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Abstract Let R be a commutative ring with identity, M be an R-module, n ≥ 2 be a positive integer
and ϕ : S(M) −→ S(M) be a function where S(M) is the set of all submodules of M . In this paper we
introduce and study the concept of (n− 1, n)-ϕ-second submodule. We call a non-zero submodule N of M as
an (n − 1, n)-ϕ-second submodule if (a1...an−1)N ⊆ K and (a1...an−1)ϕ(N) 6⊆ K, where a1, ..., an−1 ∈ R
and K is a submodule of M , imply either a1...an−1 ∈ annR(N) or (a1...ai−1ai+1...an−1)N ⊆ K for some
i ∈ {1, ..., n − 1}. We give a number of results concerning this submodule class. We characterize modules
with the property that for some ϕ, every non-zero submodule is (n−1, n)-ϕ-second. We show that under some
assumptions strongly (n − 1)-absorbing second submodules and (n − 1, n)-ϕ-second submodules coincide.
We also focus on (2, 3)-ϕ-second submodules and give some special results concerning them.

1 Introduction

Prime ideals play a central role in commutative ring theory and algebraic geometry. In the literature, there
are a number of generalizations of prime ideals in commutative rings (see for example [1], [2], [3], [14], [22],
[24]). One of the generalization of prime ideals is the concept of n-absorbing ideal which was introduced in
[2]. Let R be a commutative ring with identity and n be a positive integer. A proper ideal I of R is called
an n-absorbing ideal if whenever a1...an+1 ∈ I for a1, ..., an+1 ∈ R, then a1...ai−1ai+1...an+1 ∈ I for some
i ∈ {1, ..., n + 1} [2]. In [23], this concept was generalized to the concept of (n − 1, n)-φ-prime ideal as
in the following way. Let φ : S(R) −→ S(R) ∪ {∅} be a function where S(R) is the set of all ideals of R.
A proper ideal I of R is called an (n − 1, n)-φ-prime ideal if a1...an ∈ I\φ(I), for a1, ..., an ∈ R, implies
a1...ai−1ai+1...an ∈ I for some i ∈ {1, ..., n}.

Prime submodules are module theoretic versions of prime ideals. The class of prime submodules has
an important role in commutative ring theory as it gives characterizations of important ring classes such as
Dedekind domains, Prüfer domains, arithmetical rings. The concept of prime submodule was first introduced
in 1965 by E. H. Feller and E. W. Swokowski [26]. Let R be a commutative ring with non-zero identity. A
proper submodule P of M is called a prime submodule if whenever rm ∈ P , where r ∈ R, m ∈ M , we have
either r ∈ (P :R M) or m ∈ P . If P is a prime submodule of M , then p = (P :R M) is a prime ideal of R
and in this case P is called a p–prime submodule [30]. If (0) is a prime submodule of M , then M is called a
prime module.

Besides prime submodules, module theoretic versions of generalizations of prime ideals have been investi-
gated since the begining of 2000s (see for example [12], [13], [21], [23], [27], [29], [31], [32], [33], [36]).
Let R be a commutative ring with non-zero identity and M be an R-module. A proper submodule N of M
is called an n-absorbing submodule if whenever a1...anm ∈ N for a1, ..., an ∈ R and m ∈ M , then either
a1...an ∈ (N :R M) or there exists i ∈ {1, ..., n} such that a1...ai−1ai+1...anm ∈ N [21]. This notion was
generalized in [23] as follows. Let n ≥ 2 be a positive integer, φ : S(M) −→ S(M) ∪ {∅} be a function
and P be a proper submodule of M . P is called an (n − 1, n)-φ-prime submodule if a1...an−1x ∈ P\φ(P ),
for a1, ..., an−1 ∈ R, m ∈ M , implies either a1...an−1 ∈ (P :R M) or a1...ai−1ai+1...an−1x ∈ P for some
i ∈ {1, ..., n−1} [23]. Clearly, every (n−1)-absorbing submodule ofM is (n−1, n)-φ-prime for any function
φ on S(M).

Second submodules of modules over commutative rings were introduced in [35] as the dual notion of
prime submodules. According to this definition a non-zero submodule N of an R-module M is said to be
a second submodule if for all r ∈ R, either rN = 0 or rN = N . If N is a second submodule of M ,
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then p = annR(N) is a prime ideal of R. In this case, N is called a p-second submodule of M [35]. In
recent years, second submodules have attracted attention of many researchers and it has been understood that
this submodule class has an important role in determining characterizations of modules and rings (see for
example [8], [9], [15], [16]). Along with the increased work on the second submodules, generalization of
these submodules has begun to be investigated and it has been seen that these generalized second submodules
also have interesting and important algebraic properties (see for example [6], [11], [17], [18], [19]). One of
the generalization of second submodules is the concept of strongly n-absorbing second submodule which was
introduced in [11]. Let R be a commutative ring with identity, M be an R-module and n be a positive integer.
A non-zero submodule N of M is called a strongly n-absorbing second submodule if whenever a1...anN ⊆ K
for a1, ..., an ∈ R and a submodule K of M , then either a1...an ∈ annR(N) or a1...ai−1ai+1...anN ⊆ K for
some i ∈ {1, ..., n} [11]. In this paper we extend this notion to (n − 1, n)-ϕ-second submodules as follows.
Let M be an R-module, n ≥ 2 be a positive integer and N be a non-zero submodule of M . We call N as an
(n−1, n)-ϕ-second submodule of M if (a1...an−1)N ⊆ K and (a1...an−1)ϕ(N) 6⊆ K, where a1, ..., an−1 ∈ R
and K is a submodule of M , imply either a1...an−1 ∈ annR(N) or (a1...ai−1ai+1...an−1)N ⊆ K for some
i ∈ {1, ..., n − 1}. Let ϕM : S(M) −→ S(M) be the function defined by ϕM (L) = M for every L ∈ S(M).
Then an (n− 1, n)-ϕM -second submodule of M is said to be an (n− 1, n)-weak second submodule of M . Let
m ≥ 2 be an integer and ϕm : S(M) −→ S(M) be the function defined by ϕm(L) = (L :M annR(L)m−1)
for every L ∈ S(M). Then an (n − 1, n)-ϕm-second submodule of M is said to be an (n − 1, n)-m-almost
second submodule of M . In particular, for m = 2, an (n − 1, n)-2-almost second submodule of M is called
an (n− 1, n)-almost second submodule of M .

Throughout this paper all rings will be commutative with non-zero identity and all modules will be unital
left modules. Unless otherwise stated R will denote a ring. In the rest of the paper S(M) will denote the set
of all submodules of an R-module M and ϕ : S(M)→ S(M) will be a function.

In Section 2, we give some characterizations of (n − 1, n)-ϕ-second submodules and investigate their
relationships with strongly (n − 1)-absorbing second submodules. In Theorem 2.3, we give some equivalent
conditions for a non-zero submodule Q of an R-module M to be (n − 1, n)-ϕ-second. For an element a ∈ R
with (0) 6= (0 :M a) = aM , we prove that (0 :M a) is an (n − 1, n)-almost second submodule of M if and
only if it is a strongly (n− 1)-absorbing second submodule of M (see Theorem 2.4). Let R = R1 × ...× Rn,
M = M1 × ... ×Mn where Ri is a ring, Mi is an Ri-module for i = 1, ..., n and let ϕ : S(M) −→ S(M) be
a function. We investigate the structure of (n− 1, n)-ϕ-second submodules of M (see Theorems 2.6, 2.9). We
characterize R-modules M for which every non-zero submodule is (n− 1, n)-weak second and (n− 1, n)-n-
almost second (see Theorems 2.10, 2.13). Let m,n be positive integers with 3 ≤ m < n, R = R1 × ... × Rm

and M =M1× ...×Mm where Ri is a ring and Mi is a non-zero Artinian Ri-module for each i ∈ {1, ...,m}.
We investigate the structure of R-modules M in which every non-zero submodule is (n − 1, n)-weak second
(see Theorem 2.14). Let m ≥ 1 and n ≥ 2 be positive integers, R = R1 × ...×Rm and M =M1 × ...×Mm

where (Ri, Qi) is a local ring, Mi is an Ri-module. In Theorem 2.15, we give a condition for M to have the
property that every non-zero submodule is (n− 1, n)-weak second.

In Section 3 we give our attention on (2, 3)-ϕ-second submodules. We present their various character-
izations and investigate relationships with other concepts. In Theorem 3.2, we give some equivalent con-
ditions for a non-zero submodule N of a module M over a um-ring to be (2, 3)-ϕ-second submodule. In
Theorem 3.5, we prove that if N is a (2, 3)-ϕ-second submodule of M which is not strongly 2-absorbing
second, then annR(N)2ϕ(N) ⊆ N . This theorem has many consequences. In particular, by using this the-
orem, we show that if N is a (2, 3)-ϕ-second submodule of M that is not strongly 2-absorbing second, then√
annR(N) =

√
annR(ϕ(N)). Additionally, if M is a finitely generated comultiplication R-module, then we

show that sec(N) = sec(ϕ(N)) for such a submodule N where sec(N) is the sum of all second submodules of
N (see Corollary 3.8). LetN be a (2, 3)-ϕ-second submodule ofM and suppose that IJN ⊆ K, IJϕ(N) 6⊆ K
for some ideals I, J of R and a submodule K of M . Under a condition, we prove that IJ ⊆ annR(N) or
IN ⊆ K or JN ⊆ K (see Theorem 3.10). Let R = F1×F2×F3 and M =M1×M2×M3 where Fi is a field
and Mi is a non-zero Fi-vector space for each i ∈ {1, 2, 3}.

2 (n-1,n)-ϕ-Second Submodules

Definition 2.1. Let M be an R-module, n ≥ 2 be a positive integer and N be a non-zero submodule of M . We
call N as an (n − 1, n)-ϕ-second submodule of M if (a1...an−1)N ⊆ K and (a1...an−1)ϕ(N) 6⊆ K, where
a1, ..., an−1 ∈ R andK is a submodule ofM , imply either a1...an−1 ∈ annR(N) or (a1...ai−1ai+1...an−1)N ⊆
K for some i ∈ {1, ..., n− 1}.

Let ϕM : S(M) −→ S(M) be the function defined by ϕM (L) = M for every L ∈ S(M). Then an
(n− 1, n)-ϕM -second submodule of M is said to be an (n− 1, n)-weak second submodule of M .

Let m ≥ 2 be an integer and ϕm : S(M) −→ S(M) be the function defined by ϕm(L) = (L :M
annR(L)m−1) for every L ∈ S(M). Then an (n−1, n)-ϕm-second submodule ofM is said to be an (n−1, n)-
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m-almost second submodule of M . In particular, for m = 2, an (n− 1, n)-2-almost second submodule of M
is called an (n− 1, n)-almost second submodule of M .

Throughout this paper we will assume that N ⊆ ϕ(N) for every submodule N of an R-module M .

Example 2.2. (i) Let M be an R-module and ϕ : S(M) −→ S(M) be any function. Then M is trivially an
(n− 1, n)-ϕ-second submodule.

(ii) Let R = Z and M = Zp1p2...pn−1 , where p1, p2, . . . , pn−1 are distinct prime numbers. Suppose that ϕ :
S(M) −→ S(M) be any function. Now, we will show that every nonzero submodule N of M is an (n−1, n)-
ϕ-second submodule. Let N be a nonzero submodule of M and K a submodule of M. Now, we may assume
that N is proper. Then there exists 1 < d < m = p1p2 . . . pn−1 such that d|m and N = dM. This implies that
d = p1 . . . p̂i1 p̂i2 . . . p̂ik . . . pn−1, where p1 . . . p̂i1 p̂i2 . . . p̂ik . . . pn−1 denotes the product of all integers of the set
{p1, p2, . . . , pn−1}−{pi1 , pi2 , . . . , pik} and 1 ≤ k ≤ n−2. Let a1, a2, . . . , an−1 ∈ R such that a1a2 . . . an−1N ⊆
K but a1a2 . . . an−1ϕ(N) * K. Now, we may assume that K is a nonzero proper submodule of M such that
N * K. Then similarly, we have 1 < t < m such that t = p1 . . . p̂j1 p̂j2 . . . p̂jr . . . pn−1 and K = tM, where
1 ≤ r ≤ n − 2. Now, it is clear that (K : N) is an (n − 2)-absorbing ideal of R. Since a1a2 . . . an−1N ⊆ K,
we get a1a2 . . . an−1 ∈ (K : N) and so there exists i ∈ {1, 2, . . . , n− 1} such that a1a2 . . . ai−1ai+1 . . . an−1 ∈
(K : N). Thus we conclude that a1a2 . . . ai−1ai+1 . . . an−1N ⊆ K. Therefore, N is an (n − 1, n)-ϕ-second
submodule.

Theorem 2.3. Let Q be a non-zero submodule of an R-module M . Then the following are equivalent.
(1) Q is an (n− 1, n)-ϕ-second submodule of M .
(2) If a1...an−1 6∈ annR(Q) for a1, ..., an−1 ∈ R, then a1...an−1Q = a1...an−1ϕ(Q) or a1...an−1Q =

a1...ai−1ai+1...an−1Q for some i ∈ {1, ..., n− 1}.
(3) For a1, .., an−2 ∈ R and a submodule K of M with a1...an−2Q 6⊆ K;
(K :R a1...an−2Q) = ∪n−2

i=1 (K :R a1...ai−1ai+1...an−2Q) ∪ annR(a1...an−2Q) ∪ (K :R a1...an−2ϕ(Q)).

Proof. (1) =⇒ (2) This implication follows by using the inclusion a1...an−1Q ⊆ a1...an−1Q for a1, ..., an−1 ∈
R.

(2) =⇒ (1) Straightforward.
(1) =⇒ (3) Let a1, ...an−2 ∈ R and K be a submodule of M with a1...an−2Q 6⊆ K. Let b ∈ (K :R

a1...an−2Q). Then ba1...an−2Q ⊆ K. If ba1...an−2ϕ(Q) 6⊆ K, then (1) implies that ba1...an−2 ∈ annR(Q)
or ba1...ai−1ai+1...an−2Q ⊆ K for some i ∈ {1, ..., n − 2}. If ba1...an−2ϕ(Q) ⊆ K, then b ∈ (K :R
a1...an−2ϕ(Q)). Thus (K :R a1...an−2Q) ⊆ ∪n−2

i=1 (K :R a1...ai−1ai+1...an−2Q)∪ annR(a1...an−2Q)∪ (K :R
a1...an−2ϕ(Q)). The other inclusion always holds since we assume Q ⊆ ϕ(Q).

(3) =⇒ (1) Let a1...an−1Q ⊆ K and a1...an−1ϕ(Q) 6⊆ K for a1, ..., an−1 ∈ R and a submodule K of M .
If a1...an−2Q ⊆ K, then we are done. Let a1...an−2Q 6⊆ K. Since an−1 ∈ (K :R a1...an−2Q), (3) implies
that
a1...ai−1ai+1...an−1Q ⊆ K for some i ∈ {1, .., n− 1} or a1...an−2an−1 ∈ annR(Q). Thus Q is an (n− 1, n)-
ϕ-second submodule of M .

Theorem 2.4. Let M be an R-module, a ∈ R, (0 :M a) 6= (0) and (0 :M a) = aM . Then (0 :M a) is an
(n− 1, n)-almost second submodule of M if and only if it is a strongly (n− 1)-absorbing second submodule
of M .

Proof. If (0 :M a) is strongly (n− 1)-absorbing second submodule, then clearly it is (n− 1, n)-almost second
submodule. Suppose that (0 :M a) is an (n−1, n)-almost second submodule ofM . Let b1...bn−1(0 :M a) ⊆ K
for b1, ..., bn−1 ∈ R and a submodule K of M . If b1...bn−1((0 :M a) :M annR(0 :M a)) = b1...bn−1M 6⊆ K,
then we are done. So we may assume that b1...bn−1M ⊆ K. Now, (b1 + a)b2...bn−1(0 :M a) ⊆ K. If
(b1 + a)b2...bn−1M 6⊆ K, then (b1 + a)...bi−1bi+1...bn−1(0 :M a) ⊆ K for some i ∈ {1, ..., n − 1} or
(b1 + a)b2...bn−1 ∈ annR(0 :M a). It follows that b1...bi−1bi+1...bn−1(0 :M a) ⊆ K for some i ∈ {1, ..., n −
1} or b1b2...bn−1 ∈ annR(0 :M a) as desired. So we may assume that (b1 + a)b2...bn−1M ⊆ K. Then
b2...bn−1aM ⊆ K as b1...bn−1M ⊆ K. Since (0 :M a) = aM , we have b2...bn−1(0 :M a) ⊆ K. Thus (0 :M a)
is an (n− 1)-absorbing second submodule of M .

Proposition 2.5. Let R = R1 × R2, M = M1 ×M2 where Ri is a ring, Mi is an Ri-module for i = 1, 2 and
let ϕ : S(M) −→ S(M) be a function. Suppose that Q1 is an (n− 1, n)-weak-second submodule of M1 such
that ϕ(Q1 × {0}) ⊆M1 × {0}. Then Q1 × {0} is an (n− 1, n)-ϕ-second submodule of M .

Proof. Let (a1, b1)...(an−1, bn−1)(Q1 × {0}) ⊆ N1 ×N2 and (a1, b1)...(an−1, bn−1)ϕ(Q1 × {0}) 6⊆ N1 ×N2
where (a1, b1), ..., (an−1, bn−1) ∈ R, N1 ≤M1, N2 ≤M2. Then (a1, b1)...(an−1, bn−1)(M1×{0}) 6⊆ N1×N2
by hypothesis. So (a1...an−1)Q1 ⊆ N1 and (a1...an−1)M1 6⊆ N1. Since Q1 is (n − 1, n)-weak second, we
have a1...an−1 ∈ annR1(Q1) or (a1...ai−1ai+1...an−1)Q1 ⊆ N1 for some i ∈ {1, ..., n − 1}. These imply that
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(a1, b1)...(an−1, bn−1) ∈ annR1(Q1)×R2 = annR(Q1 × {0}) or
(a1, b1)...(ai−1, bi−1)(ai+1, bi+1)...(an−1, bn−1)(Q1×{0}) ⊆ N1×N2. ThusQ1×{0} is an (n−1, n)-ϕ-second
submodule of M .

Theorem 2.6. Let R = R1 × ... × Rn, M = M1 × ... × Mn where Ri is a ring, Mi is an Ri-module for
i = 1, ..., n and let ϕ : S(M) −→ S(M) be a function. Suppose that Q = Q1 × ... × Qn is an (n − 1, n)-
ϕ-second submodule of M where Qi is a submodule of Mi for i = 1, ..., n. Let ψi : S(Mi) −→ S(Mi) be a
function and ϕ(Q) = ψ1(Q1)× ...× ψn(Qn). Then Qj is an (n− 1, n)-ψj-second submodule of Mj for each
j with Qj 6= (0).

Proof. Let Qj 6= (0), a1...an−1Qj ⊆ K and a1...an−1ψj(Qj) 6⊆ K. Then
(1, .., 1, a1, 1, ..., 1)(1, .., 1, a2, 1, ..., 1)...(1, .., 1, an−1, 1, ..., 1)(Q1×...×Qj×...×Qn) ⊆M1×...×K×...×Mn

and
(1, .., 1, a1, 1, ..., 1)(1, .., 1, a2, 1, ..., 1)...(1, .., 1, an−1, 1, ..., 1)(ψ1(Q1)× ...× ψj(Qj)× ...× ψn(Qn))

= (1, .., 1, a1, 1, ..., 1)(1, .., 1, a2, 1, ..., 1)...(1, .., 1, an−1, 1, ..., 1)ϕ(Q1 × ...×Qj × ...×Qn) 6⊆M1 × ...×
K × ... × Mn where a1, ..., an−1 are in the j th components. Since Q is (n − 1, n)-ϕ-second, we have
(1, ..., a1...an−1, ..., 1) ∈ annR(Q) or (1, ...1, a1...ai−1ai+1...an, 1, ..., 1)Q1×...×Qn ⊆M1×...×K×...Mn for
some i ∈ {1, ..., n− 1}. Thus we get that a1...an−1 ∈ annRj

(Qj) or a1...ai−1ai+1...anQj ⊆ K as needed.

Corollary 2.7. Let R = R1 × ... × Rn, M = M1 × ... ×Mn where Ri is a ring, Mi is an Ri-module for
i = 1, ..., n and let Q = Q1× ...×Qn where Qi is a submodule of Mi for i = 1, ..., n. If Q is an (n− 1, n)-m-
almost second submodule of M , then Qj is an (n − 1, n)-m-almost second submodule of Mj for each j with
Qj 6= (0).

Proof. We have ϕm(Q) = (Q :M annR(Q)m−1) = (Q1×...×Qn :M annR1(Q1)m−1×...×annRn
(Qn)m−1) =

(Q1 :M1 annR1(Q1)m−1)× ...× (Qn :Mn
annRn

(Qn)m−1). So the result follows from Theorem 2.6.

It is well know that annihilator annR(N) of a second submodule N of an R-module M is a prime ideal.
Now we present a new method for constructing (n − 1, n)-ψ-prime ideal of a ring R, where ψ : S(R) −→
S(R) ∪ {∅} is a function.

Proposition 2.8. (i) Let M be an R-module ϕ : S(M) −→ S(M) be a function. Suppose that N is an
(n − 1, n)-ϕ-second submodule and ϕ∗ : S(R) −→ S(R) ∪ {∅} is a function such that ϕ∗(ann(N)) =
ann(ϕ(N)). Then ann(N) is an (n− 1, n)-ϕ∗-prime ideal of R.

(ii) Suppose that M is a faithful R-module and N is an (n − 1, n)-weak second submodule of M. Then
ann(N) is an (n− 1, n)-weakly prime ideal of R.

Proof. (i) Let a1, a2, . . . , an ∈ R such that a1a2 . . . an ∈ ann(N)−ϕ∗(ann(N)). Then we have a1a2 . . . anN =
0 and a1a2 . . . anϕ(N) 6= 0 since ϕ∗(ann(N)) = ann(ϕ(N)). This implies that a1a2 . . . an−1N ⊆ (0 :M
an) and a1a2 . . . an−1ϕ(N) * (0 :M an). Since N is an (n − 1, n)-ϕ-second submodule, we have either
a1a2 . . . an−1 ∈ annR(N) or there exists i ∈ {1, 2, . . . , n − 1} such that a1a2 . . . ai−1ai+1 . . . an−1N ⊆ (0 :M
an). Thus we conclude that a1a2 . . . an−1 ∈ annR(N) or
a1a2 . . . ai−1ai+1 . . . an−1an ∈ annR(N). Hence, ann(N) is an (n− 1, n)-ϕ∗-prime ideal of R.

(ii) Suppose that M is a faithful R-module and N is an (n − 1, n)-weak second submodule of M. Thus
N is an (n − 1, n)-ϕM -second submodule of M. Now, consider the function ϕ∗ : S(R) → S(R) defined by
ϕ(I) = 0 for each I ∈ S(R). Note that ϕ∗(ann(N)) = 0 = ann(ϕM (N)) = ann(M) since M is a faithful
module. The rest follows from (i).

Theorem 2.9. Let R = R1 × ...×Rn and M =M1 × ...×Mn be a faithful R-module where Ri is a ring and
Mi is a non-zero Ri-module for all i = 1, ..., n. If Q is a proper (n− 1, n)-weak second submodule of M such
that annR(Q) 6= (0), then Q = Q1× ...×Qi−1× (0)×Qi+1× ...×Qn for some i ∈ {1, ..., n} and if Qj 6= (0)
for j 6= i, then Qj is a strongly (n− 1)-absorbing second submodule of Mj .

Proof. Let Q = Q1 × ... × Qn where Qi is a submodule of Mi for i ∈ {1, ..., n}. Then (0) 6= annR(Q) =
annR1(Q1) × ... × annRn

(Qn) is a non-zero proper ideal of R. By Proposition 2.8-(ii), annR(Q) is an
(n − 1, n)-weakly prime ideal of R. By [23, Lemma 3.6], annRi(Qi) = Ri for some i ∈ {1, ..., n} and so
Qi = (0). Thus Q = Q1 × ... ×Qi−1 × (0) ×Qi+1 × ... ×Qn. Let Qj 6= (0) for j 6= i. We claim that Qj is
a strongly (n − 1)-absorbing second submodule of Mj . Assume that i < j. Let a1, ..., an−1 ∈ R and X be a
submodule of Mj such that (a1...an−1)Qj ⊆ X . Then we have

(0, ..., 1, ...0, a1...an−1, 0, ..., 0)(Q1× ...×Qi−1×(0)×Qi+1× ...×Qn) ⊆ (0)× ...×(0)× ...×X× ...×(0)
and

(0, ..., 1, ...0, a1, 0, ..., 0)...(0, ..., 1, ...0, an−1, 0, ..., 0)(M1 × ... ×Mi × ... ×Mj × ... ×Mn) 6⊆ (0) × ... ×
(0) × ... × X × ...(0) as Mi 6= (0). Since Q is an (n − 1, n)-weak second submodule of M , we have
a1...an−1 ∈ annRj

(Qj) or (a1...ak−1ak+1...an−1)Qj ⊆ X for some k ∈ {1, ..., n − 1}. Thus Qj is a strongly
(n− 1)-absorbing second submodule of Mj . The proof for j < i can be seen as a similar way.
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Note that the previous theorem is still valid under the condition that "every proper ideal of R is (n− 1, n)-
weakly prime of R".

In the following theorem, we give a characterization of simple modules in terms of (n− 1, n)-weak second
submodules.

Theorem 2.10. Let n ≥ 2, R = R1× ...×Rn and M =M1× ...×Mn where Ri is a ring and Mi is a non-zero
Ri-module for all i = 1, ..., n. The following statements are equivalent:

(i) Every non-zero submodule of M is (n− 1, n)-weak second submodule.
(ii) Mi is a simple Ri-module for each i ∈ {1, ..., n}.

Proof. (i) =⇒ (ii) : Assume that M1 is not a simple R1-module. So there exists a non-zero proper submodule
Q1 of M1. By hypothesis, the submodule Q = Q1 ×M2 × ...×Mn is an (n− 1, n)-weak second submodule
of M . We have

(1, 0, ..., 0)(Q1 ×M2 × ... ×Mn) = (1, 0, 1, ..., 1)(1, 1, 0, 1, ..., 1)...(1, 1, ..., 0)(Q1 ×M2 × ... ×Mn) ⊆
Q1 × (0)× ...× (0) and (1, 0, ..., 0)(M1 ×M2 × ...×Mn) = (1, 0, 1, ..., 1)(1, 1, 0, 1, ..., 1)...(1, 1, ..., 0)(M1 ×
M2 × ...×Mn) 6⊆ Q1 × (0)× ...× (0). Since Q is (n− 1, n)-weak second, we have two cases:

Case 1: (1, 0, ..., 0) ∈ annR(Q) which gives the contradiction that Q1 = (0)
Case 2: Mj = (0) for some j ∈ {2, ..., n} which is again a contradiction.
Thus M1 is a simple R1-module. By a similar argument, we can prove that Mj is a simple Rj-module for

all j ∈ {2, ..., n}.
(ii) =⇒ (i) : Suppose thatMi is a simpleRi-module for each i ∈ {1, ..., n}. LetN = N1×N2×. . .×Nn be

a nonzero submodule ofM andK = K1×K2×. . .×Kn be a submodule ofM. Take xi = (ai1, ai2, . . . , ain) ∈
R for i = 1, 2, . . . , n − 1 such that x1x2 . . . xn−1N ⊆ K and x1x2 . . . xn−1M * K. We may assume that
N * K. Since Mi is a simple Ri-module for each i ∈ {1, ..., n} and N * K, we get Nt =Mt and Kt = 0 for
some t ∈ {1, ..., n − 1}. Thus we have (K : N) = (K1 : N1)× (K2 : N2)× . . . × annRt

(Mt)× . . . × (Kn :
Nn). Since Mi is simple, it is clear that annRi(Mi) is a prime ideal of Ri. Also, note that (Ki : Ni) is either
Ri or annRi

(Mi). If (Ki : Ni) = Ri for all i 6= t, then (K : N) = R1 × R2 × . . . × annRt
(Mt) × . . . ×

Rn is a prime ideal so is (n − 2)-absorbing. This implies that there exists i ∈ {1, 2, . . . , n − 1} such that
x1x2 . . . xi−1xi+1 . . . xn−1 ∈ (K : N), namely x1x2 . . . xi−1xi+1 . . . xn−1N ⊆ K. If (Ki : Ni) 6= Ri for all
i 6= t, then Ni 6⊆ Ki for all i (1 ≤ i ≤ n}. Since Mi is a simple Ri-module, Ki = (0) for all i (1 ≤ i ≤ n).
ThusK = (0) and so x1...xn−1 ∈ annR(N). If at least two of (Ki : Ni)’s equalRi, the (K :R N) is an (n−2)-
absorbing ideal of R by [2, Corollary 4.8 and Theorem 2.1]. Since x1x2 . . . xn−1 ∈ (K : N), there exists
i ∈ {1, 2, . . . , n − 1} such that x1x2 . . . xi−1xi+1 . . . xn−1 ∈ (K : N), namely x1x2 . . . xi−1xi+1 . . . xn−1N ⊆
K. Suppose only one of (Kj : Nj) equals Rj . Then, by using the simplicity of each Mi, one can show
that K = 0 × ...Kj × 0 × ... × 0 and N = M1 × ... × Nj × ... × Mn. Since x1x2 . . . xn−1N ⊆ K and
x1x2 . . . xn−1M * K, we can see that Kj 6= Mj . Thus Kj = (0) and so K = (0). This shows that
x1...xn−1 ∈ annR(N). Hence, N is an (n− 1, n)-weak second submodule of M .

Theorem 2.11. Let R = F1× ...×Fn and M =M1× ...×Mn where n ≥ 2, Fi is a field and Mi is a non-zero
Fi-vector space for each i ∈ {1, ..., n}. Every non-zero submodule of M is (2, 3)-weak second if and only if
dim(Mi) = 1 for all i ∈ {1, 2, 3}.

Proof. Note that a vector space Mi over a field Fi is a simple module if and only if dim(Mi) = 1. The rest
follows from Theorem 2.10.

Let M be an R-module and N , K be submodules of M . The coproduct of N and K is defined by (0 :M
annR(N)annR(K)) and it is denoted by C(NK) [5].

Recall from [7] that an R-module M is said to be fully coidempotent if N = C(N2) for every submodule
N of M .

Lemma 2.12. An R-module M is fully coidempotent if and only if N = (N :M annR(N)m) for every sub-
module N of M and positive integer m.

Proof. Suppose that M is a fully coidempotent R-module. Let N be a submodule of M and m be a positive
integer. It is sufficient to show that N = (N :M annR(N)). We have N = C(N2) = (0 :M annR(N)2).
Also, N ⊆ (0 :M annR(N)) implies that (N :M annR(N)) ⊆ ((0 :M annR(N)) :M annR(N)) = (0 :M
annR(N)2) = N and so (N :M annR(N)) ⊆ N . Since the other inclusion always holds we have (N :M
annR(N)) = N and hence N = (N :M annR(N)m) for all m ≥ 1.

Conversely, suppose that N = (N :M annR(N)m) for every submodule N of M and positive integer m.
Then N = (N :M annR(N)). We have

C(N2) = (0 :M annR(N)2) ⊆ (N :M annR(N)2) = ((N :M annR(N)) :M annR(N)) = (N :M
annR(N)) = N . Thus we get that C(N2) ⊆ N and so N = C(N2).
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Theorem 2.13. Let R = R1 × ...×Rn and M =M1 × ...×Mn where Ri is a ring, 0 6=Mi is an Ri-module
for all i ∈ {1, ..., n} and n ≥ 2. Then every non-zero submodule of M is (n − 1, n)-n-almost second if and
only if M is a fully coidempotent R-module.

Proof. (⇐=) Clear.
(=⇒) Suppose that every non-zero submodule of M is (n− 1, n)-n-almost second. It is sufficient to show

that Mi is a fully coidempotent Ri-module for each i ∈ {1, ..., n}. Suppose on the contrary that M1 is not fully
coidempotent. So there exists a submodule N1 of M1 such that (N1 :M1 annR1(N1)n−1) 6⊆ N1. By hypothesis,
N := N1 ×M2 × ...×Mn is (n− 1, n)-n-almost second submodule of M . We have

(1, 0, ..., 0)N = (1, 0, 1, ..., 1)(1, 1, 0, 1, ..., 1)...(1, 1, ..., 1, 0)N ⊆ N1 × (0)× ...× (0)

and (1, 0, 1, ..., 1)(1, 1, 0, 1, ..., 1)...(1, 1, ..., 1, 0)(N :M annR(N)n−1) 6⊆ N1 × (0) × ... × (0). Since N is
(n − 1, n)-n-almost second, we have 1 ∈ annR1(N1) or Mi = (0) for some i ∈ {2, ..., n} which are both
contradictions. Similarly, Mi is a fully coidempotent Ri-module for each i ∈ {2, ..., n}. This implies that M
is a fully coidempotent R-module.

Theorem 2.14. Let m,n be positive integers with 3 ≤ m < n, R = R1 × ... × Rm and M = M1 × ... ×Mm

where Ri is a ring and Mi is a non-zero Artinian Ri-module for each i ∈ {1, ...,m}. Let Ji denote the
Jacobson radical of Ri for each i ∈ {1, ...,m}. If every non-zero submodule of M is (n− 1, n)-weak second,
then Jn−m

i Mi = (0) for each i ∈ {1, ...,m}.

Proof. Assume that Jn−m
1 M1 6= (0). Then there exist a1, ..., an−m ∈ J1 such that a1...an−mM1 6= (0). By

hypothesis, Q = (0 :M1 a1...an−mR1) ×M2 × ... ×Mm is an (n − 1, n)-weak second submodule of M . We
have
(a1...an−m, 0, ..., 0, 1)Q = (a11, ..., a1m)...(a(n−1)1, ...a(n−1)m)(0 :M1 a1...an−mR)×M2 × ...×Mm ⊆ (0)×
(0)× ...×Mm and (a11, ..., a1m)...(a(n−1)1, ...a(n−1)m)M1× ...×Mm 6⊆ (0)× (0)× ...×Mm where ak1 = ak
for 1 ≤ k ≤ n−m, a(n−m+t)(t+1) = 0 for 1 ≤ t ≤ m− 2, in other places aij = 1. Since Q is (n− 1, n)-weak
second, we get the following three cases:

Case 1: (a1...an−m, 0, ..., 0, 1) ∈ annR(Q) which gives the contradiction that Mm = (0).
Case 2: Mj = (0) for some 2 ≤ j ≤ m− 1 which is a contradiction.
Case 3: a1...aj−1aj+1...an−m(0 :M1 a1...an−m) = (0) which implies that (0 :M1 a1...aj−1aj+1...an−mR1) =

(0 :M1 a1...aj−1ajaj+1...an−mR1) = ((0 :M1 a1...aj−1aj+1...an−m) :M1 ajR). Since M1 is an Artinian
R1-module and ajR ⊆ J1, [28, Proposition 3.5] implies that M1 = (0 :M1 a1...aj−1aj+1...an−mR1), i.e.,
a1...aj−1aj+1...an−mM1 = (0), a contradiction. Thus Jn−m

1 M1 = (0). By a similar argument, we can prove
that Jn−m

i Mi = (0) for each i ∈ {2, ...,m}.

Let (R,Q) be a local ring andM be anR-module. If t is the smallest positive integer such thatQtM = (0),
then t is called the associated degree of M . If QtM 6= (0), for all t ≥ 1, then the associated degree of M is
defined as∞ [25].

Theorem 2.15. Let m ≥ 1 be a positive integer, R = R1× ...×Rm and M =M1× ...Mm where (Ri, Qi) is a
local ring, Mi is an Ri-module and the associated degree of Mi is ti for all i ∈ {1, ...,m}. If

∑m
i=1 ti ≤ n− 1,

then every non-zero submodule of M is (n− 1, n)-weak second where n ≥ 2.

Proof. Let N = N1× ...×Nm be a non-zero submodule of M where Ni is a submodule of Mi for 1 ≤ i ≤ m.
Let (a11, ..., a1m)...(a(n−1)1, ..., a(n−1)m)N ⊆ K1 × ... × Km and (a11, ..., a1m)...(a(n−1)1, ..., a(n−1)m)M 6⊆
K1 × ...×Km where aij ∈ Rj , Kj ≤Mj for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m. Then there exists j ∈ {1, ...,m}
such that (

∏n−1
k=1 akj)Mj 6⊆ Kj . Since Qtj

j Mj = (0), there exist at most tj − 1 elements of {a1j , ..., a(n−1)j}
that are nonunits in Rj . So we need at most tj − 1 parentheses such that the product of their j th components
with Nj is in Kj . Let i 6= j. We have Qti

i Mi = (0). If there exist ti elements of {a1i, ..., a(n−1)i} that are
nonunits in Ri, then the product of these elements is zero and we need ti parentheses such that the product of
their i th components with Ni is in Ki. If there exist less than ti elements that are nonunits in Ri, then we need
less than ti parentheses such that the product of their i th components with Ni is in Ki. Thus we need at most
(tj − 1) +

∑m
i 6=j,i=1ti =

∑m
i=1 ti − 1 parentheses such that their product with N is in K1 × ... ×Km. Since∑m

i=1 ti ≤ n− 1, we conclude that N is (n− 1, n)-weak second.

Corollary 2.16. Letm < n be two positive integers,R = F1×...×Fm andM =M1×...Mm where Fi is a field
and Mi is an Fi-vector space for all i ∈ {1, ...,m}. Then every non-zero submodule of M is (n − 1, n)-weak
second where n ≥ 2.

Proof. The associated degree of Mi is ti := 1 for all i ∈ {1, ...,m}. Thus
∑m

i=1 ti = m ≤ n− 1. By Theorem
2.15, every non-zero submodule of M is (n− 1, n)-weak second.
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3 (2,3)-ϕ-second Submodules

In this section we focus on (2, 3)-ϕ-second submodules and investigate their various properties and relaton-
ships with other concepts.

Recall from [34] that R is called a u-ring provided R has the property that an ideal contained in a finite
union of ideals must be contained in one of those ideals. A um-ring is a ring R with the property that an
R-module which is equal to a finite union of submodules must be equal to one of them.

Lemma 3.1. [33, Lemma 2.40]A ring R is a um-ring if and only if M ⊆ ∪ni=1Mi where Mi’s are some
R-modules, implies that M ⊆Mi for some 1 ≤ i ≤ n.

Theorem 3.2. Let R be a um-ring, M be an R-module and N be a non-zero submodule of M . Then the
following are equivalent.

(1) N is a (2, 3)-ϕ-second submodule of M .
(2) If ab 6∈ annR(N) for a, b ∈ R, then abN = aN or abN = bN or abN = abϕ(N).
(3) If aN 6⊆ K for a ∈ R and a submodule K of M , then (K :R aN) = (K :R N) or (K :R aN) =

annR(aN) or (K :R aN) = (K :R aϕ(N)).
(4) If aIN ⊆ K and aIϕ(N) 6⊆ K for a ∈ R, any ideal I of R and any submodule K of M , then aN ⊆ K

or IN ⊆ K or aI ⊆ annR(N).
(5) If IN 6⊆ K for any ideal I of R and any submodule K of M , then (K :R IN) = (K :R N) or

(K :R IN) = annR(IN) or (K :R IN) = (K :R Iϕ(N)).
(6) If IJN ⊆ K and IJϕ(N) 6⊆ K for any ideals I , J of R and any submodule K of M , then IN ⊆ K or

JN ⊆ K or IJ ⊆ annR(N).

Proof. (1)⇐⇒ (2) By Theorem 2.3.
(1) =⇒ (3) Let aN 6⊆ K for a ∈ R and any submodule K of M . Let b ∈ (K :R aN). Then abN ⊆ K.

If abϕ(N) ⊆ K, then b ∈ (K :R aϕ(N)). If abϕ(N) 6⊆ K, then bN ⊆ K or ab ∈ annR(N). It follows that
b ∈ (K :R N) or b ∈ annR(aN). Thus (K :R aN) = (K :R aϕ(N)) ∪ (K :R N) ∪ annR(aN). Since R is a
um-ring, we have (K :R aN) = (K :R N) or (K :R aN) = annR(aN) or (K :R aN) = (K :R aϕ(N)).

(3) =⇒ (4) Let aIN ⊆ K and aIϕ(N) 6⊆ K for a ∈ R, any ideal I of R and any submodule K of M . If
aN ⊆ K, then we are done. Let aN 6⊆ K. By (3), (K :R aN) = (K :R N) or (K :R aN) = annR(aN) or
(K :R aN) = (K :R aϕ(N)). In the first case, we have IN ⊆ K. In the second case, Ia ⊆ annR(N). The
third case cannot hold since aIϕ(N) 6⊆ K.

(4) =⇒ (5) Let IN 6⊆ K where I is an ideal of R and K is a submodule of M . Let a ∈ (K :R IN). Then
aIN ⊆ K. If aIϕ(N) ⊆ K, then a ∈ (K :R Iϕ(N)). If aIϕ(N) 6⊆ K, then aN ⊆ K or aI ⊆ annR(N).
In the first case a ∈ (K :R N). In the second case a ∈ annR(IN). Thus (K :R IN) = (K :R N) ∪
annR(IN) ∪ (K :R Iϕ(N)). Since R is a um-ring, (K :R IN) = (K :R N) or (K :R IN) = annR(IN) or
(K :R IN) = (K :R Iϕ(N)).

(5) =⇒ (6) Let IJN ⊆ K and IJϕ(N) 6⊆ K where I , J are ideals of R and K is a submodule of M .
If IN ⊆ K, then we are done. Let IN 6⊆ K. Then, by (5), (K :R IN) = (K :R N) or (K :R IN) =
annR(IN) or (K :R IN) = (K :R Iϕ(N)). In the first case, we have JN ⊆ K. In the second case we have
IJ ⊆ annR(N).

(6) =⇒ (1) Clear.

Definition 3.3. Let M be an R-module, N be a (2, 3)-ϕ-second submodule of M , K be a submodule of M
and a, b ∈ R. If abϕ(N) ⊆ K, ab 6∈ annR(N), aN 6⊆ K and bN 6⊆ K, then (a, b,K) is called a ϕ-triple of N .

Theorem 3.4. Let N be a (2, 3)-ϕ-second submodule of an R-module M and (a, b,K) be a ϕ-triple of N for
some a, b ∈ R and a submodule K of M . Then

(1) abϕ(N) ⊆ N .
(2) a(annR(N))ϕ(N) ⊆ K.
(3) b(annR(N))ϕ(N) ⊆ K.
(4) (annR(N))2ϕ(N) ⊆ K.
(5) a(annR(N))ϕ(N) ⊆ N .
(6) b(annR(N))ϕ(N) ⊆ N .

Proof. (1) Suppose that abϕ(N) 6⊆ N . Then abϕ(N) 6⊆ N ∩ K and abN ⊆ N ∩ K. Since N is (2, 3)-ϕ-
second submodule, we have ab ∈ annR(N) or aN ⊆ N ∩K ⊆ K or bN ⊆ N ∩K ⊆ K which contradicts
the assumption that (a, b,K) is a ϕ-triple of N .

(2) Suppose that a(annR(N))ϕ(N) 6⊆ K. Then axϕ(N) 6⊆ K for some x ∈ annR(N). Then a(b +
x)ϕ(N) 6⊆ K because abϕ(N) ⊆ K. Also, a(b+ x)N = abN ⊆ K. Since N is (2, 3)-ϕ-second submodule,
we have a(b+ x) ∈ annR(N) or aN ⊆ K or (b+ x)N = bN ⊆ K. The first case implies that ab ∈ annR(N)
which is a contradiction. Clearly, the other two cases contradict with the hypothesis.
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(3) The proof is similar to part (2).
(4) Suppose that x1x2ϕ(N) 6⊆ K for some x1, x2 ∈ annR(N). Then parts (2) and (3) imply that (a +

x1)(b+ x2)ϕ(N) 6⊆ K. Clearly, (a+ x1)(b+ x2)N = abN ⊆ K. Since N is (2, 3)-ϕ-second submodule, we
have (a+x1)(b+x2) ∈ annR(N) or (a+x1)N = aN ⊆ K or (b+x2)N = bN ⊆ K which are contradictions.

(5) Suppose that a(annR(N))ϕ(N) 6⊆ N . Then there exists x ∈ annR(N) such that axϕ(N) 6⊆ N .
By part (1), a(b + x)ϕ(N) 6⊆ N ∩ K and a(b + x)N ⊆ N ∩ K. Since N is (2, 3)-ϕ-second submodule,
we have a(b + x) ∈ annR(N) or aN ⊆ K or (b + x)N = bN ⊆ K which are contradictions. Thus
a(annR(N))ϕ(N) ⊆ N .

(6) The proof is similar to part (5).

Theorem 3.5. Let M be an R-module and N be a (2, 3)-ϕ-second submodule of M which is not strongly
2-absorbing second submodule. Then annR(N)2ϕ(N) ⊆ N .

Proof. Let N be a (2, 3)-ϕ-second submodule of M which is not strongly 2-absorbing second submodule.
Then there exists a ϕ-triple (a, b,K) of N for some a, b ∈ R and a submodule K of M . Suppose that
(annR(N))2ϕ(N) 6⊆ N . Hence there exist x1, x2 ∈ annR(N) such that x1x2ϕ(N) 6⊆ N . Then (a+ x1)(b+
x2)ϕ(N) 6⊆ K ∩ N by Theorem 3.4. Also, clearly, (a+ x1)(b+ x2)N = abN ⊆ K ∩ N . Since N is (2, 3)-
ϕ-second submodule of M , we have (a + x1)(b + x2) ∈ annR(N) or (a + x1)N = aN ⊆ K ∩ N ⊆ K or
(b+ x2)N = bN ⊆ K ∩N ⊆ K which are contradictions.

Let M be an R-module. We define the function ϕω : S(M) −→ S(M) as ϕω(L) =
∑

i∈Z+(L :M
annR(L)i) for every L ∈ S(M).

Corollary 3.6. Let M be an R-module and N be a (2, 3)-ϕ-second submodule of M such that (N :M
annR(N)3) ⊆ ϕ(N). Then N is (2, 3)-ϕω-second submodule of M .

Proof. If N is a strongly 2-absorbing second submodule of M , then the result is clear. So we may assume
that N is not a strongly 2-absorbing second submodule of M . Therefore, by Theorem 3.5, we have (N :M
annR(N)3) ⊆ ϕ(N) ⊆ (N :M annR(N)2) ⊆ (N :M annR(N)3), that is, ϕ(N) = (N :M annR(N)2) =
(N :M annR(N)3). It follows that ϕ(N) = (N :M annR(N)j) for all j ≥ 2 and the result follows.

Recall from [4] that an R-module M is said to be a comultiplication module if for every submodule N of
M there exists an ideal I of R such that N = (0 :M I). It also follows that M is a comultiplication module if
and only if N = (0 :M annR(N)) for every submodule N of M [4].

Corollary 3.7. Let M be a comultiplication R-module and N be a submodule of M . Then the following hold.
(1) IfN is a (2, 3)-ϕ-second submodule ofM that is not strongly 2-absorbing second, then ϕ(N) ⊆ C(N3).
(2) If n ≥ 3 is an integer and N is a (2, 3)-n-almost second submodule of M that is not strongly 2-

absorbing second, then C(N3) = C(Nn).

Proof. (1) SinceM is comultiplication,N = (0 :M annR(N)). By Theorem 3.5, ϕ(N) ⊆ (N :M annR(N)2) =
((0 :M annR(N)) :M annR(N)2) = (0 :M annR(N)3) = C(N3) and hence ϕ(N) ⊆ C(N3).

(2) Notice that ϕn(N) = (N :M annR(N)n−1) = (0 :M annR(N)n) = C(Nn). By part (1), C(Nn) ⊆
C(N3). Since the reverse inclusion always holds we have C(N3) = C(Nn).

Let M be an R-module and N be a submodule of M . The sum of all second submodules of N is called the
second radical of N and denoted by sec(N). If there is no second submodule of N , then we define sec(N) = 0
[16].

Corollary 3.8. Let M be an R-module and N be a (2, 3)-ϕ-second submodule of M that is not strongly 2-
absorbing second. Then the following hold.

(1)
√
annR(N) =

√
annR(ϕ(N)).

(2) If M is a finitely generated R-module, then sec(N) = sec(ϕ(N)).

Proof. (1) By Theorem 3.5, annR(N)2ϕ(N) ⊆ N . Then annR(N)3 ⊆ annR(ϕ(N)) and so
√
annR(N) ⊆√

annR(ϕ(N)). Since the reverse inclusion always holds we have the equality.
(2) By [10, Theorem 2.12], sec(N) = (0 :M

√
annR(N)) and by part (1), sec(N) = (0 :M

√
annR(ϕ(N))) =

sec(ϕ(N)).

Definition 3.9. Let N be a (2, 3)-ϕ-second submodule of an R-module M and suppose that IJN ⊆ K for
some ideals I, J of R and a submodule K of M . We call N as a free ϕ-triple with respect to I, J,K if (a, b,K)
is not a ϕ-triple of N for each a ∈ I, b ∈ J.
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Theorem 3.10. Let N be a (2, 3)-ϕ-second submodule of M and suppose that IJN ⊆ K, IJϕ(N) 6⊆ K for
some ideals I, J of R and a submodule K of M such that N is a free ϕ-triple with respect to I, J,K. Then
IJ ⊆ annR(N) or IN ⊆ K or JN ⊆ K.

Proof. Suppose that IJ 6⊆ annR(N). We show that IN ⊆ K or JN ⊆ K. Assume on the contrary that
IN 6⊆ K and JN 6⊆ K. Then there exist a1 ∈ I and b1 ∈ J such that a1N 6⊆ K and b1N 6⊆ K. If
a1b1ϕ(N) 6⊆ K, then a1b1 ∈ annR(N) as N is (2, 3)-ϕ-second submodule. If a1b1ϕ(N) ⊆ K, then again
a1b1 ∈ annR(N) as (a1, b1,K) is not a ϕ-triple of N . Since IJ 6⊆ annR(N), there are a ∈ I and b ∈ J such
that ab 6∈ annR(N). Since (a, b,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule, we have
aN ⊆ K or bN ⊆ K. There are three cases.

Case 1: Suppose that aN ⊆ K but bN 6⊆ K. We have a1bN ⊆ K. Since (a1, b,K) is not a ϕ-triple of
N and N is a (2, 3)-ϕ-second submodule, we have a1b ∈ annR(N). Also, we have (a+ a1)bN ⊆ K. Since
(a + a1, b,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule, we have (a + a1)b ∈ annR(N)
which gives the contradiction that ab ∈ annR(N) or (a + a1)N ⊆ K which gives the contradiction that
a1N ⊆ K.

Case 2: Suppose that bN ⊆ K but aN 6⊆ K. We have ab1N ⊆ K. Since (a, b1,K) is not a ϕ-triple of
N and N is a (2, 3)-ϕ-second submodule, we have ab1 ∈ annR(N). Also, we have a(b + b1)N ⊆ K. Since
(a, b+ b1,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule, a(b+ b1) ∈ annR(N) which gives
the contradiction that ab ∈ annR(N) or (b+ b1)N ⊆ K which gives the contradiction that b1N ⊆ K.

Case 3: Suppose that aN ⊆ K and bN ⊆ K. Then (b+b1)N 6⊆ K as b1N 6⊆ K. We have a1(b+b1)N ⊆ K.
Since (a1, b + b1,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule, we have a1(b + b1) ∈
annR(N). Since a1b1 ∈ annR(N), we have a1b ∈ annR(N). Also, (a + a1)N 6⊆ K since a1N 6⊆ K. We
have (a + a1)b1N ⊆ K. Since (a + a1, b1,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule,
(a+ a1)b1 ∈ annR(N) and so ab1 ∈ annR(N). On the other hand, we have (a+ a1)(b+ b1)N ⊆ K. Since
(a+ a1, b+ b1,K) is not a ϕ-triple of N and N is a (2, 3)-ϕ-second submodule, (a+ a1)(b+ b1) ∈ annR(N)
which gives the contradiction that ab ∈ annR(N).

Proposition 3.11. Let R = R1 ×R2 and M =M1 ×M2 where Ri is a ring, Mi is an Ri-module for i = 1, 2.
Let ψi : S(Mi) −→ S(Mi) be a function for each i = 1, 2 and ϕ = ψ1 × ψ2. Suppose that N = N1 × (0)
where N1 is a non-zero submodule of M1.

(1) If ψ2((0)) = (0), then N is a (2, 3)-ϕ-second submodule of M if and only if N1 is a (2, 3)-ψ1-second
submodule of M1.

(2) If ψ2((0)) 6= (0), then N is a (2, 3)-ϕ-second submodule of M if and only if N1 is a strongly 2-
absorbing second submodule of M1.

Proof. (1) Suppose that N is a (2, 3)-ϕ-second submodule of M . Let a1b1N1 ⊆ K1 and a1b1ψ1(N1) 6⊆ K1
for a1, b1 ∈ R1 and K1 ≤ M1. Then (a1, 1)(b1, 1)(N1 × (0)) ⊆ K1 × (0) and (a1, 1)(b1, 1)ϕ(N1 × (0)) 6⊆
K1 × (0). Since N is a (2, 3)-ϕ-second submodule of M , we get that (a1, 1)(N1 × (0)) ⊆ K1 × (0) or
(b1, 1)(N1 × (0)) ⊆ K1 × (0) or (a1, 1)(b1, 1) ∈ annR(N1 × (0)) = annR1(N1) × R2. Thus a1N1 ⊆ K1 or
b1N1 ⊆ K1 or a1b1 ∈ annR1(N1) and so N1 is a (2, 3)-ψ1-second submodule of M1.

Conversely, suppose that N1 is a (2, 3)-ψ1-second submodule of M1. Let a = (a1, a2), b = (b1, b2) ∈
R1 × R2 and K = K1 ×K2 be a submodule of M1 ×M2 where Ki is a submodule of Mi for each i = 1, 2.
Suppose that abN ⊆ K and abϕ(N) 6⊆ K. Since ψ2((0)) = (0), we have a1b1N1 ⊆ K1 and a1b1ψ1(N1) 6⊆ K1.
Since N1 is a (2, 3)-ψ1-second submodule of M1, we have a1b1 ∈ annR1(N1) or a1N1 ⊆ K1 or b1N1 ⊆ K1.
Then we get that ab = (a1b1, a2b2) ∈ annR1(N1)× R2 = annR(N) or aN = (a1, a2)(N1 × (0)) ⊆ K1 ×K2
or bN = (b1, b2)(N1 × (0)) ⊆ K1 ×K2. Thus N is a (2, 3)-ϕ-second submodule of M .

(2) Suppose that N is a (2, 3)-ϕ-second submodule of M . Let a1b1N1 ⊆ K1 for a1, b1 ∈ R1 and K1 ≤M1.
Then (a1, 1)(b1, 1)(N1 × (0)) ⊆ K1 × (0) and (a1, 1)(b1, 1)(ψ1(N1) × ψ2((0))) = (a1, 1)(b1, 1)ϕ(N) 6⊆
K1 × (0). Since N is a (2, 3)-ϕ-second submodule of M , we get that (a1, 1)(N1 × (0)) ⊆ K1 × (0) or
(b1, 1)(N1 × (0)) ⊆ K1 × (0) or (a1, 1)(b1, 1) ∈ annR(N1 × (0)) = annR1(N1) × R2. Thus a1N1 ⊆ K1 or
b1N1 ⊆ K1 or a1b1 ∈ annR1(N1) and so N1 is a strongly 2-absorbing second submodule of M1.

Conversely, assume thatN1 is a strongly 2-absorbing second submodule ofM1. ThenN1×(0) is a strongly
2-absorbing second submodule of M . Hence N is a (2, 3)-ϕ-second submodule of M .
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