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Abstract This study belongs to a class of high order recurrent neural networks differen-
tial equations with variable delays. With the help of theory of weighted pseudo almost peri-
odic(WPAP) functions and some differential inequalities, we investigate the existence of the
solutions of the considered model and the exponential stability of these solutions. An example
is given as an application of these results.

1 Introduction

Recurrent neural networks are class of artificial neural networks in which connections between
units form a directed loop. RNNs are feed-forward neural networks powered by the addition of
edges extending over adjacent time steps, which brings the concept of time to the normal neural
network model. Recently, In recent years, the fact that repetitive neural networks (RNNs) have
application fields such as signal processing and relational memory in science and engineering
have led many researchers to investigate their dynamic properties such as stability, oscillations,
periodicity, almost and pseudo almost periodicity of solutions [7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18]. These types of dynamic behaviors have been extensively studied, especially first
order neural networks [[7, 8, 9, 10, 11, 12]]. We will take account of the high-order term that
attracts many researchers because of its impressive computing, storage and learning capabilities,
stronger approach features and faster convergence rate, and higher error tolerance compared to
first order [20, 22, 23, 24]. Diagana [5] introduced to the literature of the weighted pseudo almost
Periodic (WPAP) functions class is a wider class of almost periodic and pseudo almost periodic
functions. As far as we know, there is no study related to WPAP solutions of the following
HORNNs with mixed variable delays and initial condition:

x′i(t) = −ςi(t)xi(t) +
n∑
j=1

bij(t)Bj(xj(t)) +
n∑
j=1

cij(t)Cj(xj(q1(t))

+
n∑
j=1

pij(t)

∫ t

−∞
Ki j (t − s) qj(xj(s))ds+ Ji(t) (1.1)

+
n∑
j=1

n∑
k=1

Wijk(t)Rk(xk(t))
_

Rj(xj(t)) +
n∑
j=1

n∑
k=1

Tijk(t)Qk(xk(q2(t))
_

Qj(xj(q3(t)),

where q1(t) = t− τij(t), q2(t) = t− ρijk(t) and q3(t) = t− σijk(t).

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, ..., n. (1.2)

where n ≥ 2 defines the number of units in the system, xi(t) denotes to the neuron i at time t,

the ςi is positive decay rate. In addition, Bj , Cj , qj , Rk,
_

Rk, Qk and
_

Qk are bounded continuous
functions and the activation of the i th neurons,cij(t),bij(t),pij(t) and, Tijk(t),Wijk(t)can be
found in [25], Ji(t) is the external input unit i and τi(t), ρijk(t) and σijk(t)are the transmission
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variable delays at time t. Being motivated with the above discussions, in this paper, we try to get
some results for WPAP solutions of system (1.1).

2 Preliminaries

Let BC(R,R) denotes collection of bounded continuous functions, BC(R,R)is exact space
with norm ‖ω‖∞ = supt∈R |ω(t)| . We use the notations

ω+ = supt∈R |ω(t)| , ω
− = inft∈R |ω(t)| ,

where ω(t) ∈ BC(R,R).
We now give some basic information.

Definition 2.1. [1] A complex valued function γ(x) defined for −∞ < x < ∞ is called almost
periodic, if for any ε > 0, there exists a trigonometric polynomial Qε(x)such that

|γ(x)−Qε(x)| < ε.

Let Λ denotes the set of functions (weight) υ(t) ∈ R, which are locally integrable functions.
If υ ∈ Λ, then we set

η(Qr) :=
∫
Qr

υ(x)dx,Q := [−r, r].

The space of weights Λ∞ is given by

Λ∞ :=
{
υ ∈ Λ : inf

x∈R
υ(x) = υ0 > 0 and lim

r→∞
υ(Qr) =∞

}
.

Definition 2.2. [5] Let υ ∈ Λ∞. A function f ∈ BC(R,R) is called WPAP function if it can be
expressed as

f = f1 + f2,

where f1 ∈ AP (R) and f2 ∈ PAP0(R,R, υ). PAP0(R,R, υ) is defined by

PAP0(R, υ) =

{
f2 ∈ BC(R,R) : lim

r→∞

1
υ([−r, r])

∫ r

−r
‖f2(t)‖ υ(t)dt = 0

}
.

Lemma 2.3. [26] Fix υ ∈ Λ∞. Assume that for anys ∈ R,

lim
|t|→∞

υ(s+ t)

υ(t)
<∞.

Then PAP (R,R, υ) is translation invariant.

In view of Lemma 2.3, we give the translation invariant class of WPAP functions as follows:

Λ
Inv
∞ :=

{
υ ∈ Λ∞ : lim

|t|→∞

υ(t+ s)

υ(t)
is finite, ,for all s ∈ R

}
.

In the light of this information, for any υ ∈ ΛInv
∞ , PAP (R,R, υ) is Banach space.

Lemma 2.4. [22] Let υ ∈ ΛInv
∞ . If, ϑ(t) ∈ C1(R,R), ι(t) ∈ [0,∞), ι′(t) ∈ (−∞, 1], u(t) ∈PAP (R, υ),

then u(t− ι(t)) ∈ PAP (R,R, υ).

The following conditions are given for our main results:
(N0) Bj , Cj , Rj ,

_

Rj , hj , Qj and Qj are global Lipschitz functions with Lipschitz constants

respectively LBj , LCj , LRj , L
_
R
j , L

h
j , L

Q
j and L

_
Q
j

(N1) For all u ∈ R, τ ′ij , ρ′ijk, σ′ijk ∈ (−∞, 1] and

M [ςi] = lim
T→+∞

1
T

∫ t+T

t

ςi(u)du > 0,
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Kij(t) is nonnegative WPAP function and it satisfies

∫ +∞

0
Kij(s)ds = 1, for all 1 ≤ i, j ≤ n.

(N2) ηi > 0 and ξi > 0 constants, the following inequality should be achieved

sup
t∈R
{−ς−i (t) +

 n∑
j=1

ξ−1
i bij(t)L

B
j ξ
−1
j +

n∑
j=1

cij(t)L
C
j ξ
−1
j

+
n∑
j=1

ξ−1
i pij(t)L

h
jKi jξ

−1
j

+ξ−1
i

n∑
j=1

n∑
k=1

(
Wijk(t)ξ

−1
j LRk L

_
R
j + Tijk(t)ξ

−1
k LQk L

_
Q
j

)
} < −πi < 0,

(N3)

supT>0

{∫ T

−T
e−ς

−(T+t)υ(t)dt

}
<∞.

3 MAIN RESULTS

Lemma 3.1. For i, j, k ∈ N if xi(t) ∈ PAP (R,R, υ), then
n∑
j=1

bij(t)Bj(xj(t)),
n∑
j=1

cij(t)Cj(xj(q1(t)),
n∑
j=1

pij(t)
∫ t
−∞Ki j (t − s)hj(xj(t))ds,

n∑
j=1

n∑
k=1

Wijk(t)Rk(xk(t))
_

Rj(xj(t)),

n∑
j=1

n∑
k=1

Tijk(t)Qk(xk(q2(t))
_

Qj(xj(q3(t)) ∈ PAP (R,R, υ).

Lemma 3.2. 2 Define a nonlinear operator P as

(Pϕ) (t) =

∫ t

−∞
e−

∫ t
s
ςi(u)du[

n∑
j=1

bij(v)Bj(ϕj(v))ξ
−1
i +

n∑
j=1

cij(v)Cj(ϕj(q1(t))ξ
−1
i

+
n∑
j=1

ξ−1
i

∫ v

−∞
Ki j (s− v)hj(ϕj(s))pij(v)ds+ ξ−1

i

n∑
j=1

n∑
k=1

Wijk(v)Rkϕk(v))
_

Rj(ϕj(v))

+
n∑
j=1

n∑
k=1

Tijk(v)Qk(ϕk(q2(t))
_

Qj(ϕj(q3(t)) + ξ−1
i Ji(v)]dvξ

−1
i , ϕ ∈ PAP (R,R, υ).

Then Pϕ ∈ PAP (R,R, υ).

Proof. If conditions (N0)− (N3) are checked, ϕ ∈ BC(R,R)can be easily appeared. According
to Definition 2.2 and Lemma 3.1, there are A1

j(t) ∈ AP (R,R)and A2
j(t) ∈ PAP0(R,R, υ) such
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that

A1
j(t) +A2

j(t) = ξ−1
i sup

t∈R

∣∣∣∣∣∣
n∑
j=1

bij(t)Bj(ϕj(t)) +
n∑
j=1

cij(t) Cj(ϕ(q1(t))

+
n∑
j=1

pij(t)

∫ t

−∞
hj(ϕj(s))Ki j (t − s)ds+

n∑
j=1

n∑
k=1

Wijk(t)Rkϕk(t))
_

Rj(ϕj(t))

+
n∑
j=1

n∑
k=1

Tijk(t)Qk(ϕk(q2(t))
_

Qj(q3(t)) + Ji(t)

∣∣∣∣∣∣
≤ sup ξ−1

i
t∈R

 n∑
j=1

|bij(t)|LBj ξ−1
j +

n∑
j=1

cij(t)L
C
j ξ
−1
j

+
n∑
j=1

pij(t)L
h
jKi jξ

−1
j

+
n∑
j=1

n∑
k=1

(
Wijk(t)ξ

−1
j LRk L

_
R
j + Tijk(t)ξ

−1
k LQk L

_
Q
k

) ∈ PAP (R,R, υ).
Considering (N1) and exponential dichotomy in [22], we can arrive∫ t

−∞
e−

∫ t
s
ςi(ξ)dξA1

j(s)ds ∈ AP (R,R),

which satisfies of the following differential equation

z′(t) + αi(t)z(t) = A1
j(t), i, j ∈ N.

Taking into account [21], one can see

lim
T→+∞

1∫ T
−T ρ(t)dt

T∫
−T

+∞∫
0

e−(ςi)
+ξ
∣∣A2

j(t− ξ)
∣∣ dξυ(t)dt = 0.

As a consequence of previous expressions, the following result occurs

0 ≤ lim
T→+∞

1∫ T
−T ρ(t)dt

T∫
−T

t∫
−∞

e−
∫ t
s
ςi(v)dv

∣∣A2
j(t)

∣∣ dsυ(t)dt

= lim
T→+∞

1∫ T
−T ρ(t)dt

T∫
−T

+∞∫
0

e−ς
−
i ξ
∣∣A2

j(t− ξ)
∣∣ dξυ(t)dt = 0.

This shows that ∫ t

−∞
e−

∫ t
s
ςi(ξ)dξA2

j(s)ds ∈ PAP0(R,R, υ).

Hence Pϕ ∈ PAP (R,R, υ).

We give our stability results by the following theorem.

Theorem 3.3. Assume that (N0) − (N3), then the (1.1) has a unique WPAP solution x(t) ∈
PAP (R,R, υ).

Proof. Let zi(t) = ξ−1
i xi(t), then system (1.1) turns into the following equation

z′i(t)− αi(t)ui(t) =
n∑
j=1

ξ−1
i cij(t)Cj(zj(q1(t))ξj) +

n∑
j=1

ξ−1
i bij(t)Bj(zj(t)ξj)
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+ξ−1
i

n∑
j=1

pij(t)

∫ t

−∞
hj(zj(t)ξj)Ki j (t − s)ds+

n∑
j=1

n∑
k=1

Wijk(t)Rk(zk(t)ξk)
_

Rj(zj(t)ξj)ξ
−1
i

+ξ−1
i

n∑
j=1

n∑
k=1

Tijk(t)
_

Qj(zj(q2(t))ξj)Qk(zk(q3(t))ξk) + Ji(t)ξ
−1
i .

For u, v ∈ PAP (R,R, υ), given (N0)− (N3), we have∣∣(Eu)i(t)− (Ev)i(t)
∣∣

= |
∫ t

−∞
e−

∫ t
s
ςi(u)du{

n∑
j=1

bij(s) [Bj(uj(s)ξj)−Bj(vj(s)ξj)] ξ−1
i

+
n∑
j=1

cij(s) [Cj(uj(q1(s))ξj)− Cj(vj(q1(s))ξj)] ξ
−1
i

+
n∑
j=1

pij(s)

∫ s

−∞
Ki j (s − r) [hj(uj(r)ξj)− hj(vj(r)ξj)]drξ−1

i

+
n∑
j=1

n∑
k=1

Wijk(s)
[
Rk(uk(s)ξk)

_

Rj(uj(s)ξj)−Rk(vk(s)ξk)
_

Rj(vj(s)ξj)
]
ξ−1
i

+
n∑
j=1

n∑
k=1

ξ−1
i Tijk(s)

[
Qk(uk(q2(s))ξk)

_

Qj(uj(q3(s))ξj)]
∣∣∣ ds

−
n∑
j=1

n∑
k=1

ξ−1
i Tijk(s)[Qk(vk(q2(s))ξk)

_

Qj(vj(q3(s))ξj)]ds

= |
∫ t

−∞
e
−

t∫
s

ςi(ξ)dξ
ξ−1
i

n∑
j=1

bij(s)[Bj(uj(s)ξj)−Bj(vj(s)ξj)]

+
n∑
j=1

cij(s) [Cj(uj(q1(s))ξj)− Cj(vj(q1(s))ξj)]ξ
−1
i

+
n∑
j=1

pij(s)

∫ s

−∞
Ki j (s − r) [hj(uj(r)ξj)− hj(vj(r)ξj)]drξ−1

i

+
n∑
j=1

n∑
k=1

Wijk(t)[Rk(uk(s)ξk)
_

Rj(uj(s)ξj)−Rk(uk(s)ξk)
_

Rj(vj(s)ξj)

+ Rk(uk(s)ξk)
_

Rj(vj(s)ξj)−Rk(vk(s)ξk)
_

Rj(vj(s)ξj)]ξ
−1
i

+ Qk(uk(q2(s))ξk)
_

Qj(vj(q3(s))ξj)−Qk(vk(q2(s))ξk)
_

Qj(vj(q3(s))ξj)}ds|

≤
∫ t

−∞
e
−

t∫
s

ς−i (ξ)dξ
{ξ−1
i

 n∑
j=1

∣∣bij(s)∣∣LBj +
n∑
j=1

|cij(s)|LCj +
n∑
j=1

|pij(s)|Ki jL
h
j

 ξj

+
n∑
j=1

n∑
k=1

|Wijk(s)|
(
Mg
kL

R
j ξj +Mg

j L
_
R
k ξk

)

+
n∑
j=1

n∑
k=1

|Tijk(s)|(Mg
j L

Q
k ξk +Mg

kL
_
Q
j ξj)ds}ξ

−1
i ‖u− v‖∞
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≤
∫ t

−∞
e−

∫ t
s
ς−i (ξ)dξ‖u− v‖∞[α

−
i (s)− πi]ds

≤ (

∫ t

−∞
e−

∫ t
s
ς−i (ξ)dξς−i (s)ds−

πi
2

∫ t

−∞
e−

∫ t
s
ς−i (ξ)dξds)‖u− v‖∞

≤ max
i∈N

{
1− πi

2ς+i

}
‖u− v‖∞ = c‖u− v‖∞.

Since c ∈ (0, 1), it is clear that the mapping E is a contraction. Thus, the mapping E possesses
a unique fixed point z = {zi(t)} ∈ PAP (R,R, υ) that is Ez = z. Besides, (1.1) has a unique
WPAP solution x = {xi(t)} = {ξizi(t)} ∈ PAP (R,R, υ).

Theorem 3.4. Suppose that Theorem 3.3 holds. Then WPAP solution of (1.1) is exponential
stable.

Proof. With a similar proof in Theorem 3.3 of [22], one can pick constants λ ∈ (0,min{κ,min
i∈N

ς−i })
and M =

∑n
j=1 Dj + 1 such that

sup
t∈R
{λ− ςi(t) +Di

 n∑
j=1

|bij(t)|LBj +
n∑
j=1

|cij(t)|MLC
j
eλτij(t)

+
n∑
j=1

|pij(t)|Lhj eλudv +
n∑
j=1

n∑
k=1

|Wijk(t)|
(
Mg
kL

R
j ξj +Mg

j L
_
R
k ξke

λσijk(t)

)

n∑
j=1

n∑
k=1

|Tijk(t)|
(
Mg
kL

_
Q
j ξje

λρijk(t) +Mg
j L

Q
k ξke

λσijk(t)

))
} < 0,

and

‖u(t)‖ < M ‖ϕ− x∗‖ e−λt,

which proves Theorem 3.4.

Example 3.5. Consider the following high order recurrent neural network differential equation
system

x′1(t) = −
(

1
20

+
3

40
cos t

)
x1(t) +

cos 2t
4000

(x1

(
t− (1 + cos 2t)

2

)
+ x2

(
t− (1 + cos 2t)

2

)
)

+
1

2400
sin 2t(

∫ +∞

0
e−2sx1(t− s)ds+

∫ +∞

0
e−2sx2(t− s)ds)

+
1

14
sin
√

2t
1

(40π)2 (arctan2x1(t) +
1

20π
arctanx1(t) arctanx2(t) + arctan2x2(t))

+
1

14
1

(80π)2 cos
√

2t(arctanx1(t−
1 + cos 3t

3
) arctanx1(t−

1 + cos 4t
3

)

+ arctanx1(t−
1 + cos 3t

3
) arctanx2(t−

1 + cos 4t
3

)

+ arctanx2(t−
1 + cos 3t

3
) arctanx2(t−

1 + cos 4t
3

)

+ arctanx2(t−
1 + cos 3t

3
) arctanx1(t−

1 + cos 4t
3

)) + (360 + 1) |cos 2t|+ e−t,
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x′2(t) = −
(

1
20

+
3

40
cos t

)
x2(t) +

cos 2t
4000

(x1

(
t− (1 + cos 2t)

2

)
+ x2

(
t− (1 + cos 2t)

2

)
)

+
1

2400
sin 2t(

∫ +∞

0
e−2sx1(t− s)ds+

∫ +∞

0
e−2sx2(t− s)ds)

× 1
14

sin
√

2t
1

(40π)2 (arctan2x1(t) +
1

20π
arctanx1(t) arctanx2(t) + arctan2x2(t))

+
1

14
1

(80π)2 cos
√

2t(arctanx1(t−
1 + cos 3t

3
) arctan(x1(t−

1 + cos 3t
3

))

+ arctan(x1(t−
1 + cos 3t

3
))arctan2(x2(t−

1 + cos 4t
3

))

+ arctan(x2(t−
1 + cos 3t

3
)) arctan(x2(t−

1 + cos 4t
3

))

+ arctan(x2(t−
1 + cos 3t

3
)) arctan(x1(t−

1 + cos 4t
3

)) + (360 + 2) |cos 2t|+ e−t.

Clearly, one can take LBi = 0, LCi = Lhi = 1
20 , LHi = L

_
H
i = 1

40π , LQi = L
_
Q
i = 1

80π ,
ξi = 1, κ = 1, and for t ≥ 0, η(t) = et, for t < 0, η(t) = 1such that for values in above example,
HORNNs initial differential system of (1.1)-(1.2) satisfies all the conditions of Theorem 3.4
Therefore, (1.1) has a unique solution which belongs to PAP (R,R, υ).

References
[1] A. M. Fink, Almost Periodic Differential Equations (Lecture Notes in Mathematics), Springer-Verlag,

New York, 1974.

[2] Chérif, F., “A various types of almost periodic functions on Banach spaces, Int. Math. Forum 6: 921–952,
(2011).

[3] Zhang, C., “Almost Periodic Type Functions and Ergodicity, Kluwer, Beijing, China:, 2003

[4] Zhang, C., “Pseudo almost periodic functions and their applications,” Ph.D. thesis, Dept. Math., Univ.
Western Ontario, London, ON, Canada, 1992.

[5] Diagana, T., “Existence of weighted pseudo almost periodic solutions to some non-autonomous differen-
tial equations, Int. J. Evol. Equ.,2,397–410, (2008).

[6] Diagana, T.,”Weighted pseudo-almost periodic solutions to some differential equations,Non-linear Anal.,
8, 2250-2260,(2008)).

[7] Li, C., Liao, X., “New algebraic conditions for global exponential stability of delayed recurrent neural
networksNeurocomputing, 64, 319–333, (2005).

[8] Liu, Y., Wang, Z., Liu X., “Global exponential stability of generalized recurrent neural networks with
discrete and distributed delaysNeural Network, 19, 667–675, (2006).

[9] Song, Q. “Novel criteria for global exponential periodicity and stability of recurrent neural networks with
time-varying delays,Chaos Solitons Fractals, 36, 720–728, (2008).

[10] Song, Q., “Exponential stability of recurrent neural networks with both time-varying delays and general
activation functions via LMI approach,” Neurocomputing, 71, 2823–2830, (2008).

[11] Cao, J., Hang, H., Wang, J., “Global exponential stability and periodic solutions of recurrent neural net-
works with delays,Phys. Lett., 298, 393–404, (2002).

[12] Huang, X., Cao, J., Ho, D. W. C., “Existence and attractivity of almost periodic solution for recurrent
neural networks with unbounded delays and variable coefficients,Nonlin. Dyn., 45, 337–351, (2006).

[13] Cao, J., Chen, A., Huang, X., “Almost periodic attraction of delayed neural networks with variable coef-
ficients,Phys. Lett., 340, 104–120, (2005).

[14] Liu, Z., Chen, A., Cao, J., Huang, L., “Existence and global exponential stability of almost periodic
solutions of BAM neural networks with continuously distributed delays,Phys. Lett., 319, 305–316, (2003).

[15] Liu, B., “Almost periodic solutions for Hopfield neural networks with continuously distributed de-
lays,Math. Comput. Simul., 73, 327–335, (2007).

[16] Zhao, H., “Existence and global attractivity of almost periodic solution for cellular neural network with
distributed delays,Appl. Math. Comput., 154, 683–695, (2004).



166 Ramazan Yazgan and Cemil Tunç

[17] Ammar, B., Cherif, F., Alimi, A.M., “Existence and Uniqueness of Pseudo Almost-Periodic Solutions of
Recurrent Neural Networks with Time-Varying Coefficients and Mixed Delays”, IEEE Transactions on
Neural Networks and Learning Systems, 23, 109-118, (2012).

[18] Brahmi, H., Ammar, B., Alimi, A. M., Chérif, F., “Pseudo almost periodic solutions of impulsive recurrent
neural networks with mixed delays”, 2016 International Joint Conference on Neural Networks, (2014).

[19] M’hamdi, M. S., Aouiti, C., Touati, A., Alimi, Adel M., Snasel., “Weighted pseudo almost-periodic
solutions of shunting inhibitory cellular neural networks with mixed delays”, Acta Math. Sci. Ser. B Engl.
Ed., 36,1662-1682, (2016).

[20] Zhao, L., Li, Y., “Global exponential stability of weighted pseudo-almost periodic solutions of neutral
type high-order Hopfield neural networks with distributed delays”,Abstr. Appl. Anal., 17, (2014).

[21] Xu, Y., “Weighted pseudo-almost periodic delayed cellular neural networks”, Neural Comput Appl, 28,
1-6, (2017).

[22] Xu, Y., “Exponential stability of weighted pseudo almost periodic solutions for HCNNs with mixed de-
lays”,Neural Processing Letters, 1,1–13, (2017)

[23] Wang, Z., Fang, X. “Liu,Global stability of stochastic high-order neural networks with discrete and dis-
tributed delays”,Chaos, Solitons and Fractals, 36, 388-396, (2008).

[24] Brahmi, H., Ammar, B., Cheri£, F., Alimi, A. M., “On the dynamics of the high-order type of neural
networks with time varying coefficients and mixed delay”, Neural Networks, 2063 - 2070, (2014).

[25] F. Cherif, H. Brahmi, B. Ammar, A. M. Alimi,” Exponential synchronization of a class of rnns with
discrete and distributed delays”, ICANN 2013, LNCS 7, 4-81, (2013).

[26] Yazgan, R., Tunç, C., “On the weighted pseudo almost periodic solutions of Nicholson’s blowflies equa-
tion”,Appl. Appl. Math. 14, 875–889, (2019).

[27] Yazgan, R., Tunç, C., “On the almost periodic solutions of fuzzy cellular neural networks of high order
with multiple time lags”, Int. J. Math. Comput. Sci. 15, 183–198, (2020).

Author information
Ramazan Yazgan and Cemil Tunç, Ramazan Yazgan and Cemil Tunç Department of Mathematics, University
of Yuzuncu Yil, Van 65080 TURKEY, TURKEY.
E-mail: ryazgan503@gmail.com and cemtunc@yahoo.com

Received: 2022-07-24

Accepted: 2022-12-21


	1 Introduction
	2 Preliminaries
	3 MAIN RESULTS

