two non-void open subsets. If an injective and continuous endomorphism f satisfies: $(\forall x \in \mathcal{H}_1)$ $(\forall y \in \mathcal{H}_2)$ $(\exists n \in \mathbb{N}^*)$ $(\exists m \in \mathbb{N}^*)$ such that $f(x^n \circ y^m) \in Z(\mathcal{X})$

then, $\mathcal{X} = Z(\mathcal{X}) \cup f^{-1}(Z(\mathcal{X})).$

Proof. The proof for this outcome follows a similar approach to Theorem 2.2.

Corollary 2.5. Let \mathcal{X} be a real or complex prime Banach algebra and \mathcal{H}_1 and \mathcal{H}_2 two non-void open subsets of it. If one of the following conditions is true: 1. $(\forall (x,y) \in \mathcal{H}_1 \times \mathcal{H}_2) \ (\exists (n,m) \in \mathbb{N}^* \times \mathbb{N}^*)$ such that $x^n y^m \in Z(\mathcal{X})$ 2. $(\forall (x, y) \in \mathcal{H}_1 \times \mathcal{H}_2) \ (\exists (n, m) \in \mathbb{N}^* \times \mathbb{N}^*)$ such that $[x^n, y^m] \in Z(\mathcal{X})$ 3. $(\forall (x,y) \in \mathcal{H}_1 \times \mathcal{H}_2) \ (\exists (n,m) \in \mathbb{N}^* \times \mathbb{N}^*)$ such that $x^n \circ y^m \in Z(\mathcal{X})$ then \mathcal{X} must be commutative.

Proof. We can take f = I where I is the identical application of \mathcal{X} .

The next example proves that \mathcal{X} must be prime in the assumption of Theorem 2.2.

Example 2.6. Let $\mathcal{X} = \left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$. It is noteworthy that \mathcal{X} is a Banach algebra when

its norm is defined as ||M|| = |a|, where $M = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$. However, it is not a prime algebra, as shown by the equation:

$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ for all } a \in \mathbb{R}.$$

If n and m are both greater than 1, then it is found that the commutator of x^n and y^m is equal to 0 for any values of x and y in \mathcal{X} . It is important to note that although this is true, \mathcal{X} is not a commutative set.

It is not redundant to demonstrate that both hypotheses, \mathcal{H}_1 and \mathcal{H}_2 , are open, as shown in the following example.

Example 2.7. Consider the field of real numbers \mathbb{R} and let \mathcal{X} be $\mathcal{M}_2(\mathbb{R})$ equipped with regular matrix addition and multiplication. Also, consider the norm defined by $||A||_1 = \max_{1 \le j \le 2} \sum_{1 \le i \le 2} |a_{i,j}|$

for all $A = (a_{i,j})_{1 \leq i,j \leq 2} \in \mathcal{X}$. This makes \mathcal{X} a prime unital Banach algebra.

Let $\mathcal{F}_1 = \left\{ \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} \mid t \in \mathbb{R} \right\}$ and $\mathcal{F}_2 = \left\{ \begin{pmatrix} t^2 & 0 \\ 0 & t^2 \end{pmatrix} \mid t \in \mathbb{R} \right\}$. It is worth noting that \mathcal{F}_1 is not open in \mathcal{X} . To prove this, we need to show that the complement of \mathcal{F}_1^c is not closed. For this, consider the sequence $\left(\begin{pmatrix} 1 + \frac{1}{n} & \frac{-1}{n} \\ \frac{1}{n} & 1 + \frac{1}{n} \end{pmatrix} \right)_{n \in \mathbb{N}^*}$, which belongs to \mathcal{F}_1^c and converges to

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \notin \mathcal{F}_1^c.$ Therefore, \mathcal{F}_1^c is not closed, implying that \mathcal{F}_1 is not open in \mathcal{X} . Furthermore, we have

$$A^n \circ B^m = \begin{pmatrix} 2a^n b^{2m} & 0\\ 0 & 2a^n b^{2m} \end{pmatrix} \in Z(\mathcal{X})$$

for all $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \in \mathcal{F}_1$, $B = \begin{pmatrix} b^2 & 0 \\ 0 & b^2 \end{pmatrix} \in \mathcal{F}_2$ and for all $(m, n) \in \mathbb{N}^2$. However, it should be noted that \mathcal{X} is not commutative.

This example demonstrates that $\mathbb{Z}/3\mathbb{Z}$ cannot be used in place of $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Example 2.8. Consider the Banach algebra $(\mathcal{M}_2(\mathbb{Z}/3\mathbb{Z}), +, \times, .)$ consisting of 2×2 matrices with coefficients in $\mathbb{Z}/3\mathbb{Z}$ and usual matrix addition and multiplication. The norm is defined by $||A||_1 = \sum_{\substack{1 \le i, j \le 2 \\ 1 \le i, j \le 2}} |a_{i,j}|$ for any $A = (a_{i,j})_{1 \le i, j \le 2} \in \mathcal{M}_2(\mathbb{Z}/3\mathbb{Z})$, where |.| is the norm defined on $\mathbb{Z}/3\mathbb{Z}$ by $|\overline{0}| = 0$, $|\overline{1}| = 1$, and $|\overline{2}| = 2$.

Note that the subset $\mathcal{H} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a \in \mathbb{Z}/3\mathbb{Z} \right\}$ is open in $\mathcal{M}_2(\mathbb{Z}/3\mathbb{Z})$. In fact, for any $A \in \mathcal{H}$, the open ball $B(A, 1) = \{X \in \mathcal{M}_2(\mathbb{Z}/3\mathbb{Z}) \text{ such that } \|A - X\|_1 < 1\}$ is contained in \mathcal{H} , showing that \mathcal{H} is a non-empty open subset of $\mathcal{M}_2(\mathbb{Z}/3\mathbb{Z}, +, \times, .)$.

For positive integers m and n, we have the following properties:

- 1. $A^n B^m \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
- 2. $A^n \circ B^m \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
- 3. $[A^n, B^m] \in Z(\mathcal{X})$ for all $A, B \in \mathcal{H}$
- 4. $A^n \in Z(\mathcal{X})$ for all $A \in \mathcal{H}$

However, note that while $\mathcal{M}_2(\mathbb{Z}/3\mathbb{Z})$ is not commutative.

3 Applications

In this section, we will discuss some applications of Theorem 2.2.

Application 1

Consider the set \mathcal{X} , which is comprised of all $n \times n$ strictly upper triangular matrices with either real or complex values, where n is greater than or equal to 2. The norm $\|.\|_1$ of \mathcal{X} is defined as the sum of the absolute values of all elements in the matrix. Using the usual matrix operations and this norm, it can be easily verified that \mathcal{X} is a non-commutative real Banach Algebra.

It should be noted that for any $(x, y) \in \mathcal{X}^2$, $[x^n, y^n]$ is a member of the center of \mathcal{X} . This implies, according to Theorem 2.2, that \mathcal{X} is not prime.

Application 2

Let's consider the field of complex numbers, denoted by \mathbb{C} . We have a set of 2×2 matrices with matrix addition and multiplication, denoted by $\mathcal{X} = \mathcal{M}_2(\mathbb{C})$. For any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{X}$,

we define $||A||_2 = (|a|^2 + |b|^2 + |c|^2 + |d|^2)^{\frac{1}{2}}$. This makes $(\mathcal{X}, ||.||_2)$ a normed linear space. We can observe that $\mathcal{H} = \left\{ \begin{pmatrix} e^{it} & 0\\ 0 & e^{-it} \end{pmatrix} \mid t \in \mathbb{R} \right\}$ is an open subset of \mathcal{B} (refer to Application 3.1 in [11]). It's worth noting that $[A^n, B^m] = 0$ for all $A, B \in \mathcal{H}$ and for all $n, m \in \mathbb{N}^*$. From Theorem 2.2, we can conclude that \mathcal{X} is not a Banach algebra under the defined norm.

4 Conclusion

In this article, we studied the effects of topology and endomorphism on the Banach algebra.

5 Acknowledgements

The authors would like to express their heartfelt gratitude to the referees for providing numerous helpful comments.

References

- [1] E. C. Posner: Derivations in Prime rings. Proc. Amer. Math. Soc. 8, 1093-1100 (1957).
- [2] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, (1973).
- [3] H. E. Bell: On some commutativity theorems of Herstein. Arch. Math. (Basel) 24(1), 34-38 (1973).
- [4] Herstein, I. N.: the Lie structure of an assosiative ring, Journal of Algebra, 14, 561-571, (1970)
- [5] J. H. Mayne. mappings of prime rings. Canad. Math. Bull., 2(1)(1984), 122-126.
- [6] M. Moumen and L. Taoufiq. *Characterization of the center of a prime Banach algebra by its homoderivations, Boletim da Sociedade Paranaense de Matemática (to appear).*
- [7] M. Moumen and L. Taoufiq, Commutativity Theorems and projection on the center of a Banach algebra, Tatra Mt. Math. Publ. 83 (2023), 119–130, DOI: 10.2478/tmmp-2023-0009.
- [8] M. Moumen and L. Taoufiq, Derivations Mapping into The Jacobson radical of a Banach algebra, Journal of Algebra and Related Topics (2022) (to appear).
- [9] M. Moumen, L. Taoufiq and A. Boua, On prime Banach algebras with continuous derivations, Mathematica, 65(88), no1, 2023, pp. 122-132.
- [10] M. Moumen, L. Taoufiq and L. Oukhtite, Some differential identities on prime Banach algebras, Journal of Algebra and Its Applications (2022), doi:10.1142/S0219498823502584.
- [11] Shakir Ali and Abdul Nadim Khan, On Commutativity Of Banach Algebras With Derivations, Bull Aust.Math.Soc.91(2015), 419-425 doi:10.1017/S0004972715000118.
- [12] Yood, B: Commutativity theorems for Banach algebras. Mich. Math. J. 37(2), 203-210 (1990).

Author information

Mohamed MOUMEN and Lahcen TAOUFIQ, National School of Applied Sciences, Ibn Zohr University, Agadir, Morocco.

 $E\text{-mail:} \verb"mohamed.moumen@edu.uiz.ac.ma", \verb"l.taoufiq@uiz.ac.ma" is a constrained in the second second$

Received: 2022-06-22 Accepted: 2023-07-30