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Abstract Let R be a ring with identity and S ⊆ R be a multiplicative closed subset. Hamed
and Malek [10] introduced the concept of S-prime ideal of R which is a generalization of prime
ideals. An ideal P of R disjoint with S is called S-prime ideal of R if there exists an s ∈ S
such that for all a, b ∈ R if ab ∈ P , then sa ∈ P or sb ∈ P . In this paper we introduce the
concept of S-semiprime ideal and weakly S-semiprime ideal as generalizations of semiprime
ideals. We show that S-semiprime ideals and weakly S-semiprime ideals enjoy analogs of many
fundamental properties of semiprime ideals and we study their characterizations in the ring R.

1 Introduction

Throughout this paper R is considered to be a ring with unity 1(6= 0). Let P be a proper ideal of
ring R, then the ideal P is said prime ideal, if for a, b ∈ R and ab ∈ P implies either a ∈ P or
b ∈ P . The prime ideals play a very important role in the commutative ring theory. The notion
of prime ideals is used to characterize certain classes of rings. For years, many researchers
have shown immense interests on this issue and many generalizations of the same have been
given by a lot of researchers. D. D. Anderson et al. [2] defined the weakly prime ideals as
a generalization of prime ideals. A proper ideal P of ring R is called weakly prime if for all
a, b ∈ R with 0 6= ab ∈ P implies either a ∈ P or b ∈ P . Thus all prime ideal of a ring R are
weakly prime ideal, the converse in general is not true. For example < 0 > is always weakly
prime ideal of R, and it is prime if and only if the given ring is an integral domain. Recently,
various generalizations of prime ideals are studied in [3, 4, 7, 9]. Recall that a proper ideal P of
R is a semiprime ideal if for a ∈ R, a2 ∈ P implies a ∈ P . A. Badawi [5] defined an ideal P as a
weakly semiprime if for all a ∈ R with 0 6= a2 ∈ P implies that a ∈ P . For example, all proper
ideals of a quasilocal ring (R,M) with nilpotent module M with index 2 are weakly semiprime
ideal. All the weakly prime ideals of a ring are weakly semiprime, but the converse in general
is not true. Also all semiprime ideals of a ring are weakly semiprime, however the converse in
general is not true. For example, the ideal P = {0, 8} of Z16 is weakly semiprime which is
not semiprime. Consider a nonempty subset S of R. We call S a multiplicative closed subset
(briefly, m.c.s.) of R if ss′ ∈ S for all s, s′ ∈ S. The concept of S-prime ideal was introduced
by Hamed and Malek [10] which is also a generalization of prime ideals. A proper ideal P of
R with a multiplicative closed subset S disjoint with P is called S-prime ideal if there exists an
s ∈ S such that for all a, b ∈ R with ab ∈ P , we have sa ∈ P or sb ∈ P . Every prime ideal
of a ring disjoint with a multiplicative closed subset S is S-prime ideal, however the converse is
not true in general [10, Example 1]. Later on many authors have extended the study of S-prime
ideals of rings, for instance, see [1, 12, 14].

The main purpose of this paper is to introduce the notion of S-semiprime ideals and weakly
S-semiprime ideals of rings which are generalizations of semiprime ideals of a ring and investi-
gate their characterizations in the ring. A proper ideal P of R is said to be S-semiprime where
S is multiplicative closed subset of R disjoint with P , if there exists an s ∈ S such that for all
a ∈ R with a2 ∈ P , we have sa ∈ P . All semiprime ideals disjoint with multiplicative closed set
S are S-semiprime but the converse is not true in general, see Example 2.3. In the first section
we study the basic properties of S-semiprime ideals. Among many results, it has been shown



116 Kamal Krishna Pathak and Jituparna Goswami

that (P : s) is semiprime ideal of ring R implies that P is S-semiprime of ring R. However
the converse is true only if P is 2-absorbing ideal of R. A nonzero proper ideal I of ring R is
called 2-absorbing ideal of R if whenever a, b and c ∈ R with abc ∈ I , then ab ∈ I or ac ∈ I
or bc ∈ I [6]. An element a of a commutative ring R is called a zero-divisor of R if ab = 0 for
some non-zero element b of R. A nonzero element of a commutative ring R is called a regular
element if it is not a zero divisor of R. It is proved that when S consists of regular elements,
then 2-absorbing ideal P of R is S-semiprime ideal if and only if (P : s) is semiprime ideal of
ring R which implies S−1P is a semiprime ideal of S−1R and (P : s) ⊆ S−1P ∩ R. Also, we
have the famous result of McCoy [13] known by the prime avoidance lemma which states that
for a commutative ring R, an ideal I of R and for prime ideals P1, ..., Pn of R, if I ⊆

⋃n
i=1 Pi,

then I ⊆ Pi for some i ∈ {1, ..., n}. Using this prime avoidance lemma, we have established a
characterization of S-semiprime ideals of ring R. Following the concepts of m − system and
n − system [11], the concept of S −m − system and S − n − system has been introduced in
this section to establish characterization of S-prime and S-semiprime ideals of ring R.

In the next section we study the weakly S-semiprime ideal of a ring R. Suppose the ring R
is commutative, S a multiplicative closed subset of R and P an ideal of R disjoint with S. We
say P is weakly S-semiprime ideal of R if there exists an s ∈ S such that for all a ∈ R with
0 6= a2 ∈ P , we have sa ∈ P . All weakly semiprime ideal are weakly S-semiprime and all S-
semiprime ideal are weakly S-semiprime but the converse are not true in general. In this section,
it is shown that if P is a weakly S-semiprime ideal which is not S-semiprime, then P 2 = 0.
Among many other results, it is also shown that the zero ideal is the only weakly S-semiprime
ideal of ring R if and only if the ring R is reduced and S−1R is a field. We conclude this section
with a study of the preservation of weakly S-semiprime ideals under ring homomorphism.

For any undefined terminology of ring theory mentioned in this paper, we refer to [11, 15].

2 S-Semiprime Ideals

Let us consider R to be a commutative ring with unity and S be a multiplicative closed subset
of R. In this section we introduce the notion of the S-semiprime ideals of R and study their
characterization in R. We begin with the following definition.

Definition 2.1. Let R be a commutative ring, S be a multiplicative closed subset of R and P an
ideal of R disjoint with S. We say P is S-semiprime ideal of R if there exists an s ∈ S such that
for all a ∈ R with a2 ∈ P , we have sa ∈ P .

Example 2.2. (1) Let R be a ring and let S be the set of all units of R, then S is a multiplicative
closed subset of R. All the prime ideals of R are S-semiprime ideals of R.

(2) Let R = Z[X], P = 4XZ[X] and S = {2n | n ∈ N}. Clearly, P is an ideal of R and S is a
multiplicative closed subset of R such that P ∩ S = φ. If f ∈ R such that f2 ∈ P then 4X
divides f which yields 4f ∈ P . Hence, P is an S-semiprime ideal in R.

(3) Let us consider the ring R = Z and the multiplicative closed set S = {3n | n ∈ N} of R.
Then P =< 6 > is S-semiprime ideal.

All semiprime ideal of R are S-semiprime. However, the converse is not true in genearal
which can be illustrated by the following example.

Example 2.3. Let R = Z[X], P = 4XZ[X] and S = {2n | n ∈ N}. Then we have shown in the
Example 2.2(2) that P is an S-semiprime ideal. Now we have 4X2 = (2X)2 ∈ P but 2X /∈ P ,
which implies that 4XZ[X] is not semiprime ideal in Z[X].

Proposition 2.4. LetR be a commutative ring, S be a multiplicative closed subset ofR consisting
of regular elements and P an 2-absorbing ideal of R disjoint with S. Then P is an S-semiprime
ideal if and only if (P : s) is semiprime ideal.

Proof. Suppose P is S-semiprime ideal of R. Therefore there exists s ∈ S such that, whenever
a2 ∈ P implies sa ∈ P . We claim that (P : s) is semiprime ideal i.e whenever a2 ∈ (P : s)
implies a ∈ (P : s). Let a2 ∈ (P : s), which implies a2s = sa2 ∈ P . Since P is an ideal
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and S consists of regular elements, we can have s.sa2 = (sa)2 ∈ P . P is S-semiprime ideal,
therefore s.sa ∈ P . As P is 2 − absorbing, therefore we have s.s ∈ P or s.a ∈ P or s.a ∈ P .
Since P ∩ S = φ, hence s2 /∈ P . Consequently sa ∈ P . Therefore a ∈ (P : s) which implies
(P : s) is semiprime ideal. Conversely, suppose (P : s) is semiprime ideal. We claim that P
is S-semiprime. Let a2 ∈ P and since s ∈ S ⊂ R, implies sa2 ∈ P (since P is an ideal in R).
Therefore a2 ∈ (P : s) implies a ∈ (P : s) (since (P : s) is semiprime). Consequently sa ∈ P .
Hence P is S-semiprime in R.

Proposition 2.5. LetR be a commutative ring, S be a multiplicative closed subset ofR consisting
of regular elements and P be an 2-absorbing ideal of R disjoint with S. Consider the following
conditions:

(1) P is a S-semiprime ideal of R.
(2) (P : s) is a semiprime ideal of R.
(3) S−1P is a semiprime ideal of S−1R.
(4) (P : s) ⊆ S−1P ∩R for some s ∈ S.

Then we have the sequence of implications (1)⇔ (2)⇒ (3)⇒ (4)

Proof. (1)⇔ (2) The proof is from the Proposition 2.4.
(2) ⇒ (3) Suppose (P : s) is a semiprime ideal of R. Which implies P is a S-semiprime

ideal in R. There exists s ∈ S such that, whenever a2 ∈ P implies sa ∈ P . We claim that S−1P
is a semiprime ideal of S−1R, that is, whenever a2 ∈ S−1P implies a ∈ S−1P . Let as ∈ S

−1R

such that (as )
2 ∈ S−1P . Then a2

s2 = p′

s′ for some p′ ∈ P and s′ ∈ S. Thus a2s′ = s2p′ ∈ P .
Since P is an ideal, a2s′2 ∈ P . Implies (as′)2 ∈ P . Since P is S-semiprime ideal, there exist
s ∈ S such that sas′ ∈ P . This implies a

s = ass′

sss′ ∈ S
−1P . Therefore (as )

2 ∈ S−1P . Implies
a
s ∈ S

−1P . Hence S−1P is semiprime ideal in S−1R.
(3)⇒ (4) Let α ∈ (P : s), which implies αs ∈ P . Since s ∈ S, α = αs

s ∈ S
−1P . Therefore

(P : s) ⊆ S−1P ∩R for some s ∈ S.

Proposition 2.6. Let R be a commutative ring with identity, S be a multiplicative closed subset
and P an ideal of R disjoint with S. Then P is S-semiprime if and only if there exist s ∈ S, such
that for all ideal I of R, if I2 ⊆ P then sI ⊆ P .

Proof. Let there exists s ∈ S such that for all ideals I of R, whenever I2 ⊆ P implies sI ⊆ P .
We claim that P is S-semiprime ideal. Let a ∈ R such that a2 ∈ P , so (aR)2 ⊆ P . Thus
s(aR) ⊆ P , so sa ∈ P . Hence P is S-semiprime ideal. Conversely, suppose P is S-semiprime
ideal. We suppose that for all t ∈ S, there exists ideal It of R with (It)2 ⊆ P but tIt * P . Now
since s ∈ S, there exist ideal Is of R with (Is)2 ⊆ P but sIs * P . Therefore there exists as ∈ Is
such that sas /∈ P with a2

s ∈ P . Which is a contradiction to the fact that P is S-semiprime.
Therefore there exists s ∈ S such that for all ideal I of R, if I2 ⊆ P then sI ⊆ P .

Proposition 2.7. Let R be a commutative ring with identity, S be a multiplicative closed subset
of R and I an ideal of R disjoint with S. Let P be a proper ideal of R containing I such that
P/I ∩ S̄ = φ. Then P is S-semiprime if and only if P/I is an S̄-semiprime ideal of R/I .

Proof. Suppose that P is S-semiprime ideal of R. By definition there exists s ∈ S such that,
whenever a2 ∈ P implies sa ∈ P . We claim that P/I is S-semiprime ideal of R/I . Let ā ∈ R/I
such that (ā)2 ∈ P/I . Then a.a ∈ P/I =⇒ ā2 ∈ P/I . So a2 ∈ P , thus sa ∈ P (since P is
S-semiprime ideal). Therefore sa ∈ P/I =⇒ s̄ā ∈ P/I for s̄ ∈ S̄. Conversely, Let us suppose
that P ∩S 6= φ, then there exists s ∈ P ∩S. Which implies s̄ ∈ P/I∩S̄. Which is a contradiction
to the fact that P/I ∩ S̄ = φ. So P ∩ S = φ. Let a ∈ R such that a2 ∈ P . Now since P/I is
S̄-semiprime ideal of R/I , so there exists s ∈ S such that for all ā ∈ R/I with (ā)2 ∈ P/I we
have s̄ā ∈ P/I . Thus sa ∈ P/I implies sa ∈ P . Hence for a ∈ R with a2 ∈ P we have sa ∈ P .
Which implies P is S-semiprime ideal.

Proposition 2.8. Let R be a commutative ring, S be a multiplicative closed subset of R and P
an ideal of R disjoint with S.

(1) Let J be an ideal of ring R such that J and S are not disjoint. If P is S-semiprime ideal
then JP is S-semiprime ideal.
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(2) Let R ⊆ T be an extension of commutative rings. If Q is an S-semiprime ideal of T , then
Q ∩ S is an S-semiprime ideal of R.

(3) Let f : R→ T be a homomorphism of commutative rings such that f(S) doesnot contain
zero. If Q is f(S)-semiprime ideal of T , then f−1(Q) is S-semiprime ideal of R.

Proof. (1) Let P is S-semiprime ideal of R. So there exists s ∈ S such that whenever a ∈ R and
a2 ∈ P implies sa ∈ P . J is an ideal of R such that J ∩ S 6= φ, suppose t ∈ J ∩ S. Let a ∈ R
such that a2 ∈ JP ⊆ P . Therefore a2 ∈ P . So there exists s ∈ S such that sa ∈ P (since P is
S-semiprime). Thus tsa ∈ JP where ts ∈ S. Hence a2 ∈ JP implies s′a ∈ JP (ts = s′ ∈ S).
Hence JP is S-semiprime ideal of R.

(2) Q is an S-semiprime ideal of T . We claim that Q ∩ R is an S-semiprime ideal of R. Let
a ∈ R such that a2 ∈ Q ∩R. This implies a2 ∈ Q. Since Q is S-semiprime ideal of R, therefore
there exists s ∈ S such that sa ∈ Q. And since sa ∈ R, hence sa ∈ Q ∩ R. Thus a2 ∈ Q ∩ R
implies sa ∈ Q ∩R. Hence Q ∩R is S-semiprime ideal of R.

(3) Let Q is an f(S)-semiprime ideal of T such that f(S) does not contain zero. So f(S)
is multiplicative closed set of T . Let us suppose P = f−1(Q). Let us suppose P ∩ S 6= φ.
Then t ∈ P ∩ S =⇒ t ∈ f−1(Q) ∩ S. So f(t) ∈ Q ∩ f(S) which is a contradiction, since
Q ∩ f(S) = φ as Q is f(S)-semiprime ideal of T . Thus P ∩ S = φ. Let a ∈ R such that
a2 ∈ P = f−1(Q). Then f(a2) ∈ Q. Since f is a homomorphism, so f(a)f(a) ∈ Q. Which
implies that f(s)f(a) ∈ Q for some s ∈ S. So f(sa) ∈ Q, thus sa ∈ f−1(Q) = P . Hence
f−1(Q) is S-semiprime ideal of R.

Definition 2.9. Let S be a multiplicative closed subset of a ring R not containing 0. Then R is
said to be a S-prime ring if < 0 > is a S-prime ideal of ring R.

Proposition 2.10. Let R be a ring and S be a multiplicative closed subset of R. Then R is a
S-prime ring if and only if for any a, b ∈ R and s ∈ S, ab = 0 implies sa = 0 or sb = 0.

Proof. Let us suppose that R is a S-prime ring. Then < 0 > is a S-prime ideal. Let a, b ∈ R
such that ab = 0 ∈ 0. Then for s ∈ S, we have sa ∈< 0 > or sb ∈< 0 > as < 0 > is S-prime
ideal. Therefore, sa = 0 or sb = 0. Conversely, let a, b ∈ R and s ∈ S such that ab = 0 implies
sa = 0 or sb = 0. Let ab ∈< 0 >. Then ab = 0 which implies sa = 0 or sb = 0. Thus
sa ∈< 0 > or sb ∈< 0 >. Therefore, < 0 > is S-prime ideal. Hence, R is a S-prime ring.

Definition 2.11. Let S be a multiplicative closed subset of a ring R not containing 0. Then R is
said to be a S-semiprime ring if < 0 > is a S-semiprime ideal of ring R.

Proposition 2.12. Let R be a ring and S be a multiplicative closed subset of R. Then R is a
S-semiprime ring if and only if for any a ∈ R and s ∈ S, a2 = 0 implies sa = 0.

Proof. Let us assume that R is a S-semiprime ring. Then < 0 > is a S-semiprime ideal. Let
a ∈ R such that a2 = 0 ∈< 0 >. Then for s ∈ S, we have sa ∈< 0 > as < 0 > is S-prime
ideal. Therefore, sa = 0. Conversely, let a ∈ R and s ∈ S such that a2 = 0 implies sa = 0.
Let a2 ∈< 0 >. Then a2 = 0 which implies sa = 0. Thus sa ∈< 0 >. Therefore < 0 > is
S-semiprime ideal. Hence, R is a S-semiprime ring.

Proposition 2.13. Let R be a commutative ring and S ⊆ R is a multiplicative closed set. Let I
be an ideal of R and let P1, P2, P3, ..., Pn be S-semiprime ideals of R. If I ⊆

⋃n
i=1 Pi, then there

exist s ∈ S and j = {1, 2, 3, ..., n} such that sI ⊆ Pj .

Proof. Let P1, P2, P3, ..., Pn be S-semiprime ideals of R. And suppose that I ⊆
⋃n
i=1 Pi. By

Proposition 2.4, for all i = {1, 2, 3, ..., n} there exists s ∈ S such that (Pi : si) is a semiprime
ideal of R. And we have I ⊆

⋃n
i=1 Pi ⊆

⋃n
i=1(Pi : si). Using the prime avoidance lemma, there

exists j ∈ {1, 2, 3, ..., n} such that I ⊆ (Pj : sj); which implies sjI ⊆ Pj .

Definition 2.14. [11] Let R be a ring. A nonempty set S ⊆ R is said to be an m− system if, for
any a, b ∈ S, there exists r ∈ R such that arb ∈ S.

Definition 2.15. [11] Let R be a ring. A nonempty set S ⊆ R is called an n− system if, for any
a ∈ S, there exists r ∈ R such that ara ∈ S.
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Now following the definitions of m − system and n − system, next we introduce a char-
acterization for S-prime ideals and S-semiprime ideals. For that we establish the notion of
S −m− system and S − n− system.

Definition 2.16. Let R be a ring. A nonempty subset M of R containing a multiplicative closed
subset S is called a S −m− system if for any x, y ∈ R, there exists s ∈ S and r ∈ R such that
sx, sy ∈M implies that xry ∈M .

Proposition 2.17. Let R be a ring and S be multiplicative closed subset of R. A proper ideal P
of R is an S-prime ideal of R if and only if P c is a S −m− system.

Proof. Let P be an S-prime ideal of ring R if and only if for any x, y ∈ R with xRy ⊆ P there
exists s ∈ S such that sx ∈ P or sy ∈ P if and only if there exists s ∈ S with sx ∈ P c and
sy ∈ P c then there exists x ∈ R such that xry /∈ P and so xry ∈ P c if and only if P c is a
S −m− system.

Definition 2.18. Let R be a ring. A nonempty subset N of R containing a multiplicative closed
subset S is called a S − n − system if for any x ∈ R, there exists s ∈ S and r ∈ R such that
sx ∈ N implies that xrx ∈ N .

Proposition 2.19. Let S be multiplicative closed subset of ring R. A proper ideal P of R is an
S-semiprime ideal of R if and only if P c is a S − n− system.

Proof. Let us suppose P be an S-semiprime ideal of ring R if and only if for any x ∈ R with
xRx ⊆ P there exists s ∈ S such that sx ∈ P if and only if there exists s ∈ S with sx ∈ P c then
there exists x ∈ R such that xrx /∈ P and so xrx ∈ P c if and only if P c is a S−n− system.

Example 2.20. Consider the ring R = Z and the multiplicative closed set S = {3n | n ∈ N} of
R. P =< 6 > is S-semiprime ideal. Then P c is an S − n− system in R = Z

Proposition 2.21. Let R be a ring and S be a multiplicative closed subset of R. Let N be an
S − n − system of R and P be a maximal ideal of R with respect to the condition that N is
disjoint with P . Then P is an S-semiprime ideal of R.

Proof. Let us suppose that P is not S-semiprime. Then sx /∈ P for all s ∈ S but x2 ∈ P for
x ∈ R. Since P is maximal with respect to N ∩ P = φ, therefore we can write there exists
n ∈ N such that n ∈ P+ < x2 >. There exists s′ ∈ S and r ∈ R such that s′n ∈ N implies
that nrn ∈ N since N is an S − n − system. Again we have nrn ∈ (P+ < x2 >)R(P+ <
x2 >) ⊆ P+ < x2 >⊆ P . Which is a contradiction to the fact that N ∩ P = φ. Hence P is an
S-semiprime ideal in R.

Definition 2.22. Let S be any multiplicative closed subset of a ring R. For any ideal I of R, we
define β(I) = {r ∈ R : N ∩ I 6= φ for any S − n− system N containing r}.

Proposition 2.23. Let R be a ring and S be a multiplicative closed subset of R. For any ideal I
of R, β(I) =

⋂
I⊆P, P is an S−semiprime ideal P .

Proof. Suppose x ∈ β(I). Let P ne an S-semiprime ideal of R such that I ⊆ P . Let us con-
sider that x /∈ P then x ∈ P c. And by Proposition 2.19 we have P c is an S − n − system.
So P c ∩ I 6= φ. Which is a contradiction as I ⊆ P . Hence x ∈ P for all S-semiprime
ideals P such that I ⊆ P . Hence x ∈

⋂
I⊆P, P is an S−semiprime ideal P . Conversely, let

x ∈
⋂
I⊆P, P is an S−semiprime ideal P . Let us suppose that x /∈ β(I). So by definition of

β(I), there exists an S − n − system N such that x ∈ N and N ∩ I = φ. By Zorn’s
lemma, there exists a maximal ideal J of R such that N ∩ J = φ. Now by Proposition 2.21,
J is an S-semiprime ideal of ring R. Since x ∈ N so x /∈ J and therefore x /∈ I . Hence
x /∈

⋂
I⊆P, P is an S−semiprime ideal P , which is a contradiction. Therefore x ∈ β(I).

Lemma 2.24. Let R be a commutative ring. A nonempty subset S of R is a multiplicative closed
set if and only if Md

n(S) is a multiplicative closed subset of Mn(R).
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Proof. Let S be multiplicative closed subset of ring R. Then 1 ∈ S and for x, y ∈ S implies that
xy ∈ S. It follows that I ∈ Md

n(S) and let A,B ∈ Md
n(S). Then A = diag(a1, a2, . . . , an) and

B = diag(b1, b2, . . . , bn) where ai, bi ∈ S. So, AB = diag(a1b1, a2b2, . . . , anbn). Which shows
that AB ∈Md

n(S). Thus Md
n(S) is multiplicative closed set.

Conversely, let Md
n(S) is a multiplicative closed sibset of Mn(R). Then for any A,B ∈ Md

n(S)
we have AB ∈Md

n(S). We have to show that for any x, y ∈ S implies that xy ∈ S. We construct
A = diag(x, x, . . . , x) and B = diag(y, y, . . . , y). This implies that diag(xy, xy, . . . , xy) ∈
Md
n(S) and thus xy ∈ S. Hence S is a multiplicative closed subset of R.

In the following we establish a relationship between S-semiprime ideal of a ring and S-
semiprime ideal of its corresponding matrix ring.

Lemma 2.25. [11] If A and B are two ideal of a ring R then (i) Mn(AB) =Mn(A)Mn(B) and
(ii) A ⊆ B if and only if Mn(A) ⊆Mn(B).

Proposition 2.26. Let R be a ring with identity and S be a multiplicative closed subset of R. A
proper ideal J of R is an S-semiprime ideal of R if and only if Mn(J) is an Md

n(S)-semiprime
ideal of Mn(R).

Proof. Let J be an S-semiprime ideal of R. We know that the ideals of Mn(R) are of the form
Mn(J) for every ideal J of R. Suppose Mn(A) be ideal of Mn(R) such that (Mn(A))2 ⊆
Mn(J). By the above Lemma 2.25. we have (Mn(A))2 = Mn(A2) ⊆ Mn(J). Which implies
that A2 ⊆ J . Since J is an S-semiprime ideal of R so there exists s ∈ S such that sA ⊆ J .
It follows that Mn(sA) ⊆ Mn(J). Thus, there exists scalar matrix sI ∈ Md

n(S) such that
sIMn(A) ⊆ Mn(J). Hence Mn(J) is an Md

n(S)-semiprime ideal of Mn(R). Conversely, let
Mn(J) is an Md

n(S)-semiprime ideal of Mn(R). Suppose A be ideal of R such that A2 ⊆
J . Which implies that Mn(A2) is an ideal of Mn(R) and by above Lemma 2.25. we have
Mn(A2) ⊆ Mn(J). It follows that (Mn(A))2 ⊆ Mn(J). Since Mn(J) is an Md

n(S)-semiprime
ideal of Mn(R) so there exists sI ∈Md

n(S) such that sIMn(A) =Mn(sA) ⊆Mn(J) and hence
sA ⊆ J . Thus J is an S-semiprime ideal of R.

3 Weakly S-Semiprime Ideals

In this section we introduce the notion of the weakly S-semiprime ideals of R and discuss their
characterization in R. We begin with the following definition.

Definition 3.1. Let R be a commutative ring, S be a multiplicative closed subset of R and P an
ideal of R disjoint with S. We say P is weakly S-semiprime ideal of R if there exists an s ∈ S
such that for all a ∈ R with 0 6= a2 ∈ P , we have sa ∈ P .

It is obvious that all weakly semiprime ideal of R are weakly S-semiprime. However, the
converse is not true in genearal which can be illustrated by the following example.

Example 3.2. Let R = Z[X], P = 4XZ[X] and S = {2n|n ∈ N}. Then we have shown in the
Example 2.2(2) that P is an S-semiprime ideal, which implies that P is weakly S-semiprime
ideal. We have 0 6= 4X2 = (2X)2 ∈ P but 2X /∈ P . Thus, P is not weakly semiprime.

Also, an S-semiprime ideal of R is weakly S-semiprime. However, the converse is not true
in general. The following example shows that the converse implication is not true.

Example 3.3. Let R = Z12 and S = {3, 9}. Clearly, S is a multiplicative closed subset of R.
The ideal < 0 > is weakly S-semiprime ideal of Z12. However, < 0 > ideal is not S-semiprime
in Z12. Here 6 ∈ Z12, and 62 ∈< 0 >. However 6.3 = 6.9 = 6 /∈< 0 >. Hence < 0 > is not
S-semiprime in Z12.

Remark 3.4. < 0 > is always weakly S-semiprime ideal of R, and it is S-semiprime if and only
if R is an integral domain.

Let S be a multiplicative closed subet of a ring R and P an ideal of R disjoint with S. It is
obvious that if (P : s) is a weakly semiprime ideal of R for some s ∈ S, then P is a weakly S-
semiprime ideal. However, the converse implication is not true in general. That is P is a weakly
S-semiprime ideal of R doesnot imply in general that (P : s) is weakly semiprime ideal.
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Example 3.5. Let R = Z12 and S = {3, 9}. The ideal < 0 > is weakly S-semiprime, but the
ideal (0 : 3) = (0 : 9) = {0, 4} is not weakly semiprime. Since 0 6= 22 ∈ {0, 4} but 2 /∈ {0, 4}.

Proposition 3.6. LetR be a commutative ring, S be a multiplicative closed subset ofR consisting
of regular elements and P be an 2-absorbing ideal of R disjoint with S. Then P is a weakly S-
semiprime ideal of R if and only if (P : s) is a weakly semiprime ideal of R for some s ∈ S.

Proof. Suppose P is weakly S-semiprime ideal in R, then there exists s ∈ S such that for all
a ∈ R with 0 6= a2 ∈ P , we have sa ∈ P . We claim that (P : s) is a weakly semiprime ideal
of R. Let 0 6= a2 ∈ (P : s). Then, 0 6= sa2 ∈ P . Since P is an ideal, we can have (sa)2 ∈ P .
Hence s.sa ∈ P . Since P is 2-absorbing and P ∩ S = φ. Hence sa ∈ P . Which implies
a ∈ (P : s). This implies (P : s) is weakly semiprime ideal. Conversely, suppose (P : s) is
weakly semiprime ideal inR. Let 0 6= a2 ∈ P . For s ∈ S ⊆ R, we have 0 6= sa2 ∈ P . Therefore,
a2 ∈ (P : s). As (P : s) is weakly semiprime ideal, hence 0 6= a2 ∈ (P : s) implies a ∈ (P : s).
Hence sa ∈ P . This implies that P is weakly S-semiprime ideal in R.

Definition 3.7. Let P be a weakly S-semiprime ideal of a ring R and S be multiplicative closed
subset of R disjoint with P . We say a is an unbreakable zero element of P if a2 = 0 and sa /∈ P
for all s ∈ S.

Proposition 3.8. Let P be a weakly S-semiprime ideal and S be multiplicative closed subset
of a ring R such that P ∩ S = φ. Suppose that a is unbreakable-zero element of P . Then
(a+ i)2 = (a− i)2 = 0.

Proof. It is given that P is an S-semiprime ideal and S is a multiplicative closed subset of R
such that P ∩ S = φ. Also a is an unbreakable zero element of P . Therefore a2 = 0 and
sa /∈ P . Let i ∈ P . Since (a + i)2 = a2 + 2ai + i2 = 0 + 2ai + i2 ∈ P and sa /∈ P , we have
(sa+ si) = s(a+ i) /∈ P . Since P ∩ S = φ, hence (a+ i) /∈ P . Thus (a+ i)2 = 0.
Similarly (a − i)2 = a2 − 2ai + i2 ∈ P and sa /∈ P which implies s(a − i) /∈ P , we have
(a− i) /∈ P . Thus (a− i)2 = 0.

Proposition 3.9. Let P be a weakly S-semiprime ideal of a ring R that is not S-semiprime and
S is multiplicative closed subset of R. Then P ⊆ Nil(R).

Proof. Suppose that P be a weakly S-semiprime ideal of ringR, such that P is not S-semiprime.
Therefore we can conclude that there is a ∈ R which is unbreakable zero element of P . That
is there is a ∈ R such that a2 = 0 and sa /∈ P . Let i ∈ P . Then by the previous theorem,
(a + i)2 = 0 for unbreakable zero element a of P . This implies (a + i) ∈ Nil(R). Also
a2 = 0 implies a ∈ Nil(R). Thus we have i ∈ Nil(R). Therefore we can conclude that
P ⊆ Nil(R).

Proposition 3.10. Let A be an ideal of R and let S be a multiplicative closed subset in R such
that A∩ S is empty. Then there is an ideal P of R which is maximal with respect to the property
that A ⊆ P and P ∩ S are empty. Furthermore, P is a semiprime ideal.

Proof. Let Γ be the set of all ideals M of R containg A and M ∩ S is empty. Γ is not empty
since A ∈ Γ. By Zorn’s lemma Γ has a maximal element P . To show that P is semiprime, let us
suppose that P is not semiprime. Let a2 ∈ P such that a /∈ P . Then P ⊂ P+ < a > and so there
is an element s ∈ S such that s ∈ P+ < a >. Hence s = p+ ra where p ∈ P and r ∈ R. Then
s2 = (p+ ra)2 = p2 + 2pra+ r2a2 ∈ P ∩ S, a contradiction to the assumption that P ∩ S = φ.
Hence P is semiprime ideal of R.

Proposition 3.11. Let R be a commutative ring and S be a multiplicative closed subset of R
consisting of regular elements. Then the following assertions are equivalent:

(1) < 0 > is the only weakly S-semiprime ideal of R.
(2) < 0 > is the only S-semiprime ideal of R.
(3) R is a reduced and S−1R is a field.

Proof. (1)⇒ (2) Let P be an S-semiprime ideal of R. Then P is weakly S-semiprime ideal of
R, and then P =< 0 >. So < 0 > is the only S-semiprime ideal of R.
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(2) ⇒ (3) By Proposition 3.10. there is a semiprime ideal P with P ∩ S = φ. Hence P is
an S-semiprime ideal of R. Hence, P =< 0 > and so the ring R is a reduced. Let a ∈ R − {0}
and s ∈ S. We claim that a

s is invertible in S−1R to prove that S−1R is field. If a ∈ S then
we have the desired result. Hence, we may assume that a /∈ S. Suppose that < a > ∩ S = φ.
Then, by Proposition 3.10. there is a semiprime ideal P of R such that < a >⊆ P . Hence,
< a >⊆ P = 0. Which is a contradiction to the fact that a ∈ R − {0}. Hence, < a > ∩ S 6= φ.
Let s′ ∈< a > ∩ S. Set s′ = at. We have, sts′ ∈ S

−1R and a
s .
st
s′ =

ast
ss′ = ss′

ss′ = 1. Therefore, sts′
is the inverse of as and hence a

s is invertible in S−1R as desired. So, S−1R is a field.
(3) ⇒ (1) Let P be a weakly S-semiprime ideal of R. Let us suppose p ∈ P − {0}. Now

since S−1R is field, hence there exists a ∈ R − {0} and s ∈ S such that p1 .
a
s = 1. This implies

pa = s ∈ P ∩ S. Which is contradiction to the fact that P ∩ S = φ. Thus P =< 0 > is the only
weakly S-semiprime ideal of R.

Proposition 3.12. Let R be a commutative ring and S be a multiplicative closed subset of R
consisting of regular elements. Then the following assertions are equivalent:

(1) Every weakly S-semiprime ideal of R is semiprime.
(2) R is a reduced and every S-semiprime ideal of R is semiprime.

Proof. (1) ⇒ (2) We have that < 0 > is weakly S-semiprime ideal of R. Since every weakly
S-semiprime ideal of R is semiprime, hence < 0 > is semiprime ideal of R. Thus the ring R
is reduced. Again since all S-semiprime ideal are weakly S-semiprime ideal and hence every
S-semiprime ideal of R is semiprime ideal.

(2) ⇒ (1) Since the ring R is reduced, therefore every weakly S-semiprime ideal of R is
S-semiprime. And since every S-semiprime ideal of R is semiprime ideal, thus every weakly
S-semiprime ideal of R is semiprime.

Proposition 3.13. Let S be a multiplicative closed subset of a ring R and P be a weakly S-
semiprime ideal of R such that P is not S-semiprime; then P 2 = 0.

Proof. It is given that P is weakly S-semiprime ideal. Hence there exists s ∈ S such that
whenever a ∈ R and 0 6= a2 ∈ P implies sa ∈ P . Suppose that P 2 6= 0. We claim that P is
S-semiprime. Let a ∈ R such that a2 ∈ P . If 0 6= a2 ∈ P , then sa ∈ P (since P is weakly
S-semiprime). Now suppose a2 = 0. If aP 6= 0, there exists p ∈ P such that ap 6= 0. Therefore
0 6= ap ∈ P =⇒ 0 6= ap = a(p + a) ∈ P (since a2 = 0). Thus (a + p)(a + p) ∈ P
implies (a + p)2 ∈ P implies s(a + p) ∈ P . So sa ∈ P implying P is S-semiprime. Now
suppose aP = 0. Since P 2 6= 0, there exists p ∈ P such that p2 6= 0 and p2 ∈ P . Thus,
0 6= p2 ∈ P =⇒ 0 6= (a + p)(a + p) ∈ P (a2 = 0, ap = 0 and p2 ∈ P ). So s(a + p) ∈ P
implies sa ∈ P .

Proposition 3.14. Let R be a ring and S1 ⊂ S2 be multiplicative closed subsets of R such that
for any s ∈ S2, there is an element t ∈ S2 satisfying st ∈ S1. If P is a weakly S2-semiprime ideal
of R, then P is a weakly S1-semiprime ideal of R.

Proof. Let a ∈ R such that 0 6= a2 ∈ P . Since P is S2-semiprime ideal, there exists s ∈ S2
such that sa ∈ P . By the assumption, there exists t ∈ S2 such that s′ = st ∈ S1. And then
s′a = sta ∈ P . Consequently, P is weakly S1-semiprime ideal of R.

Let S be multiplicative closed subset of a ring R and S∗={r ∈ R : r1 is unit in S−1R} denotes
the saturation of S. S∗ is a multiplicative closed subset of R containing S. S∗ is always a
saturated multiplicative subset of R [8].

Proposition 3.15. Let R be a ring, S be multiplicative closed subset of R and P an ideal of
R disjoint with S. Then P is a weakly S-semiprime ideal of R if and only if P is a weakly
S∗-semiprime ideal.

Proof. S∗ is saturation of multiplicative closed set S, so S ⊆ S∗. P ∩ S = φ. We claim that
S∗ ∩ P = φ. Let us suppose S∗ ∩ P 6= φ. So, there exists t ∈ S∗ ∩ P . That is t ∈ P and
t ∈ S∗. By definition of S∗, t1 is unit in S−1R. Hence there exists m

n ∈ S
−1R such that t1 .

m
n = 1

for some m ∈ R and n ∈ S. This implies tm = n ∈ S. But t ∈ P implies tm ∈ P , which
is a contradiction to the fact that P ∩ S = φ. Hence S∗ ∩ P = φ. We have S ⊆ S∗ and
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P ∩ S∗ = φ. Clearly, if P is a weakly S-semiprime ideal of R, then P is weakly S∗-semiprime
ideal of ring R. Now suppose P is weakly S∗-semiprime ideal. To prove the converse part we
will use Proposition 3.14. We will show that for any r ∈ S∗, there exists r′ ∈ S∗ such that
rr′ ∈ S. For r ∈ S∗, then r

1 .
a
s = 1 for some a ∈ R and s ∈ S. Which implies that tar = ts ∈ S

for some t ∈ S. Now by taking r′ = ta we have r′ ∈ S∗ with rr′ ∈ S. Therefore, by replacing
S = S1 and S∗ = S2 we can conclude that P is weakly S-semiprime ideal.

Proposition 3.16. Let f : R → R′ be a ring homomorphism and S be a multiplicative closed
subset of the ring R. The following conditions hold:

(1) If f is an epimorphism and P is a weakly S-semiprime ideal ofR containingKer(f) then
f(P ) is a weakly f(S)-semiprime ideal of R′.

(2) If f is a monomorphism and P ′ is a weakly f(S)-semiprime ideal of R′, then f−1(P ′) is
a weakly S-semiprime ideal of R.

Proof. (1) Let f is an epimorphism and P is weakly S-semiprime ideal of R containing Ker(f).
To prove f(P ) to be weakly f(S)-semiprime ideal, first we claim that f(P ) ∩ f(S) = φ. Let
r ∈ f(P )∩f(S). Then there exists some p ∈ P and s ∈ S such that r = f(p) = f(s). Therefore
s−p ∈ Ker(f) ⊆ P , which implies s ∈ P . A contradiction to the fact that P ∩S = φ. Therefore
f(P ) ∩ f(S) = φ. Now, let us suppose 0 6= a′2 ∈ f(P ). Since f is epimorphism, there is a ∈ R
such that f(a) = a′ and 0 6= f(a2) = a′2 ∈ f(P ). Since Ker(f) ⊆ P , we get 0 6= a2 ∈ P , and
since P is weakly S-semiprime we have sa ∈ P for some s ∈ S. This implies f(s)a′ ∈ f(P ).
Thus 0 6= a′2 ∈ f(P ) implies that sa′ ∈ f(P ). Hence f(P ) is weakly f(S)-semiprime ideal of
R′.

(2) Let f is a monomorphism and P ′ be an f(S)-semiprime ideal of R′. So there exists s ∈ S
such that for all a′ ∈ R′, 0 6= a′2 ∈ P ′ implies f(s)a′ ∈ P ′.The condition f−1(P ′) ∩ S = φ is
trivial. Let a ∈ R such that 0 6= a2 ∈ f−1(P ′). f is monomorphism implies Ker(f) = {0}, so
we get = 0 6= f(a2) = (f(a))2 ∈ P ′. Then f(s)f(a) = f(sa) ∈ P ′ since P ′ is weakly f(S)-
semiprime ideal. Thus sa ∈ f−1(P ′). So we can conclude that f−1(P ′) is a weakly S-semiprime
ideal of R.
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