On $(n-1, n)$ - φ-second submodules

S. Çeken, S. Koç and Ü. Tekir
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13C05; Secondary 13C13.
Keywords and phrases: $(n-1, n)$ - φ-second submodule, $(n-1, n)$ - φ-prime submodule, n-absorbing ideal, $(n-1, n)$ - m-almost second submodule, $(n-1, n)$-weak second submodule.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract

Let R be a commutative ring with identity, M be an R-module, $n \geq 2$ be a positive integer and $\varphi: S(M) \longrightarrow S(M)$ be a function where $S(M)$ is the set of all submodules of M. In this paper we introduce and study the concept of $(n-1, n)-\varphi$-second submodule. We call a non-zero submodule N of M as an $(n-1, n)-\varphi$-second submodule if $\left(a_{1} \ldots a_{n-1}\right) N \subseteq K$ and $\left(a_{1} \ldots a_{n-1}\right) \varphi(N) \nsubseteq K$, where $a_{1}, \ldots, a_{n-1} \in R$ and K is a submodule of M, imply either $a_{1} \ldots a_{n-1} \in \operatorname{ann} n_{R}(N)$ or $\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right) N \subseteq K$ for some $i \in\{1, \ldots, n-1\}$. We give a number of results concerning this submodule class. We characterize modules with the property that for some φ, every non-zero submodule is $(n-1, n)-\varphi$-second. We show that under some assumptions strongly $(n-1)$-absorbing second submodules and $(n-1, n)-\varphi$-second submodules coincide. We also focus on $(2,3)-\varphi$-second submodules and give some special results concerning them.

1 Introduction

Prime ideals play a central role in commutative ring theory and algebraic geometry. In the literature, there are a number of generalizations of prime ideals in commutative rings (see for example [1], [2], [3], [14], [22], [24]). One of the generalization of prime ideals is the concept of n-absorbing ideal which was introduced in [2]. Let R be a commutative ring with identity and n be a positive integer. A proper ideal I of R is called an n-absorbing ideal if whenever $a_{1} \ldots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$, then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in I$ for some $i \in\{1, \ldots, n+1\}$ [2]. In [23], this concept was generalized to the concept of $(n-1, n)$ - ϕ-prime ideal as in the following way. Let $\phi: S(R) \longrightarrow S(R) \cup\{\emptyset\}$ be a function where $S(R)$ is the set of all ideals of R. A proper ideal I of R is called an $(n-1, n)$ - ϕ-prime ideal if $a_{1} \ldots a_{n} \in I \backslash \phi(I)$, for $a_{1}, \ldots, a_{n} \in R$, implies $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \in I$ for some $i \in\{1, \ldots, n\}$.

Prime submodules are module theoretic versions of prime ideals. The class of prime submodules has an important role in commutative ring theory as it gives characterizations of important ring classes such as Dedekind domains, Prüfer domains, arithmetical rings. The concept of prime submodule was first introduced in 1965 by E. H. Feller and E. W. Swokowski [26]. Let R be a commutative ring with non-zero identity. A proper submodule P of M is called a prime submodule if whenever $r m \in P$, where $r \in R, m \in M$, we have either $r \in\left(P:_{R} M\right)$ or $m \in P$. If P is a prime submodule of M, then $p=\left(P:_{R} M\right)$ is a prime ideal of R and in this case P is called a p-prime submodule [30]. If (0) is a prime submodule of M, then M is called a prime module.

Besides prime submodules, module theoretic versions of generalizations of prime ideals have been investigated since the begining of 2000s (see for example [12], [13], [21], [23], [27], [29], [31], [32], [33], [36]). Let R be a commutative ring with non-zero identity and M be an R-module. A proper submodule N of M is called an n-absorbing submodule if whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \ldots a_{n} \in\left(N:_{R} M\right)$ or there exists $i \in\{1, \ldots, n\}$ such that $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} m \in N$ [21]. This notion was generalized in [23] as follows. Let $n \geq 2$ be a positive integer, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ be a function and P be a proper submodule of $M . P$ is called an $(n-1, n)$ - ϕ-prime submodule if $a_{1} \ldots a_{n-1} x \in P \backslash \phi(P)$, for $a_{1}, \ldots, a_{n-1} \in R, m \in M$, implies either $a_{1} \ldots a_{n-1} \in\left(P:_{R} M\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} x \in P$ for some $i \in\{1, \ldots, n-1\}$ [23]. Clearly, every ($n-1$)-absorbing submodule of M is $(n-1, n)$ - ϕ-prime for any function ϕ on $S(M)$.

Second submodules of modules over commutative rings were introduced in [35] as the dual notion of prime submodules. According to this definition a non-zero submodule N of an R-module M is said to be a second submodule if for all $r \in R$, either $r N=0$ or $r N=N$. If N is a second submodule of M,
then $p=a n n_{R}(N)$ is a prime ideal of R. In this case, N is called a p-second submodule of M [35]. In recent years, second submodules have attracted attention of many researchers and it has been understood that this submodule class has an important role in determining characterizations of modules and rings (see for example [8], [9], [15], [16]). Along with the increased work on the second submodules, generalization of these submodules has begun to be investigated and it has been seen that these generalized second submodules also have interesting and important algebraic properties (see for example [6], [11], [17], [18], [19]). One of the generalization of second submodules is the concept of strongly n-absorbing second submodule which was introduced in [11]. Let R be a commutative ring with identity, M be an R-module and n be a positive integer. A non-zero submodule N of M is called a strongly n-absorbing second submodule if whenever $a_{1} \ldots a_{n} N \subseteq K$ for $a_{1}, \ldots, a_{n} \in R$ and a submodule K of M, then either $a_{1} \ldots a_{n} \in \operatorname{ann} n_{R}(N)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} N \subseteq K$ for some $i \in\{1, \ldots, n\}$ [11]. In this paper we extend this notion to $(n-1, n)-\varphi$-second submodules as follows. Let M be an R-module, $n \geq 2$ be a positive integer and N be a non-zero submodule of M. We call N as an $(n-1, n)$ - φ-second submodule of M if $\left(a_{1} \ldots a_{n-1}\right) N \subseteq K$ and $\left(a_{1} \ldots a_{n-1}\right) \varphi(N) \nsubseteq K$, where $a_{1}, \ldots, a_{n-1} \in R$ and K is a submodule of M, imply either $a_{1} \ldots a_{n-1} \in \operatorname{ann} n_{R}(N)$ or $\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right) N \subseteq K$ for some $i \in\{1, \ldots, n-1\}$. Let $\varphi_{M}: S(M) \longrightarrow S(M)$ be the function defined by $\varphi_{M}(L)=M$ for every $L \in S(M)$. Then an $(n-1, n)-\varphi_{M}$-second submodule of M is said to be an $(n-1, n)$-weak second submodule of M. Let $m \geq 2$ be an integer and $\varphi_{m}: S(M) \longrightarrow S(M)$ be the function defined by $\varphi_{m}(L)=\left(L:_{M}\right.$ ann $\left.n_{R}(L)^{m-1}\right)$ for every $L \in S(M)$. Then an $(n-1, n)-\varphi_{m}$-second submodule of M is said to be an $(n-1, n)$-m-almost second submodule of M. In particular, for $m=2$, an $(n-1, n)$-2-almost second submodule of M is called an ($n-1, n$)-almost second submodule of M.

Throughout this paper all rings will be commutative with non-zero identity and all modules will be unital left modules. Unless otherwise stated R will denote a ring. In the rest of the paper $S(M)$ will denote the set of all submodules of an R-module M and $\varphi: S(M) \rightarrow S(M)$ will be a function.

In Section 2, we give some characterizations of $(n-1, n)-\varphi$-second submodules and investigate their relationships with strongly $(n-1)$-absorbing second submodules. In Theorem 2.3, we give some equivalent conditions for a non-zero submodule Q of an R-module M to be $(n-1, n)$ - φ-second. For an element $a \in R$ with $(0) \neq\left(0:_{M} a\right)=a M$, we prove that $\left(0:_{M} a\right)$ is an $(n-1, n)$-almost second submodule of M if and only if it is a strongly $(n-1)$-absorbing second submodule of M (see Theorem 2.4). Let $R=R_{1} \times \ldots \times R_{n}$, $M=M_{1} \times \ldots \times M_{n}$ where R_{i} is a ring, M_{i} is an R_{i}-module for $i=1, \ldots, n$ and let $\varphi: S(M) \longrightarrow S(M)$ be a function. We investigate the structure of $(n-1, n)-\varphi$-second submodules of M (see Theorems 2.6, 2.9). We characterize R-modules M for which every non-zero submodule is $(n-1, n)$-weak second and $(n-1, n)$ - n almost second (see Theorems 2.10, 2.13). Let m, n be positive integers with $3 \leq m<n, R=R_{1} \times \ldots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ where R_{i} is a ring and M_{i} is a non-zero Artinian R_{i}-module for each $i \in\{1, \ldots, m\}$. We investigate the structure of R-modules M in which every non-zero submodule is $(n-1, n)$-weak second (see Theorem 2.14). Let $m \geq 1$ and $n \geq 2$ be positive integers, $R=R_{1} \times \ldots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ where $\left(R_{i}, Q_{i}\right)$ is a local ring, M_{i} is an R_{i}-module. In Theorem 2.15, we give a condition for M to have the property that every non-zero submodule is $(n-1, n)$-weak second.

In Section 3 we give our attention on $(2,3)-\varphi$-second submodules. We present their various characterizations and investigate relationships with other concepts. In Theorem 3.2, we give some equivalent conditions for a non-zero submodule N of a module M over a um-ring to be (2,3)- φ-second submodule. In Theorem 3.5, we prove that if N is a $(2,3)-\varphi$-second submodule of M which is not strongly 2-absorbing second, then $\operatorname{ann}_{R}(N)^{2} \varphi(N) \subseteq N$. This theorem has many consequences. In particular, by using this theorem, we show that if N is a $(2,3)-\varphi$-second submodule of M that is not strongly 2-absorbing second, then $\sqrt{a n n_{R}(N)}=\sqrt{a n n_{R}(\varphi(N))}$. Additionally, if M is a finitely generated comultiplication R-module, then we show that $\sec (N)=\sec (\varphi(N))$ for such a submodule N where $\sec (N)$ is the sum of all second submodules of N (see Corollary 3.8). Let N be a $(2,3)-\varphi$-second submodule of M and suppose that $I J N \subseteq K, I J \varphi(N) \nsubseteq K$ for some ideals I, J of R and a submodule K of M. Under a condition, we prove that $I J \subseteq a n n_{R}(N)$ or $I N \subseteq K$ or $J N \subseteq K$ (see Theorem 3.10). Let $R=F_{1} \times F_{2} \times F_{3}$ and $M=M_{1} \times M_{2} \times M_{3}$ where F_{i} is a field and M_{i} is a non-zero F_{i}-vector space for each $i \in\{1,2,3\}$.

2 (n-1,n)- φ-Second Submodules

Definition 2.1. Let M be an R-module, $n \geq 2$ be a positive integer and N be a non-zero submodule of M. We call N as an $(n-1, n)-\varphi$-second submodule of M if $\left(a_{1} \ldots a_{n-1}\right) N \subseteq K$ and $\left(a_{1} \ldots a_{n-1}\right) \varphi(N) \nsubseteq K$, where $a_{1}, \ldots, a_{n-1} \in R$ and K is a submodule of M, imply either $a_{1} \ldots a_{n-1} \in a n n_{R}(N)$ or $\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right) N \subseteq$ K for some $i \in\{1, \ldots, n-1\}$.

Let $\varphi_{M}: S(M) \longrightarrow S(M)$ be the function defined by $\varphi_{M}(L)=M$ for every $L \in S(M)$. Then an $(n-1, n)-\varphi_{M}$-second submodule of M is said to be an $(n-1, n)$-weak second submodule of M.

Let $m \geq 2$ be an integer and $\varphi_{m}: S(M) \longrightarrow S(M)$ be the function defined by $\varphi_{m}(L)=\left(L:_{M}\right.$ $\left.\operatorname{ann}_{R}(L)^{m-1}\right)$ for every $L \in S(M)$. Then an $(n-1, n)-\varphi_{m}$-second submodule of M is said to be an $(n-1, n)$ -
m-almost second submodule of M. In particular, for $m=2$, an $(n-1, n)-2$-almost second submodule of M is called an $(n-1, n)$-almost second submodule of M.

Throughout this paper we will assume that $N \subseteq \varphi(N)$ for every submodule N of an R-module M.
Example 2.2. (i) Let M be an R-module and $\varphi: S(M) \longrightarrow S(M)$ be any function. Then M is trivially an $(n-1, n)-\varphi$-second submodule.
(ii) Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{p_{1} p_{2} \ldots p_{n-1}}$, where $p_{1}, p_{2}, \ldots, p_{n-1}$ are distinct prime numbers. Suppose that φ : $S(M) \longrightarrow S(M)$ be any function. Now, we will show that every nonzero submodule N of M is an $(n-1, n)$ -φ-second submodule. Let N be a nonzero submodule of M and K a submodule of M. Now, we may assume that N is proper. Then there exists $1<d<m=p_{1} p_{2} \ldots p_{n-1}$ such that $d \mid m$ and $N=d M$. This implies that $d=p_{1} \ldots \widehat{p_{i_{1}}} \widehat{p_{i_{2}}} \ldots \widehat{p_{i_{k}}} \ldots p_{n-1}$, where $p_{1} \ldots \widehat{p_{i_{1}}} \widehat{p_{i_{2}}} \ldots \widehat{p_{i_{k}}} \ldots p_{n-1}$ denotes the product of all integers of the set $\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}-\left\{p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{k}}\right\}$ and $1 \leq k \leq n-2$. Let $a_{1}, a_{2}, \ldots, a_{n-1} \in R$ such that $a_{1} a_{2} \ldots a_{n-1} N \subseteq$ K but $a_{1} a_{2} \ldots a_{n-1} \varphi(N) \nsubseteq K$. Now, we may assume that K is a nonzero proper submodule of M such that $N \nsubseteq K$. Then similarly, we have $1<t<m$ such that $t=p_{1} \ldots \widehat{p_{j_{1}}} \widehat{p_{j_{2}}} \ldots \widehat{p_{j_{r}}} \ldots p_{n-1}$ and $K=t M$, where $1 \leq r \leq n-2$. Now, it is clear that $(K: N)$ is an $(n-2)$-absorbing ideal of R. Since $a_{1} a_{2} \ldots a_{n-1} N \subseteq K$, we get $a_{1} a_{2} \ldots a_{n-1} \in(K: N)$ and so there exists $i \in\{1,2, \ldots, n-1\}$ such that $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} \in$ $(K: N)$. Thus we conclude that $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} N \subseteq K$. Therefore, N is an $(n-1, n)-\varphi$-second submodule.

Theorem 2.3. Let Q be a non-zero submodule of an R-module M. Then the following are equivalent.
(1) Q is an $(n-1, n)$ - φ-second submodule of M.
(2) If $a_{1} \ldots a_{n-1} \notin \operatorname{ann}_{R}(Q)$ for $a_{1}, \ldots, a_{n-1} \in R$, then $a_{1} \ldots a_{n-1} Q=a_{1} \ldots a_{n-1} \varphi(Q)$ or $a_{1} \ldots a_{n-1} Q=$ $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} Q$ for some $i \in\{1, \ldots, n-1\}$.
(3) For $a_{1}, . ., a_{n-2} \in R$ and a submodule K of M with $a_{1} \ldots a_{n-2} Q \nsubseteq K$;
$\left(K:_{R} a_{1} \ldots a_{n-2} Q\right)=\cup_{i=1}^{n-2}\left(K:_{R} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} Q\right) \cup a n n_{R}\left(a_{1} \ldots a_{n-2} Q\right) \cup\left(K:_{R} a_{1} \ldots a_{n-2} \varphi(Q)\right)$.
Proof. (1) $\Longrightarrow(2)$ This implication follows by using the inclusion $a_{1} \ldots a_{n-1} Q \subseteq a_{1} \ldots a_{n-1} Q$ for $a_{1}, \ldots, a_{n-1} \in$ R.
(2) \Longrightarrow (1) Straightforward.
$(1) \Longrightarrow(3)$ Let $a_{1}, \ldots a_{n-2} \in R$ and K be a submodule of M with $a_{1} \ldots a_{n-2} Q \nsubseteq K$. Let $b \in\left(K:_{R}\right.$ $\left.a_{1} \ldots a_{n-2} Q\right)$. Then $b a_{1} \ldots a_{n-2} Q \subseteq K$. If $b a_{1} \ldots a_{n-2} \varphi(Q) \nsubseteq K$, then (1) implies that $b a_{1} \ldots a_{n-2} \in a n n_{R}(Q)$ or $b a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} Q \subseteq K$ for some $i \in\{1, \ldots, n-2\}$. If $b a_{1} \ldots a_{n-2} \varphi(Q) \subseteq K$, then $b \in\left(K:_{R}\right.$ $\left.a_{1} \ldots a_{n-2} \varphi(Q)\right)$. Thus $\left(K:_{R} a_{1} \ldots a_{n-2} Q\right) \subseteq \cup_{i=1}^{n-2}\left(K:_{R} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-2} Q\right) \cup a n \bar{n}_{R}\left(a_{1} \ldots a_{n-2} Q\right) \cup\left(K:_{R}\right.$ $\left.a_{1} \ldots a_{n-2} \varphi(Q)\right)$. The other inclusion always holds since we assume $Q \subseteq \varphi(Q)$.
$(3) \Longrightarrow(1)$ Let $a_{1} \ldots a_{n-1} Q \subseteq K$ and $a_{1} \ldots a_{n-1} \varphi(Q) \nsubseteq K$ for $a_{1}, \ldots, a_{n-1} \in R$ and a submodule K of M. If $a_{1} \ldots a_{n-2} Q \subseteq K$, then we are done. Let $a_{1} \ldots a_{n-2} Q \nsubseteq K$. Since $a_{n-1} \in\left(K:_{R} a_{1} \ldots a_{n-2} Q\right)$, (3) implies that
$a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} Q \subseteq K$ for some $i \in\{1, . ., n-1\}$ or $a_{1} \ldots a_{n-2} a_{n-1} \in \operatorname{ann} n_{R}(Q)$. Thus Q is an $(n-1, n)-$ φ-second submodule of M.

Theorem 2.4. Let M be an R-module, $a \in R,\left(0:_{M} a\right) \neq(0)$ and $\left(0:_{M} a\right)=a M$. Then $\left(0:_{M} a\right)$ is an $(n-1, n)$-almost second submodule of M if and only if it is a strongly $(n-1)$-absorbing second submodule of M.

Proof. If $\left(0:_{M} a\right)$ is strongly $(n-1)$-absorbing second submodule, then clearly it is $(n-1, n)$-almost second submodule. Suppose that $\left(0:_{M} a\right)$ is an $(n-1, n)$-almost second submodule of M. Let $b_{1} \ldots b_{n-1}\left(0:_{M} a\right) \subseteq K$ for $b_{1}, \ldots, b_{n-1} \in R$ and a submodule K of M. If $b_{1} \ldots b_{n-1}\left(\left(0:_{M} a\right):_{M} \operatorname{ann}_{R}\left(0:_{M} a\right)\right)=b_{1} \ldots b_{n-1} M \nsubseteq K$, then we are done. So we may assume that $b_{1} \ldots b_{n-1} M \subseteq K$. Now, $\left(b_{1}+a\right) b_{2} \ldots b_{n-1}\left(0:_{M} a\right) \subseteq K$. If $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} M \nsubseteq K$, then $\left(b_{1}+a\right) \ldots b_{i-1} b_{i+1} \ldots b_{n-1}\left(0:_{M} a\right) \subseteq K$ for some $i \in\{1, \ldots, n-1\}$ or $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} \in a n n_{R}\left(0:_{M} a\right)$. It follows that $b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{n-1}\left(0:_{M} a\right) \subseteq K$ for some $i \in\{1, \ldots, n-$ $1\}$ or $b_{1} b_{2} \ldots b_{n-1} \in a n n_{R}\left(0:_{M} a\right)$ as desired. So we may assume that $\left(b_{1}+a\right) b_{2} \ldots b_{n-1} M \subseteq K$. Then $b_{2} \ldots b_{n-1} a M \subseteq K$ as $b_{1} \ldots b_{n-1} M \subseteq K$. Since $\left(0:_{M} a\right)=a M$, we have $b_{2} \ldots b_{n-1}\left(0:_{M} a\right) \subseteq K$. Thus $\left(0:_{M} a\right)$ is an $(n-1)$-absorbing second submodule of M.

Proposition 2.5. Let $R=R_{1} \times R_{2}, M=M_{1} \times M_{2}$ where R_{i} is a ring, M_{i} is an R_{i}-module for $i=1,2$ and let $\varphi: S(M) \longrightarrow S(M)$ be a function. Suppose that Q_{1} is an $(n-1, n)$-weak-second submodule of M_{1} such that $\varphi\left(Q_{1} \times\{0\}\right) \subseteq M_{1} \times\{0\}$. Then $Q_{1} \times\{0\}$ is an $(n-1, n)$ - φ-second submodule of M.

Proof. Let $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)\left(Q_{1} \times\{0\}\right) \subseteq N_{1} \times N_{2}$ and $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right) \varphi\left(Q_{1} \times\{0\}\right) \nsubseteq N_{1} \times N_{2}$ where $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n-1}, b_{n-1}\right) \in R, N_{1} \leq M_{1}, N_{2} \leq M_{2}$. Then $\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)\left(M_{1} \times\{0\}\right) \nsubseteq N_{1} \times N_{2}$ by hypothesis. So $\left(a_{1} \ldots a_{n-1}\right) Q_{1} \subseteq N_{1}$ and $\left(a_{1} \ldots a_{n-1}\right) M_{1} \nsubseteq N_{1}$. Since Q_{1} is $(n-1, n)$-weak second, we have $a_{1} \ldots a_{n-1} \in \operatorname{ann}_{R_{1}}\left(Q_{1}\right)$ or $\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right) Q_{1} \subseteq N_{1}$ for some $i \in\{1, \ldots, n-1\}$. These imply that
$\left(a_{1}, b_{1}\right) \ldots\left(a_{n-1}, b_{n-1}\right) \in \operatorname{ann}_{R_{1}}\left(Q_{1}\right) \times R_{2}=\operatorname{ann}_{R}\left(Q_{1} \times\{0\}\right)$ or
$\left(a_{1}, b_{1}\right) \ldots\left(a_{i-1}, b_{i-1}\right)\left(a_{i+1}, b_{i+1}\right) \ldots\left(a_{n-1}, b_{n-1}\right)\left(Q_{1} \times\{0\}\right) \subseteq N_{1} \times N_{2}$. Thus $Q_{1} \times\{0\}$ is an $(n-1, n)-\varphi$-second submodule of M.

Theorem 2.6. Let $R=R_{1} \times \ldots \times R_{n}, M=M_{1} \times \ldots \times M_{n}$ where R_{i} is a ring, M_{i} is an R_{i}-module for $i=1, \ldots, n$ and let $\varphi: S(M) \longrightarrow S(M)$ be a function. Suppose that $Q=Q_{1} \times \ldots \times Q_{n}$ is an $(n-1, n)$ -φ-second submodule of M where Q_{i} is a submodule of M_{i} for $i=1, \ldots, n$. Let $\psi_{i}: S\left(M_{i}\right) \longrightarrow S\left(M_{i}\right)$ be a function and $\varphi(Q)=\psi_{1}\left(Q_{1}\right) \times \ldots \times \psi_{n}\left(Q_{n}\right)$. Then Q_{j} is an $(n-1, n)-\psi_{j}$-second submodule of M_{j} for each j with $Q_{j} \neq(0)$.
Proof. Let $Q_{j} \neq(0), a_{1} \ldots a_{n-1} Q_{j} \subseteq K$ and $a_{1} \ldots a_{n-1} \psi_{j}\left(Q_{j}\right) \nsubseteq K$. Then
$\left(1, . ., 1, a_{1}, 1, \ldots, 1\right)\left(1, . ., 1, a_{2}, 1, \ldots, 1\right) \ldots\left(1, . ., 1, a_{n-1}, 1, \ldots, 1\right)\left(Q_{1} \times \ldots \times Q_{j} \times \ldots \times Q_{n}\right) \subseteq M_{1} \times \ldots \times K \times \ldots \times M_{n}$ and
$\left(1, . ., 1, a_{1}, 1, \ldots, 1\right)\left(1, . ., 1, a_{2}, 1, \ldots, 1\right) \ldots\left(1, . ., 1, a_{n-1}, 1, \ldots, 1\right)\left(\psi_{1}\left(Q_{1}\right) \times \ldots \times \psi_{j}\left(Q_{j}\right) \times \ldots \times \psi_{n}\left(Q_{n}\right)\right)$

$$
=\left(1, . ., 1, a_{1}, 1, \ldots, 1\right)\left(1, . ., 1, a_{2}, 1, \ldots, 1\right) \ldots\left(1, \ldots, 1, a_{n-1}, 1, \ldots, 1\right) \varphi\left(Q_{1} \times \ldots \times Q_{j} \times \ldots \times Q_{n}\right) \nsubseteq M_{1} \times \ldots \times
$$ $K \times \ldots \times M_{n}$ where a_{1}, \ldots, a_{n-1} are in the j th components. Since Q is $(n-1, n)$ - φ-second, we have $\left(1, \ldots, a_{1} \ldots a_{n-1}, \ldots, 1\right) \in \operatorname{ann}_{R}(Q)$ or $\left(1, \ldots 1, a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}, 1, \ldots, 1\right) Q_{1} \times \ldots \times Q_{n} \subseteq M_{1} \times \ldots \times K \times \ldots M_{n}$ for some $i \in\{1, \ldots, n-1\}$. Thus we get that $a_{1} \ldots a_{n-1} \in \operatorname{ann} n_{j}\left(Q_{j}\right)$ or $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} Q_{j} \subseteq K$ as needed.

Corollary 2.7. Let $R=R_{1} \times \ldots \times R_{n}, M=M_{1} \times \ldots \times M_{n}$ where R_{i} is a ring, M_{i} is an R_{i}-module for $i=1, \ldots, n$ and let $Q=Q_{1} \times \ldots \times Q_{n}$ where Q_{i} is a submodule of M_{i} for $i=1, \ldots, n$. If Q is an $(n-1, n)$-malmost second submodule of M, then Q_{j} is an $(n-1, n)$-m-almost second submodule of M_{j} for each j with $Q_{j} \neq(0)$.
Proof. We have $\varphi_{m}(Q)=\left(Q:_{M} \operatorname{ann}_{R}(Q)^{m-1}\right)=\left(Q_{1} \times \ldots \times Q_{n}:_{M} \operatorname{ann}_{R_{1}}\left(Q_{1}\right)^{m-1} \times \ldots \times a n n_{R_{n}}\left(Q_{n}\right)^{m-1}\right)=$ $\left(Q_{1}:_{M_{1}} \operatorname{ann}_{R_{1}}\left(Q_{1}\right)^{m-1}\right) \times \ldots \times\left(Q_{n}:_{M_{n}} \operatorname{ann}_{R_{n}}\left(Q_{n}\right)^{m-1}\right)$. So the result follows from Theorem 2.6.

It is well know that annihilator $\operatorname{ann}_{R}(N)$ of a second submodule N of an R-module M is a prime ideal. Now we present a new method for constructing $(n-1, n)-\psi$-prime ideal of a ring R, where $\psi: S(R) \longrightarrow$ $S(R) \cup\{\emptyset\}$ is a function.

Proposition 2.8. (i) Let M be an R-module $\varphi: S(M) \longrightarrow S(M)$ be a function. Suppose that N is an $(n-1, n)$ - φ-second submodule and $\varphi^{*}: S(R) \longrightarrow S(R) \cup\{\emptyset\}$ is a function such that $\varphi^{*}(\operatorname{ann}(N))=$ $\operatorname{ann}(\varphi(N))$. Then ann (N) is an $(n-1, n)-\varphi^{*}$-prime ideal of R.
(ii) Suppose that M is a faithful R-module and N is an $(n-1, n)$-weak second submodule of M. Then $\operatorname{ann}(N)$ is an $(n-1, n)$-weakly prime ideal of R.

Proof. (i) Let $a_{1}, a_{2}, \ldots, a_{n} \in R$ such that $a_{1} a_{2} \ldots a_{n} \in \operatorname{ann}(N)-\varphi^{*}(\operatorname{ann}(N))$. Then we have $a_{1} a_{2} \ldots a_{n} N=$ 0 and $a_{1} a_{2} \ldots a_{n} \varphi(N) \neq 0$ since $\varphi^{*}(\operatorname{ann}(N))=\operatorname{ann}(\varphi(N))$. This implies that $a_{1} a_{2} \ldots a_{n-1} N \subseteq\left(0:_{M}\right.$ $\left.a_{n}\right)$ and $a_{1} a_{2} \ldots a_{n-1} \varphi(N) \nsubseteq\left(0:_{M} a_{n}\right)$. Since N is an $(n-1, n)-\varphi$-second submodule, we have either $a_{1} a_{2} \ldots a_{n-1} \in \operatorname{ann}_{R}(N)$ or there exists $i \in\{1,2, \ldots, n-1\}$ such that $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} N \subseteq\left(0:_{M}\right.$ $\left.a_{n}\right)$. Thus we conclude that $a_{1} a_{2} \ldots a_{n-1} \in \operatorname{ann}_{R}(N)$ or $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1} a_{n} \in \operatorname{ann}_{R}(N)$. Hence, $\operatorname{ann}(N)$ is an $(n-1, n)-\varphi^{*}$-prime ideal of R.
(ii) Suppose that M is a faithful R-module and N is an $(n-1, n)$-weak second submodule of M. Thus N is an $(n-1, n)-\varphi_{M}$-second submodule of M. Now, consider the function $\varphi^{*}: S(R) \rightarrow S(R)$ defined by $\varphi(I)=0$ for each $I \in S(R)$. Note that $\varphi^{*}(\operatorname{ann}(N))=0=\operatorname{ann}\left(\varphi_{M}(N)\right)=\operatorname{ann}(M)$ since M is a faithful module. The rest follows from (i).

Theorem 2.9. Let $R=R_{1} \times \ldots \times R_{n}$ and $M=M_{1} \times \ldots \times M_{n}$ be a faithful R-module where R_{i} is a ring and M_{i} is a non-zero R_{i}-module for all $i=1, \ldots, n$. If Q is a proper $(n-1, n)$-weak second submodule of M such that $\operatorname{ann}_{R}(Q) \neq(0)$, then $Q=Q_{1} \times \ldots \times Q_{i-1} \times(0) \times Q_{i+1} \times \ldots \times Q_{n}$ for some $i \in\{1, \ldots, n\}$ and if $Q_{j} \neq(0)$ for $j \neq i$, then Q_{j} is a strongly $(n-1)$-absorbing second submodule of M_{j}.

Proof. Let $Q=Q_{1} \times \ldots \times Q_{n}$ where Q_{i} is a submodule of M_{i} for $i \in\{1, \ldots, n\}$. Then $(0) \neq a n n_{R}(Q)=$ $a n n_{R_{1}}\left(Q_{1}\right) \times \ldots \times a n n_{R_{n}}\left(Q_{n}\right)$ is a non-zero proper ideal of R. By Proposition 2.8-(ii), $a n n_{R}(Q)$ is an $(n-1, n)$-weakly prime ideal of R. By [23, Lemma 3.6], ann $n_{R_{i}}\left(Q_{i}\right)=R_{i}$ for some $i \in\{1, \ldots, n\}$ and so $Q_{i}=(0)$. Thus $Q=Q_{1} \times \ldots \times Q_{i-1} \times(0) \times Q_{i+1} \times \ldots \times Q_{n}$. Let $Q_{j} \neq(0)$ for $j \neq i$. We claim that Q_{j} is a strongly $(n-1)$-absorbing second submodule of M_{j}. Assume that $i<j$. Let $a_{1}, \ldots, a_{n-1} \in R$ and X be a submodule of M_{j} such that $\left(a_{1} \ldots a_{n-1}\right) Q_{j} \subseteq X$. Then we have
$\left(0, \ldots, 1, \ldots 0, a_{1} \ldots a_{n-1}, 0, \ldots, 0\right)\left(Q_{1} \times \ldots \times Q_{i-1} \times(0) \times Q_{i+1} \times \ldots \times Q_{n}\right) \subseteq(0) \times \ldots \times(0) \times \ldots \times X \times \ldots \times(0)$ and
$\left(0, \ldots, 1, \ldots 0, a_{1}, 0, \ldots, 0\right) \ldots\left(0, \ldots, 1, \ldots 0, a_{n-1}, 0, \ldots, 0\right)\left(M_{1} \times \ldots \times M_{i} \times \ldots \times M_{j} \times \ldots \times M_{n}\right) \nsubseteq(0) \times \ldots \times$ $(0) \times \ldots \times X \times \ldots(0)$ as $M_{i} \neq(0)$. Since Q is an $(n-1, n)$-weak second submodule of M, we have $a_{1} \ldots a_{n-1} \in \operatorname{ann}_{R_{j}}\left(Q_{j}\right)$ or $\left(a_{1} \ldots a_{k-1} a_{k+1} \ldots a_{n-1}\right) Q_{j} \subseteq X$ for some $k \in\{1, \ldots, n-1\}$. Thus Q_{j} is a strongly $(n-1)$-absorbing second submodule of M_{j}. The proof for $j<i$ can be seen as a similar way.

Note that the previous theorem is still valid under the condition that "every proper ideal of R is $(n-1, n)$ weakly prime of $R^{\prime \prime}$.

In the following theorem, we give a characterization of simple modules in terms of $(n-1, n)$-weak second submodules.

Theorem 2.10. Let $n \geq 2, R=R_{1} \times \ldots \times R_{n}$ and $M=M_{1} \times \ldots \times M_{n}$ where R_{i} is a ring and M_{i} is a non-zero R_{i}-module for all $i=1, \ldots, n$. The following statements are equivalent:
(i) Every non-zero submodule of M is $(n-1, n)$-weak second submodule.
(ii) M_{i} is a simple R_{i}-module for each $i \in\{1, \ldots, n\}$.

Proof. $(i) \Longrightarrow(i i)$: Assume that M_{1} is not a simple R_{1}-module. So there exists a non-zero proper submodule Q_{1} of M_{1}. By hypothesis, the submodule $Q=Q_{1} \times M_{2} \times \ldots \times M_{n}$ is an $(n-1, n)$-weak second submodule of M. We have
$(1,0, \ldots, 0)\left(Q_{1} \times M_{2} \times \ldots \times M_{n}\right)=(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \ldots(1,1, \ldots, 0)\left(Q_{1} \times M_{2} \times \ldots \times M_{n}\right) \subseteq$ $Q_{1} \times(0) \times \ldots \times(0)$ and $(1,0, \ldots, 0)\left(M_{1} \times M_{2} \times \ldots \times M_{n}\right)=(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \ldots(1,1, \ldots, 0)\left(M_{1} \times\right.$ $\left.M_{2} \times \ldots \times M_{n}\right) \nsubseteq Q_{1} \times(0) \times \ldots \times(0)$. Since Q is $(n-1, n)$-weak second, we have two cases:

Case 1: $(1,0, \ldots, 0) \in a n n_{R}(Q)$ which gives the contradiction that $Q_{1}=(0)$
Case 2: $M_{j}=(0)$ for some $j \in\{2, \ldots, n\}$ which is again a contradiction.
Thus M_{1} is a simple R_{1}-module. By a similar argument, we can prove that M_{j} is a simple R_{j}-module for all $j \in\{2, \ldots, n\}$.
$(i i) \Longrightarrow(i)$: Suppose that M_{i} is a simple R_{i}-module for each $i \in\{1, \ldots, n\}$. Let $N=N_{1} \times N_{2} \times \ldots \times N_{n}$ be a nonzero submodule of M and $K=K_{1} \times K_{2} \times \ldots \times K_{n}$ be a submodule of M. Take $x_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right) \in$ R for $i=1,2, \ldots, n-1$ such that $x_{1} x_{2} \ldots x_{n-1} N \subseteq K$ and $x_{1} x_{2} \ldots x_{n-1} M \nsubseteq K$. We may assume that $N \nsubseteq K$. Since M_{i} is a simple R_{i}-module for each $i \in\{1, \ldots, n\}$ and $N \nsubseteq K$, we get $N_{t}=M_{t}$ and $K_{t}=0$ for some $t \in\{1, \ldots, n-1\}$. Thus we have $(K: N)=\left(K_{1}: N_{1}\right) \times\left(K_{2}: N_{2}\right) \times \ldots \times a n n_{R_{t}}\left(M_{t}\right) \times \ldots \times\left(K_{n}\right.$: $\left.N_{n}\right)$. Since M_{i} is simple, it is clear that $\operatorname{ann}_{R_{i}}\left(M_{i}\right)$ is a prime ideal of R_{i}. Also, note that $\left(K_{i}: N_{i}\right)$ is either R_{i} or $\operatorname{ann}_{R_{i}}\left(M_{i}\right)$. If $\left(K_{i}: N_{i}\right)=R_{i}$ for all $i \neq t$, then $(K: N)=R_{1} \times R_{2} \times \ldots \times a n n_{R_{t}}\left(M_{t}\right) \times \ldots \times$ R_{n} is a prime ideal so is $(n-2)$-absorbing. This implies that there exists $i \in\{1,2, \ldots, n-1\}$ such that $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n-1} \in(K: N)$, namely $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n-1} N \subseteq K$. If $\left(K_{i}: N_{i}\right) \neq R_{i}$ for all $i \neq t$, then $N_{i} \nsubseteq K_{i}$ for all $i(1 \leq i \leq n\}$. Since M_{i} is a simple R_{i}-module, $K_{i}=(0)$ for all $i(1 \leq i \leq n)$. Thus $K=(0)$ and so $x_{1} \ldots x_{n-1} \in \operatorname{ann}_{R}(N)$. If at least two of $\left(K_{i}: N_{i}\right)$'s equal R_{i}, the $\left(K:_{R} N\right)$ is an $(n-2)$ absorbing ideal of R by [2, Corollary 4.8 and Theorem 2.1]. Since $x_{1} x_{2} \ldots x_{n-1} \in(K: N)$, there exists $i \in\{1,2, \ldots, n-1\}$ such that $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n-1} \in(K: N)$, namely $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n-1} N \subseteq$ K. Suppose only one of $\left(K_{j}: N_{j}\right)$ equals R_{j}. Then, by using the simplicity of each M_{i}, one can show that $K=0 \times \ldots K_{j} \times 0 \times \ldots \times 0$ and $N=M_{1} \times \ldots \times N_{j} \times \ldots \times M_{n}$. Since $x_{1} x_{2} \ldots x_{n-1} N \subseteq K$ and $x_{1} x_{2} \ldots x_{n-1} M \nsubseteq K$, we can see that $K_{j} \neq M_{j}$. Thus $K_{j}=(0)$ and so $K=(0)$. This shows that $x_{1} \ldots x_{n-1} \in \operatorname{ann}_{R}(N)$. Hence, N is an $(n-1, n)$-weak second submodule of M.

Theorem 2.11. Let $R=F_{1} \times \ldots \times F_{n}$ and $M=M_{1} \times \ldots \times M_{n}$ where $n \geq 2, F_{i}$ is a field and M_{i} is a non-zero F_{i}-vector space for each $i \in\{1, \ldots, n\}$. Every non-zero submodule of M is $(2,3)$-weak second if and only if $\operatorname{dim}\left(M_{i}\right)=1$ for all $i \in\{1,2,3\}$.

Proof. Note that a vector space M_{i} over a field F_{i} is a simple module if and only if $\operatorname{dim}\left(M_{i}\right)=1$. The rest follows from Theorem 2.10.

Let M be an R-module and N, K be submodules of M. The coproduct of N and K is defined by $\left(0:_{M}\right.$ $\left.\operatorname{ann}_{R}(N) a n n_{R}(K)\right)$ and it is denoted by $C(N K)$ [5].

Recall from [7] that an R-module M is said to be fully coidempotent if $N=C\left(N^{2}\right)$ for every submodule N of M.

Lemma 2.12. An R-module M is fully coidempotent if and only if $N=\left(N:_{M}\right.$ ann $\left.n_{R}(N)^{m}\right)$ for every submodule N of M and positive integer m.

Proof. Suppose that M is a fully coidempotent R-module. Let N be a submodule of M and m be a positive integer. It is sufficient to show that $N=\left(N:_{M} \operatorname{ann}_{R}(N)\right)$. We have $N=C\left(N^{2}\right)=\left(0:_{M} \operatorname{ann} n_{R}(N)^{2}\right)$. Also, $N \subseteq\left(0:_{M} \operatorname{ann}_{R}(N)\right)$ implies that $\left(N:_{M} \operatorname{ann}_{R}(N)\right) \subseteq\left(\left(0:_{M} \operatorname{ann}_{R}(N)\right):_{M} \operatorname{ann} n_{R}(N)\right)=\left(0:_{M}\right.$ $\left.\operatorname{ann}_{R}(N)^{2}\right)=N$ and so $\left(N:_{M} a n n_{R}(N)\right) \subseteq N$. Since the other inclusion always holds we have $\left(N:_{M}\right.$ $\left.a n n_{R}(N)\right)=N$ and hence $N=\left(N:_{M} a n n_{R}(N)^{m}\right)$ for all $m \geq 1$.

Conversely, suppose that $N=\left(N:_{M} a n n_{R}(N)^{m}\right)$ for every submodule N of M and positive integer m. Then $N=\left(N:_{M} \operatorname{ann}_{R}(N)\right)$. We have
$C\left(N^{2}\right)=\left(0:_{M} \operatorname{ann}_{R}(N)^{2}\right) \subseteq\left(N:_{M} \operatorname{ann}_{R}(N)^{2}\right)=\left(\left(N:_{M} \operatorname{ann}_{R}(N)\right):_{M} \operatorname{ann}_{R}(N)\right)=\left(N:_{M}\right.$ $\left.\operatorname{ann}_{R}(N)\right)=N$. Thus we get that $C\left(N^{2}\right) \subseteq N$ and so $N=C\left(N^{2}\right)$.

Theorem 2.13. Let $R=R_{1} \times \ldots \times R_{n}$ and $M=M_{1} \times \ldots \times M_{n}$ where R_{i} is a ring, $0 \neq M_{i}$ is an R_{i}-module for all $i \in\{1, \ldots, n\}$ and $n \geq 2$. Then every non-zero submodule of M is $(n-1, n)$ - n-almost second if and only if M is a fully coidempotent R-module.

Proof. (\Longleftarrow) Clear.
(\Longrightarrow) Suppose that every non-zero submodule of M is $(n-1, n)-n$-almost second. It is sufficient to show that M_{i} is a fully coidempotent R_{i}-module for each $i \in\{1, \ldots, n\}$. Suppose on the contrary that M_{1} is not fully coidempotent. So there exists a submodule N_{1} of M_{1} such that $\left(N_{1}:_{M_{1}}\right.$ ann $\left.R_{R_{1}}\left(N_{1}\right)^{n-1}\right) \nsubseteq N_{1}$. By hypothesis, $N:=N_{1} \times M_{2} \times \ldots \times M_{n}$ is $(n-1, n)$ - n-almost second submodule of M. We have

$$
(1,0, \ldots, 0) N=(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \ldots(1,1, \ldots, 1,0) N \subseteq N_{1} \times(0) \times \ldots \times(0)
$$

and $(1,0,1, \ldots, 1)(1,1,0,1, \ldots, 1) \ldots(1,1, \ldots, 1,0)\left(N:_{M} \operatorname{ann}_{R}(N)^{n-1}\right) \nsubseteq N_{1} \times(0) \times \ldots \times(0)$. Since N is $(n-1, n)$-n-almost second, we have $1 \in \operatorname{ann}_{R_{1}}\left(N_{1}\right)$ or $M_{i}=(0)$ for some $i \in\{2, \ldots, n\}$ which are both contradictions. Similarly, M_{i} is a fully coidempotent R_{i}-module for each $i \in\{2, \ldots, n\}$. This implies that M is a fully coidempotent R-module.

Theorem 2.14. Let m, n be positive integers with $3 \leq m<n, R=R_{1} \times \ldots \times R_{m}$ and $M=M_{1} \times \ldots \times M_{m}$ where R_{i} is a ring and M_{i} is a non-zero Artinian R_{i}-module for each $i \in\{1, \ldots, m\}$. Let J_{i} denote the Jacobson radical of R_{i} for each $i \in\{1, \ldots, m\}$. If every non-zero submodule of M is $(n-1, n)$-weak second, then $J_{i}^{n-m} M_{i}=(0)$ for each $i \in\{1, \ldots, m\}$.

Proof. Assume that $J_{1}^{n-m} M_{1} \neq(0)$. Then there exist $a_{1}, \ldots, a_{n-m} \in J_{1}$ such that $a_{1} \ldots a_{n-m} M_{1} \neq(0)$. By hypothesis, $Q=\left(0:_{M_{1}} a_{1} \ldots a_{n-m} R_{1}\right) \times M_{2} \times \ldots \times M_{m}$ is an $(n-1, n)$-weak second submodule of M. We have
$\left(a_{1} \ldots a_{n-m}, 0, \ldots, 0,1\right) Q=\left(a_{11}, \ldots, a_{1 m}\right) \ldots\left(a_{(n-1) 1}, \ldots a_{(n-1) m}\right)\left(0:_{M_{1}} a_{1} \ldots a_{n-m} R\right) \times M_{2} \times \ldots \times M_{m} \subseteq(0) \times$ $(0) \times \ldots \times M_{m}$ and $\left(a_{11}, \ldots, a_{1 m}\right) \ldots\left(a_{(n-1) 1}, \ldots a_{(n-1) m}\right) M_{1} \times \ldots \times M_{m} \nsubseteq(0) \times(0) \times \ldots \times M_{m}$ where $a_{k 1}=a_{k}$ for $1 \leq k \leq n-m, a_{(n-m+t)(t+1)}=0$ for $1 \leq t \leq m-2$, in other places $a_{i j}=1$. Since Q is $(n-1, n)$-weak second, we get the following three cases:

Case 1: $\left(a_{1} \ldots a_{n-m}, 0, \ldots, 0,1\right) \in \operatorname{ann}_{R}(Q)$ which gives the contradiction that $M_{m}=(0)$.
Case 2: $M_{j}=(0)$ for some $2 \leq j \leq m-1$ which is a contradiction.
Case 3: $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m}\left(0:_{M_{1}} a_{1} \ldots a_{n-m}\right)=(0)$ which implies that $\left(0:_{M_{1}} a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} R_{1}\right)=$ $\left(0:_{M_{1}} a_{1} \ldots a_{j-1} a_{j} a_{j+1} \ldots a_{n-m} R_{1}\right)=\left(\left(0:_{M_{1}} a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m}\right):_{M_{1}} a_{j} R\right)$. Since M_{1} is an Artinian R_{1}-module and $a_{j} R \subseteq J_{1}$, [28, Proposition 3.5] implies that $M_{1}=\left(0:_{M_{1}} a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} R_{1}\right)$, i.e., $a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n-m} M_{1}=(0)$, a contradiction. Thus $J_{1}^{n-m} M_{1}=(0)$. By a similar argument, we can prove that $J_{i}^{n-m} M_{i}=(0)$ for each $i \in\{2, \ldots, m\}$.

Let (R, Q) be a local ring and M be an R-module. Ift is the smallest positive integer such that $Q^{t} M=(0)$, then t is called the associated degree of M. If $Q^{t} M \neq(0)$, for all $t \geq 1$, then the associated degree of M is defined as ∞ [25].

Theorem 2.15. Let $m \geq 1$ be a positive integer, $R=R_{1} \times \ldots \times R_{m}$ and $M=M_{1} \times \ldots M_{m}$ where $\left(R_{i}, Q_{i}\right)$ is a local ring, M_{i} is an R_{i}-module and the associated degree of M_{i} is t_{i} for all $i \in\{1, \ldots, m\}$. If $\sum_{i=1}^{m} t_{i} \leq n-1$, then every non-zero submodule of M is $(n-1, n)$-weak second where $n \geq 2$.

Proof. Let $N=N_{1} \times \ldots \times N_{m}$ be a non-zero submodule of M where N_{i} is a submodule of M_{i} for $1 \leq i \leq m$. Let $\left(a_{11}, \ldots, a_{1 m}\right) \ldots\left(a_{(n-1) 1}, \ldots, a_{(n-1) m}\right) N \subseteq K_{1} \times \ldots \times K_{m}$ and $\left(a_{11}, \ldots, a_{1 m}\right) \ldots\left(a_{(n-1) 1}, \ldots, a_{(n-1) m}\right) M \nsubseteq$ $K_{1} \times \ldots \times K_{m}$ where $a_{i j} \in R_{j}, K_{j} \leq M_{j}$ for $1 \leq i \leq n-1$ and $1 \leq j \leq m$. Then there exists $j \in\{1, \ldots, m\}$ such that $\left(\prod_{k=1}^{n-1} a_{k j}\right) M_{j} \nsubseteq K_{j}$. Since $Q_{j}^{t_{j}} M_{j}=(0)$, there exist at most $t_{j}-1$ elements of $\left\{a_{1 j}, \ldots, a_{(n-1) j}\right\}$ that are nonunits in R_{j}. So we need at most $t_{j}-1$ parentheses such that the product of their j th components with N_{j} is in K_{j}. Let $i \neq j$. We have $Q_{i}^{t_{i}} M_{i}=(0)$. If there exist t_{i} elements of $\left\{a_{1 i}, \ldots, a_{(n-1) i}\right\}$ that are nonunits in R_{i}, then the product of these elements is zero and we need t_{i} parentheses such that the product of their i th components with N_{i} is in K_{i}. If there exist less than t_{i} elements that are nonunits in R_{i}, then we need less than t_{i} parentheses such that the product of their i th components with N_{i} is in K_{i}. Thus we need at most $\left(t_{j}-1\right)+\sum_{i \neq j, i=1}^{m} t_{i}=\sum_{i=1}^{m} t_{i}-1$ parentheses such that their product with N is in $K_{1} \times \ldots \times K_{m}$. Since $\sum_{i=1}^{m} t_{i} \leq n-1$, we conclude that N is $(n-1, n)$-weak second.

Corollary 2.16. Let $m<n$ be two positive integers, $R=F_{1} \times \ldots \times F_{m}$ and $M=M_{1} \times \ldots M_{m}$ where F_{i} is a field and M_{i} is an F_{i}-vector space for all $i \in\{1, \ldots, m\}$. Then every non-zero submodule of M is $(n-1, n)$-weak second where $n \geq 2$.

Proof. The associated degree of M_{i} is $t_{i}:=1$ for all $i \in\{1, \ldots, m\}$. Thus $\sum_{i=1}^{m} t_{i}=m \leq n-1$. By Theorem 2.15 , every non-zero submodule of M is $(n-1, n)$-weak second.

$3(2,3)-\varphi$-second Submodules

In this section we focus on $(2,3)-\varphi$-second submodules and investigate their various properties and relatonships with other concepts.

Recall from [34] that R is called a u-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals. A um-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.

Lemma 3.1. [33, Lemma 2.40]A ring R is a um-ring if and only if $M \subseteq \cup_{i=1}^{n} M_{i}$ where M_{i} 's are some R-modules, implies that $M \subseteq M_{i}$ for some $1 \leq i \leq n$.

Theorem 3.2. Let R be a um-ring, M be an R-module and N be a non-zero submodule of M. Then the following are equivalent.
(1) N is a $(2,3)-\varphi$-second submodule of M.
(2) If $a b \notin a n n_{R}(N)$ for $a, b \in R$, then $a b N=a N$ or $a b N=b N$ or $a b N=a b \varphi(N)$.
(3) If $a N \nsubseteq K$ for $a \in R$ and a submodule K of M, then $\left(K:_{R} a N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} a N\right)=$ $a n n_{R}(a N) \operatorname{or}\left(K:_{R} a N\right)=\left(K:_{R} a \varphi(N)\right)$.
(4) If $a I N \subseteq K$ and $a I \varphi(N) \nsubseteq K$ for $a \in R$, any ideal I of R and any submodule K of M, then $a N \subseteq K$ or $I N \subseteq K$ or $a I \subseteq a n n_{R}(N)$.
(5) If $I N \nsubseteq K$ for any ideal I of R and any submodule K of M, then $\left(K:_{R} I N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} I N\right)=\operatorname{ann}_{R}(I N)$ or $\left(K:_{R} I N\right)=\left(K:_{R} I \varphi(N)\right)$.
(6) If $I J N \subseteq K$ and $I J \varphi(N) \nsubseteq K$ for any ideals I, J of R and any submodule K of M, then $I N \subseteq K$ or $J N \subseteq K$ or $I J \subseteq a n n_{R}(N)$.

Proof. (1) $\Longleftrightarrow(2)$ By Theorem 2.3.
(1) $\Longrightarrow(3)$ Let $a N \nsubseteq K$ for $a \in R$ and any submodule K of M. Let $b \in\left(K:_{R} a N\right)$. Then $a b N \subseteq K$. If $a b \varphi(N) \subseteq K$, then $b \in\left(K:_{R} a \varphi(N)\right)$. If $a b \varphi(N) \nsubseteq K$, then $b N \subseteq K$ or $a b \in a n n_{R}(N)$. It follows that $b \in\left(K:_{R} N\right)$ or $b \in a n n_{R}(a N)$. Thus $\left(K:_{R} a N\right)=\left(K:_{R} a \varphi(N)\right) \cup\left(K:_{R} N\right) \cup a n n_{R}(a N)$. Since R is a um-ring, we have $\left(K:_{R} a N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} a N\right)=a n n_{R}(a N)$ or $\left(K:_{R} a N\right)=\left(K:_{R} a \varphi(N)\right)$.
(3) \Longrightarrow (4) Let $a I N \subseteq K$ and $a I \varphi(N) \nsubseteq K$ for $a \in R$, any ideal I of R and any submodule K of M. If $a N \subseteq K$, then we are done. Let $a N \nsubseteq K$. By (3), $\left(K:_{R} a N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} a N\right)=a n n_{R}(a N)$ or $\left(K:_{R} a N\right)=\left(K:_{R} a \varphi(N)\right)$. In the first case, we have $I N \subseteq K$. In the second case, $I a \subseteq a n n_{R}(N)$. The third case cannot hold since $a I \varphi(N) \nsubseteq K$.
(4) $\Longrightarrow(5)$ Let $I N \nsubseteq K$ where I is an ideal of R and K is a submodule of M. Let $a \in\left(K:_{R} I N\right)$. Then $a I N \subseteq K$. If $a I \varphi(N) \subseteq K$, then $a \in\left(K:_{R} I \varphi(N)\right)$. If $a I \varphi(N) \nsubseteq K$, then $a N \subseteq K$ or $a I \subseteq a n n_{R}(N)$. In the first case $a \in\left(K:_{R} N\right)$. In the second case $a \in \operatorname{ann}_{R}(I N)$. Thus $\left(K:_{R} I N\right)=\left(K:_{R} N\right) \cup$ $a n n_{R}(I N) \cup\left(K:_{R} I \varphi(N)\right)$. Since R is a um-ring, $\left(K:_{R} I N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} I N\right)=a n n_{R}(I N)$ or $\left(K:_{R} I N\right)=\left(K:_{R} I \varphi(N)\right)$.
$(5) \Longrightarrow(6)$ Let $I J N \subseteq K$ and $I J \varphi(N) \nsubseteq K$ where I, J are ideals of R and K is a submodule of M. If $I N \subseteq K$, then we are done. Let $I N \nsubseteq K$. Then, by (5), $\left(K:_{R} I N\right)=\left(K:_{R} N\right)$ or $\left(K:_{R} I N\right)=$ $\operatorname{ann}_{R}(I N)$ or $\left(K:_{R} I N\right)=\left(K:_{R} I \varphi(N)\right)$. In the first case, we have $J N \subseteq K$. In the second case we have $I J \subseteq a n n_{R}(N)$.
(6) \Longrightarrow (1) Clear.

Definition 3.3. Let M be an R-module, N be a $(2,3)-\varphi$-second submodule of M, K be a submodule of M and $a, b \in R$. If $a b \varphi(N) \subseteq K, a b \notin a n n_{R}(N), a N \nsubseteq K$ and $b N \nsubseteq K$, then (a, b, K) is called a φ-triple of N.

Theorem 3.4. Let N be a $(2,3)$ - φ-second submodule of an R-module M and (a, b, K) be a φ-triple of N for some $a, b \in R$ and a submodule K of M. Then
(1) $a b \varphi(N) \subseteq N$.
(2) $a\left(a n n_{R}(N)\right) \varphi(N) \subseteq K$.
(3) $b\left(a n n_{R}(N)\right) \varphi(N) \subseteq K$.
(4) $\left(a n n_{R}(N)\right)^{2} \varphi(N) \subseteq K$.
(5) $a\left(\operatorname{ann}_{R}(N)\right) \varphi(N) \subseteq N$.
(6) $b\left(a n n_{R}(N)\right) \varphi(N) \subseteq N$.

Proof. (1) Suppose that $a b \varphi(N) \nsubseteq N$. Then $a b \varphi(N) \nsubseteq N \cap K$ and $a b N \subseteq N \cap K$. Since N is (2,3)- φ second submodule, we have $a b \in a n n_{R}(N)$ or $a N \subseteq N \cap K \subseteq K$ or $b N \subseteq N \cap K \subseteq K$ which contradicts the assumption that (a, b, K) is a φ-triple of N.
(2) Suppose that $a\left(a n n_{R}(N)\right) \varphi(N) \nsubseteq K$. Then $\operatorname{ax\varphi }(N) \nsubseteq K$ for some $x \in a n n_{R}(N)$. Then $a(b+$ x) $\varphi(N) \nsubseteq K$ because $a b \varphi(N) \subseteq K$. Also, $a(b+x) N=a b N \subseteq K$. Since N is $(2,3)$ - φ-second submodule, we have $a(b+x) \in a n n_{R}(N)$ or $a N \subseteq K$ or $(b+x) N=b N \subseteq K$. The first case implies that $a b \in a n n_{R}(N)$ which is a contradiction. Clearly, the other two cases contradict with the hypothesis.
(3) The proof is similar to part (2).
(4) Suppose that $x_{1} x_{2} \varphi(N) \nsubseteq K$ for some $x_{1}, x_{2} \in a n n_{R}(N)$. Then parts (2) and (3) imply that $(a+$ $\left.x_{1}\right)\left(b+x_{2}\right) \varphi(N) \nsubseteq K$. Clearly, $\left(a+x_{1}\right)\left(b+x_{2}\right) N=a b N \subseteq K$. Since N is (2,3)- φ-second submodule, we have $\left(a+x_{1}\right)\left(b+x_{2}\right) \in a n n_{R}(N)$ or $\left(a+x_{1}\right) N=a N \subseteq K$ or $\left(b+x_{2}\right) N=b N \subseteq K$ which are contradictions.
(5) Suppose that $a\left(a n n_{R}(N)\right) \varphi(N) \nsubseteq N$. Then there exists $x \in \operatorname{ann} n_{R}(N)$ such that $a x \varphi(N) \nsubseteq N$. By part (1), $a(b+x) \varphi(N) \nsubseteq N \cap K$ and $a(b+x) N \subseteq N \cap K$. Since N is (2,3)- φ-second submodule, we have $a(b+x) \in a n n_{R}(N)$ or $a N \subseteq K$ or $(b+x) N=b N \subseteq K$ which are contradictions. Thus $a\left(a n n_{R}(N)\right) \varphi(N) \subseteq N$.
(6) The proof is similar to part (5).

Theorem 3.5. Let M be an R-module and N be a (2,3)- φ-second submodule of M which is not strongly 2-absorbing second submodule. Then $\operatorname{ann}_{R}(N)^{2} \varphi(N) \subseteq N$.

Proof. Let N be a $(2,3)-\varphi$-second submodule of M which is not strongly 2-absorbing second submodule. Then there exists a φ-triple (a, b, K) of N for some $a, b \in R$ and a submodule K of M. Suppose that $\left(a n n_{R}(N)\right)^{2} \varphi(N) \nsubseteq N$. Hence there exist $x_{1}, x_{2} \in a n n_{R}(N)$ such that $x_{1} x_{2} \varphi(N) \nsubseteq N$. Then $\left(a+x_{1}\right)(b+$ $\left.x_{2}\right) \varphi(N) \nsubseteq K \cap N$ by Theorem 3.4. Also, clearly, $\left(a+x_{1}\right)\left(b+x_{2}\right) N=a b N \subseteq K \cap N$. Since N is (2,3)-φ-second submodule of M, we have $\left(a+x_{1}\right)\left(b+x_{2}\right) \in a n n_{R}(N)$ or $\left(a+x_{1}\right) N=a N \subseteq K \cap N \subseteq K$ or $\left(b+x_{2}\right) N=b N \subseteq K \cap N \subseteq K$ which are contradictions.

Let M be an R-module. We define the function $\varphi_{\omega}: S(M) \longrightarrow S(M)$ as $\varphi_{\omega}(L)=\sum_{i \in \mathbb{Z}^{+}}\left(L:_{M}\right.$ $\left.\operatorname{ann}_{R}(L)^{i}\right)$ for every $L \in S(M)$.

Corollary 3.6. Let M be an R-module and N be a $(2,3)-\varphi$-second submodule of M such that $\left(N:_{M}\right.$ $\left.\operatorname{ann}_{R}(N)^{3}\right) \subseteq \varphi(N)$. Then N is $(2,3)-\varphi_{\omega}$-second submodule of M.

Proof. If N is a strongly 2-absorbing second submodule of M, then the result is clear. So we may assume that N is not a strongly 2 -absorbing second submodule of M. Therefore, by Theorem 3.5 , we have $\left(N:_{M}\right.$ $\left.\operatorname{ann}_{R}(N)^{3}\right) \subseteq \varphi(N) \subseteq\left(N:_{M} \operatorname{ann}_{R}(N)^{2}\right) \subseteq\left(N:_{M} \operatorname{ann}_{R}(N)^{3}\right)$, that is, $\varphi(N)=\left(N:_{M} \operatorname{ann} n_{R}(N)^{2}\right)=$ $\left(N:_{M} \operatorname{ann}_{R}(N)^{3}\right)$. It follows that $\varphi(N)=\left(N:_{M} \operatorname{ann}_{R}(N)^{j}\right)$ for all $j \geq 2$ and the result follows.

Recall from [4] that an R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$. It also follows that M is a comultiplication module if and only if $N=\left(0:_{M} \operatorname{ann}_{R}(N)\right)$ for every submodule N of M [4].

Corollary 3.7. Let M be a comultiplication R-module and N be a submodule of M. Then the following hold.
(1) If N is a $(2,3)-\varphi$-second submodule of M that is not strongly 2-absorbing second, then $\varphi(N) \subseteq C\left(N^{3}\right)$.
(2) If $n \geq 3$ is an integer and N is a (2,3)-n-almost second submodule of M that is not strongly 2absorbing second, then $C\left(N^{3}\right)=C\left(N^{n}\right)$.

Proof. (1) Since M is comultiplication, $N=\left(0:_{M} \operatorname{ann}_{R}(N)\right)$. By Theorem 3.5, $\varphi(N) \subseteq\left(N:_{M} a n n_{R}(N)^{2}\right)=$ $\left(\left(0:_{M} \operatorname{ann}_{R}(N)\right):_{M} \operatorname{ann}_{R}(N)^{2}\right)=\left(0:_{M} \operatorname{ann} n_{R}(N)^{3}\right)=C\left(N^{3}\right)$ and hence $\varphi(N) \subseteq C\left(N^{3}\right)$.
(2) Notice that $\varphi_{n}(N)=\left(N:_{M} \operatorname{ann} n_{R}(N)^{n-1}\right)=\left(0:_{M} \operatorname{ann} n_{R}(N)^{n}\right)=C\left(N^{n}\right)$. By part (1), $C\left(N^{n}\right) \subseteq$ $C\left(N^{3}\right)$. Since the reverse inclusion always holds we have $C\left(N^{3}\right)=C\left(N^{n}\right)$.

Let M be an R-module and N be a submodule of M. The sum of all second submodules of N is called the second radical of N and denoted by $\sec (N)$. If there is no second submodule of N, then we define $\sec (N)=0$ [16].

Corollary 3.8. Let M be an R-module and N be a $(2,3)-\varphi$-second submodule of M that is not strongly 2absorbing second. Then the following hold.
(1) $\sqrt{a n n_{R}(N)}=\sqrt{a n n_{R}(\varphi(N))}$.
(2) If M is a finitely generated R-module, then $\sec (N)=\sec (\varphi(N))$.

Proof. (1) By Theorem 3.5, $\operatorname{ann_{R}}(N)^{2} \varphi(N) \subseteq N$. Then $a n n_{R}(N)^{3} \subseteq a n n_{R}(\varphi(N))$ and so $\sqrt{a n n_{R}(N)} \subseteq$ $\sqrt{a n n_{R}(\varphi(N))}$. Since the reverse inclusion always holds we have the equality.
(2) By [10, Theorem 2.12], $\sec (N)=\left(0:_{M} \sqrt{a n n_{R}(N)}\right)$ and by part $(1), \sec (N)=\left(0:_{M} \sqrt{a n n_{R}(\varphi(N))}\right)=$ $\sec (\varphi(N))$.

Definition 3.9. Let N be a (2,3)- φ-second submodule of an R-module M and suppose that $I J N \subseteq K$ for some ideals I, J of R and a submodule K of M. We call N as a free φ-triple with respect to I, J, K if (a, b, K) is not a φ-triple of N for each $a \in I, b \in J$.

Theorem 3.10. Let N be a $(2,3)$ - φ-second submodule of M and suppose that $I J N \subseteq K, I J \varphi(N) \nsubseteq K$ for some ideals I, J of R and a submodule K of M such that N is a free φ-triple with respect to I, J, K. Then $I J \subseteq \operatorname{ann}_{R}(N)$ or $I N \subseteq K$ or $J N \subseteq K$.

Proof. Suppose that $I J \nsubseteq a n n_{R}(N)$. We show that $I N \subseteq K$ or $J N \subseteq K$. Assume on the contrary that $I N \nsubseteq K$ and $J N \nsubseteq K$. Then there exist $a_{1} \in I$ and $b_{1} \in J$ such that $a_{1} N \nsubseteq K$ and $b_{1} N \nsubseteq K$. If $a_{1} b_{1} \varphi(N) \nsubseteq K$, then $a_{1} b_{1} \in a n n_{R}(N)$ as N is $(2,3)-\varphi$-second submodule. If $a_{1} b_{1} \varphi(N) \subseteq K$, then again $a_{1} b_{1} \in a n n_{R}(N)$ as $\left(a_{1}, b_{1}, K\right)$ is not a φ-triple of N. Since $I J \nsubseteq a n n_{R}(N)$, there are $a \in I$ and $b \in J$ such that $a b \notin a n n_{R}(N)$. Since (a, b, K) is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, we have $a N \subseteq K$ or $b N \subseteq K$. There are three cases.

Case 1: Suppose that $a N \subseteq K$ but $b N \nsubseteq K$. We have $a_{1} b N \subseteq K$. Since $\left(a_{1}, b, K\right)$ is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, we have $a_{1} b \in a n n_{R}(N)$. Also, we have $\left(a+a_{1}\right) b N \subseteq K$. Since $\left(a+a_{1}, b, K\right)$ is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, we have $\left(a+a_{1}\right) b \in a n n_{R}(N)$ which gives the contradiction that $a b \in \operatorname{ann}_{R}(N)$ or $\left(a+a_{1}\right) N \subseteq K$ which gives the contradiction that $a_{1} N \subseteq K$.

Case 2: Suppose that $b N \subseteq K$ but $a N \nsubseteq K$. We have $a b_{1} N \subseteq K$. Since $\left(a, b_{1}, K\right)$ is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, we have $a b_{1} \in a n n_{R}(N)$. Also, we have $a\left(b+b_{1}\right) N \subseteq K$. Since $\left(a, b+b_{1}, K\right)$ is not a φ-triple of N and N is a (2,3)- φ-second submodule, $a\left(b+b_{1}\right) \in a n n_{R}(N)$ which gives the contradiction that $a b \in a n n_{R}(N)$ or $\left(b+b_{1}\right) N \subseteq K$ which gives the contradiction that $b_{1} N \subseteq K$.

Case 3: Suppose that $a N \subseteq K$ and $b N \subseteq K$. Then $\left(b+b_{1}\right) N \nsubseteq K$ as $b_{1} N \nsubseteq K$. We have $a_{1}\left(b+b_{1}\right) N \subseteq K$. Since $\left(a_{1}, b+b_{1}, K\right)$ is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, we have $a_{1}\left(b+b_{1}\right) \in$ $\operatorname{ann}_{R}(N)$. Since $a_{1} b_{1} \in \operatorname{ann} n_{R}(N)$, we have $a_{1} b \in \operatorname{ann} n_{R}(N)$. Also, $\left(a+a_{1}\right) N \nsubseteq K$ since $a_{1} N \nsubseteq K$. We have $\left(a+a_{1}\right) b_{1} N \subseteq K$. Since $\left(a+a_{1}, b_{1}, K\right)$ is not a φ-triple of N and N is a (2,3)- φ-second submodule, $\left(a+a_{1}\right) b_{1} \in a n n_{R}(N)$ and so $a b_{1} \in a n n_{R}(N)$. On the other hand, we have $\left(a+a_{1}\right)\left(b+b_{1}\right) N \subseteq K$. Since $\left(a+a_{1}, b+b_{1}, K\right)$ is not a φ-triple of N and N is a $(2,3)-\varphi$-second submodule, $\left(a+a_{1}\right)\left(b+b_{1}\right) \in a n n_{R}(N)$ which gives the contradiction that $a b \in a n n_{R}(N)$.

Proposition 3.11. Let $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$ where R_{i} is a ring, M_{i} is an R_{i}-module for $i=1,2$. Let $\psi_{i}: S\left(M_{i}\right) \longrightarrow S\left(M_{i}\right)$ be a function for each $i=1,2$ and $\varphi=\psi_{1} \times \psi_{2}$. Suppose that $N=N_{1} \times(0)$ where N_{1} is a non-zero submodule of M_{1}.
(1) If $\psi_{2}((0))=(0)$, then N is $a(2,3)-\varphi$-second submodule of M if and only if N_{1} is $a(2,3)-\psi_{1}$-second submodule of M_{1}.
(2) If $\psi_{2}((0)) \neq(0)$, then N is a $(2,3)-\varphi$-second submodule of M if and only if N_{1} is a strongly 2absorbing second submodule of M_{1}.

Proof. (1) Suppose that N is a (2,3)- φ-second submodule of M. Let $a_{1} b_{1} N_{1} \subseteq K_{1}$ and $a_{1} b_{1} \psi_{1}\left(N_{1}\right) \nsubseteq K_{1}$ for $a_{1}, b_{1} \in R_{1}$ and $K_{1} \leq M_{1}$. Then $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ and $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \varphi\left(N_{1} \times(0)\right) \nsubseteq$ $K_{1} \times(0)$. Since N is a $(2,3)-\varphi$-second submodule of M, we get that $\left(a_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ or $\left(b_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ or $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in \operatorname{ann}_{R}\left(N_{1} \times(0)\right)=a n n_{R_{1}}\left(N_{1}\right) \times R_{2}$. Thus $a_{1} N_{1} \subseteq K_{1}$ or $b_{1} N_{1} \subseteq K_{1}$ or $a_{1} b_{1} \in a n n_{R_{1}}\left(N_{1}\right)$ and so N_{1} is a $(2,3)-\psi_{1}$-second submodule of M_{1}.

Conversely, suppose that N_{1} is a $(2,3)-\psi_{1}$-second submodule of M_{1}. Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in$ $R_{1} \times R_{2}$ and $K=K_{1} \times K_{2}$ be a submodule of $M_{1} \times M_{2}$ where K_{i} is a submodule of M_{i} for each $i=1,2$. Suppose that $a b N \subseteq K$ and $a b \varphi(N) \nsubseteq K$. Since $\psi_{2}((0))=(0)$, we have $a_{1} b_{1} N_{1} \subseteq K_{1}$ and $a_{1} b_{1} \psi_{1}\left(N_{1}\right) \nsubseteq K_{1}$. Since N_{1} is a $(2,3)-\psi_{1}$-second submodule of M_{1}, we have $a_{1} b_{1} \in \operatorname{ann} n_{R_{1}}\left(N_{1}\right)$ or $a_{1} N_{1} \subseteq K_{1}$ or $b_{1} N_{1} \subseteq K_{1}$. Then we get that $a b=\left(a_{1} b_{1}, a_{2} b_{2}\right) \in a n n_{R_{1}}\left(N_{1}\right) \times R_{2}=a n n_{R}(N)$ or $a N=\left(a_{1}, a_{2}\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times K_{2}$ or $b N=\left(b_{1}, b_{2}\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times K_{2}$. Thus N is a $(2,3)-\varphi$-second submodule of M.
(2) Suppose that N is a $(2,3)-\varphi$-second submodule of M. Let $a_{1} b_{1} N_{1} \subseteq K_{1}$ for $a_{1}, b_{1} \in R_{1}$ and $K_{1} \leq M_{1}$. Then $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ and $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(\psi_{1}\left(N_{1}\right) \times \psi_{2}((0))\right)=\left(a_{1}, 1\right)\left(b_{1}, 1\right) \varphi(N) \nsubseteq$ $K_{1} \times(0)$. Since N is a (2,3)- φ-second submodule of M, we get that $\left(a_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ or $\left(b_{1}, 1\right)\left(N_{1} \times(0)\right) \subseteq K_{1} \times(0)$ or $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in \operatorname{ann}_{R}\left(N_{1} \times(0)\right)=a n n_{R_{1}}\left(N_{1}\right) \times R_{2}$. Thus $a_{1} N_{1} \subseteq K_{1}$ or $b_{1} N_{1} \subseteq K_{1}$ or $a_{1} b_{1} \in a n n_{R_{1}}\left(N_{1}\right)$ and so N_{1} is a strongly 2 -absorbing second submodule of M_{1}.

Conversely, assume that N_{1} is a strongly 2-absorbing second submodule of M_{1}. Then $N_{1} \times(0)$ is a strongly 2 -absorbing second submodule of M. Hence N is a $(2,3)-\varphi$-second submodule of M.

References

[1] D. D. Anderson, M. Bataineh, Generalizations of prime ideals, Comm. Algebra, 36(2), 686-696, (2008).
[2] D. F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39(5), 1646-1672, (2011).
[3] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. of Math., 29, 831-840, (2003).
[4] H.Ansari-Toroghy, F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11(4), 1189-1201, (2007).
[5] H. Ansari-Toroghy, F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci., 25(3), 447-455, (2007).
[6] H. Ansari-Toroghy, F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra, 39(7), 2396-2416, (2011).
[7] H. Ansari-Toroghy, F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc., 38(4), 9871005, (2012).
[8] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19(1), 1109-1116, (2012).
[9] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime submodules II, Mediterr. J. Math., 9(2), 327-336, (2012).
[10] H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime radicals of submodules, Asian-Eur. J. Math., 6(2), 1350024, (2013).
[11] H. Ansari-Toroghy, F. Farshadifar, S. Maleki-Roudposhti, n-absorbing and Strongly n-absorbing Second Submodules, Bol. Soc. Paran. Mat., 39(1), 9-22, (2021).
[12] M. Behboodi, On weakly prime radical of modules and semi-compatible modules, Acta Math Hung., 113, 243-254, (2006).
[13] P. K. Beiranvand , R. Beyranvand, Almost prime and weakly prime submodules, Journal of Algbera and Its Applications, 18(7), 1950129, (2019).
[14] S. M. Bhatwadekar, P. K. Sharma, Uniqe factorization and birth of almost primes, Comm. Algebra, 33, 43-49, (2005).
[15] S. Çeken, M. Alkan, P. F. Smith, Second modules over noncommutative rings, Communications in Algebra, 41(1), 83-98, (2013).
[16] S. Çeken, M. Alkan and P. F. Smith, The dual notion of the prime radical of a module, Journal of Algebra, 392, 265-275, (2013).
[17] S. Çeken, M. Alkan, On the Weakly Second Spectrum of a Module, Filomat, 30(4), 1013-1020, (2016).
[18] S. Çeken, M. Alkan, On Strongly 2-Absorbing Second Submodules, AIP Conference Proceedings, 1991(1), 020003, (2018).
[19] S. Çeken, On The Interior of a Submodule With Respect to a Set of Ideal, Quaestiones Mathematicae, 42(4), 431-446, (2019).
[20] S. Çeken, Ü. Tekir, S. Koç, A. Kelleqi, Generalizations of second submodules, Filomat, 34(12), 3995-4004, (2020).
[21] A. Y. Darani, F. Soheilnia, On n-absorbing submodules, Math. Commun., 17, 547-557, (2012).
[22] M. Ebrahimpour, R. Nekooei, On generalizations of prime ideals, Comm. Algebra, 40(4), 1268-1279, (2012).
[23] M. Ebrahimpour, R. Nekooei, On generalizations of prime submodules, Bull. Iranian Math. Soc., 39(5), 919-939, (2013).
[24] M. Ebrahimpour, On generalizations of prime ideals (II), Comm. Algebra, 42(9), 3861-3875, (2014).
[25] M. Ebrahimpour, (n-1,n)-Weakly Prime Submodules In Direct Product Of Modules, Journal of Hyperstructures, 6(1), 10-16, (2017).
[26] E. H. Feller, E. W. Swokowski, Prime modules, Canad. J. Math., 17, 1041-1052, (1965).
[27] A. Haghany, M. Vedadi, Endoprime modules, Acta Math. Hung., 106, 89-99, (2005).
[28] N. S. Karamzadeh, O. A. S. Karamzadeh, On Artinian Modules Over Duo Rings, Communications in Algebra, 38, 35213531, (2010).
[29] H. A. Khashan, On almost prime submodules, Acta Math. Sci. B, 32(2), 645-651, (2012).
[30] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul, 33(1), 61-69, (1984).
[31] S. Moradi, A. Azizi, On n-almost prime submodules, Indian J. Pure and Appl. Math., 44(5), 605-619, (2013).
[32] S. Moradi, A. Azizi, Generalizations of prime submodules, Hacettepe Journal of Mathematics and Statistics, 44(3), 587595, (2015).
[33] H. Mostafanasab, Ü. Tekir, E. Yetkin Çelikel, E. A. Uğurlu, G. Ulucak, A. Y. Darani, Generalizations of 2-absorbing and 2-absorbing primary submodules, Hacettepe Journal of Mathematics and Statistics, 48(4), 1001-1016, (2019).
[34] P. Quartararo and H.S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc., 52, 91-96, (1975).
[35] S. Yassemi, The dual notion of prime submodules, Arch. Math (Brno), 37, 273-278, (2001).
[36] N. Zamani, Ф-prime submodules, Glasg. Math. J., 52(2), 253-259, (2010).

Author information

S. Çeken, Department of Mathematics, Trakya University, Turkey.

E-mail: cekensecil@gmail.com
S. Koç, Department of Mathematics, Istanbul Medeniyet University, Turkey.

E-mail: suat.koc@medeniyet.edu.tr
Ü. Tekir, Department of Mathematics, Marmara University, Turkey.
E-mail: utekir@marmara.edu.tr
Received: October 26, 2022.
Accepted: August 7, 2023.

