Curves of constant breadth in a Walker 4-manifold

Adama Thiandoum, Ameth NDIAYE and Athoumane NIANG

Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C20; Secondary 53C50.
Keywords and phrases: Curve, Curvature, Torsion, Frenet frame, Curves of constant breadth, Walker manifolds.

Abstract

In this paper, we define and study the differential geometry of curves of constant breadth in a Walker 4-manifold and we construct an example of curves of constant breadth in this manifold.

1 Introduction

The study of submanifolds on a given ambiant space is a naturel interesting problem which enriches our knowlegde and understanding of geometry of the space itself. In this study, the ambiant space is a Lorentzian 4-manifold admitting a null parallel vector field called Walker manifold. For more detail see [3], [13].
Many researcher interest to the study of curves of constant breadth since the first introduction of this theory in the plane by L. Euler [1] in 1778. After the work of Euler, Fujivara extended it to space curves. He had put forward a problem based on determining whether there exist space curves of constant breadth or not, and as a solution of the problem, the "breadth" concept for space curves was defined and these curves were shown on a surface of constant breadth in [7]. Furthermore, Blaschke defined the curve of constant breadth on the sphere [4]. Several results were obtained when the ambient space is the Euclidean space and the Lorentz-Minkowski space. For details see [8, 9, 14]. Curves of constant breadth in the three dimensional Walker manifols was studied in [6].
Motivated by the above works, we study the differential geometry of curves of constant breadth in a Walker 4-manifold.
The paper is organised as follow: in section 2, we recall some preliminaries results for Walker 4-manifold $\left(M, g_{a, b, c}\right)$. In the section 3 , we define space curves of constant breadth in a Walker 4-manifold ($M, g_{a, b, c}$) and we give the Characterisations of space curves of constant breadth in the $\left(M, g_{a, b, c}\right)$. In the last section of this paper, we construct an example of curves of constant breadth in a given Walker 4-manifold to illustrate our results.

2 Preliminaries

A Walker n-dimentional manifold is a pseudo-Riemannian manifold which admit a field of null parallel r-planes with $r \leq \frac{n}{2}$. The canonical forms of the metrics were investigated by A. G. Walker [13]. Walker has derived adapted coordinates to a parallel plan field. Hence, a metric of four-dimensional Walker manifold $\left(M, g_{a, b, c}\right)$ with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is expressed as

$$
\begin{equation*}
g_{a, b, c}=2\left(d x_{1} \circ d x_{3}+d x_{2} \circ d x_{4}\right)+a d x_{3} \circ d x_{3}+b d x_{4} \circ d x_{4}+2 c d x_{3} \circ d x_{4} \tag{2.1}
\end{equation*}
$$

and its matrix form as

$$
g_{a, b, c}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & a & c \\
0 & 1 & c & b
\end{array}\right] \text { with inverse matrix } g_{a, b, c}^{-1}=\left[\begin{array}{cccc}
-a & -c & 1 & 0 \\
-c & -b & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

where a, b, c are smooth functions on M. An easy computation gives the coefficients of the Levi Civita connection of the metric $g_{a, b, c}$ by :

$$
\begin{array}{rlr}
\nabla_{\partial x_{1}} \partial x_{3} & =\frac{1}{2} a_{1} \partial x_{1}+\frac{1}{2} c_{1} \partial x_{2}, & \nabla_{\partial x_{1}} \partial x_{4}=\frac{1}{2} c_{1} \partial x_{1}+\frac{1}{2} b_{1} \partial x_{2} \\
\nabla_{\partial x_{2}} \partial x_{3} & =\frac{1}{2} a_{2} \partial x_{1}+\frac{1}{2} c_{2} \partial x_{2}, \quad \nabla_{\partial x_{2}} \partial x_{4}=\frac{1}{2} c_{2} \partial x_{1}+\frac{1}{2} b_{2} \partial x_{2} \\
\nabla_{\partial x_{3}} \partial x_{3} & =\frac{1}{2}\left(a a_{1}+c a_{2}+a_{3}\right) \partial x_{1}+\frac{1}{2}\left(c a_{1}+b a_{2}-a_{4}+2 c_{3}\right) \partial x_{2} \\
& -\frac{a_{1}}{2} \partial x_{3}-\frac{a_{2}}{2} \partial x_{4} \tag{2.2}\\
\nabla_{\partial x_{3}} \partial x_{4} & =\frac{1}{2}\left(a_{4}+a c_{1}+c c_{2}\right) \partial x_{1}+\frac{1}{2}\left(b_{3}+c c_{1}+b c_{2}\right) \partial x_{2} \\
& -\frac{c_{1}}{2} \partial x_{3}-\frac{c_{2}}{2} \partial x_{4} \\
\nabla_{\partial x_{3}} \partial x_{3} & =\frac{1}{2}\left(a b_{1}+c b_{2}-b_{3}+2 c_{4}\right) \partial x_{1}+\frac{1}{2}\left(c b_{1}+b b_{2}+b_{4}\right) \partial x_{2} \\
& -\frac{b_{1}}{2} \partial x_{3}-\frac{b_{2}}{2} \partial x_{4}
\end{array}
$$

If we take the functions $a=b=0$, the non-zero coefficients of the Christoffel symbole and the non-zero coefficients of the Levi Civita connection are given by

$$
\begin{align*}
& \Gamma_{13}^{2}=\Gamma_{31}^{2}=\frac{1}{2} c_{1}, \quad \Gamma_{14}^{1}=\Gamma_{41}^{1}=\frac{1}{2} c_{1}, \quad \Gamma_{23}^{2}=\Gamma_{32}^{2}=\frac{1}{2} c_{2}, \\
& \Gamma_{24}^{1}=\frac{1}{2} c_{2}, \quad \Gamma_{33}^{2}=c_{3}, \quad \Gamma_{44}^{1}=\frac{1}{2} c_{4}, \quad \Gamma_{34}^{1}=\frac{1}{2} c c_{2} \tag{2.3}\\
& \Gamma_{34}^{2}=\frac{1}{2} c c_{1}, \quad \Gamma_{34}^{3}=-\frac{1}{2} c_{1}, \quad \Gamma_{34}^{4}=-\frac{1}{2} c_{2} ;
\end{align*}
$$

and

$$
\begin{array}{ll}
\nabla_{\partial x_{1}} \partial x_{3}=\frac{1}{2} c_{1} \partial x_{2}, & \nabla_{\partial x_{1}} \partial x_{4}=\frac{1}{2} c_{1} \partial x_{1} \\
\nabla_{\partial x_{2}} \partial x_{3}=\frac{1}{2} c_{2} \partial x_{2}, & \nabla_{\partial x_{2}} \partial x_{4}=\frac{1}{2} c_{2} \partial x_{1} \\
\nabla_{\partial x_{3}} \partial x_{3}=c_{3} \partial x_{2} & \nabla_{\partial x_{4}} \partial x_{4}=\frac{1}{2} c_{4} \partial x_{1} \tag{2.4}\\
\nabla_{\partial x_{3}} \partial x_{4}=\frac{1}{2} c c_{2} \partial x_{1}+\frac{1}{2} c c_{1} \partial x_{2}-\frac{c_{1}}{2} \partial x_{3}-\frac{c_{2}}{2} \partial x_{4} .
\end{array}
$$

Let $\alpha: I \subset \mathbb{R} \rightarrow\left(M, g_{a, b, c}\right)$ be a unit speed curve with parameter s. If $Z(s)$ is a smooth vector field along the curve α, then we denote its covariant derivative by $\frac{D Z}{d s}$. In terme of local coordinates,

$$
\begin{equation*}
Z(s)=\sum_{i=1}^{4} Z^{i}(s) \partial_{i} \tag{2.5}
\end{equation*}
$$

where each $Z^{i}=Z\left(x^{i}\right)$ is a real valued function on I. Then we have the following

$$
\begin{equation*}
\frac{D Z}{d s}=\sum_{i=1}^{4}\left\{\frac{\partial Z^{k}}{\partial s}+\sum_{i, j} \Gamma_{i j}^{k} Z^{i} \frac{\partial x^{j}}{\partial s}\right\} \partial_{k} \tag{2.6}
\end{equation*}
$$

The Frenet Frame of α is denoted by $\left\{T, N, B_{1}, B_{2}\right\}$, where T is the tangent vector, N the normal principal, B_{1} the first binormal vector and B_{2} the second binormal vector. The following Frenet formulae are given in [2]

$$
\left\{\begin{array}{l}
T^{\prime}(s)=\mu_{2} k_{1} N(s) \tag{2.7}\\
N^{\prime}(s)=-\mu_{1} k_{1} T(s)+\mu_{3} k_{2} B_{1}(s) \\
B_{1}^{\prime}(s)=-\mu_{2} k_{2} N(s)+\mu_{3} k_{3} B_{2}(s) \\
B_{2}^{\prime}(s)=-\mu_{3} k_{3} B_{1}(s)
\end{array}\right.
$$

where $\mu_{1}=g_{a, b, c}(T, T), \mu_{2}=g_{a, b, c}(N, N), \mu_{3}=g_{a, b, c}\left(B_{1}, B_{1}\right)$ and $\mu_{4}=g_{a, b, c}\left(B_{2}, B_{2}\right)$ with $\mu_{i}= \pm 1$, for $i=1,2,3,4$, and k_{1}, k_{2} and k_{3} are first, second and third curvatures of the curve respectively.

3 Characterisations of space curves of constant breadth in M

In this section, we define space curves of constant breadth in a Walker 4-manifold.
Definition 3.1. A curve $\alpha: I \rightarrow M$ in the four-dimensional Walker manifold is called a curve of constant breadth if there exists a curve $\beta: I \rightarrow M$ such that, at the corresponding point of curves, the parallel tangent vectors of α and β at $\alpha(s)$ and $\beta\left(s^{*}\right)$ at $s, s^{*} \in I$ are opposite diections and the distance between these points is always constant. In this case (α, β) is called a curve pair of constant breadth.

Assume that α and β be a pair of unit speed curves in M with position vectors $\vec{X}(s)$ and $\vec{X}^{*}\left(s^{*}\right)$, where s and s^{*} are of curves α and β, respectively, and let α and β have parallel tangents in opposite directions at the opposite points. The curve β can be written by the following equation

$$
\begin{equation*}
\vec{X}\left(s^{*}\right)=X(s)+m_{1}(s) T(s)+m_{2}(s) N(s)+m_{3}(s) B_{1}(s)+m_{4}(s) B_{2}(s) \tag{3.1}
\end{equation*}
$$

where $m_{i}(s),(1 \leq i \leq 4)$ are differentiable functions of s.
Differentiating equation (3.1) with respect to s and by using (2.7), we obtain

$$
\begin{align*}
T^{*} \frac{d s^{*}}{d s} & =\left(1+\frac{d m_{1}}{d s}-m_{2} \mu_{1} k_{1}\right) T+\left(\frac{d m_{2}}{d s}+m_{1} \mu_{2} k_{1}-m_{3} \mu_{2} k_{2}\right) N \tag{3.2}\\
& +\left(\frac{d m_{3}}{d s}+m_{2} \mu_{3} k_{2}-m_{4} \mu_{3} k_{3}\right) B_{1}+\left(\frac{d m_{4}}{d s}+m_{3} \mu_{4} k_{3}\right) B_{2}
\end{align*}
$$

where T^{*} denotes the tangent vector of β.
Since $T^{*}=-T$, frome (3.2) we have

$$
\left\{\begin{array}{l}
1+\frac{d m_{1}}{d s}-m_{2} \mu_{1} k_{1}=-\frac{d s^{*}}{d s} \tag{3.3}\\
\frac{d m_{2}}{d s}+m_{1} \mu_{2} k_{1}-m_{3} \mu_{2} k_{2}=0 \\
\frac{d m_{3}}{d s}+m_{2} \mu_{3} k_{2}-m_{4} \mu_{3} k_{3}=0 \\
\frac{d m_{4}}{d s}+m_{3} \mu_{4} k_{3}=0
\end{array}\right.
$$

Let us introduce the angle between the tangent vector of α with a given fixed direction, the curvature of α is $k_{1}(s)=\frac{d \phi}{d s}$ and the curvature of β is $k_{1}^{*}(s)=\frac{d \phi}{d s^{*}}$. By using this fact with (3.3), we obtain

$$
\left\{\begin{array}{l}
\frac{d m_{1}}{d \phi}=\mu_{1} m_{2}-f(\phi) \tag{3.4}\\
\frac{d m_{2}}{d \phi}=-\mu_{2} m_{1}+m_{3} \mu_{2} k_{2} \rho \\
\frac{d m_{3}}{d \phi}=-m_{2} \mu_{3} k_{2} \rho+m_{4} \mu_{3} k_{3} \rho \\
\frac{d m_{4}}{d \phi}=-m_{3} \mu_{4} k_{3} \rho
\end{array}\right.
$$

Here $f(\phi)=\rho+\rho^{*}$ and $\rho=1 / k_{1}, \rho^{*}=1 / k_{1}^{*}$ are the radius of curvatures α and β respectively. Differentiating the first equation of (3.4) with respect to ϕ and by using the second, third and fourth equations of (3.4), we obtain the following diffenrential equation

$$
\begin{align*}
\frac{d}{d \phi} & {\left[\frac{1}{k_{3} k_{2} \rho^{2}}\left(\frac{d^{3} m_{1}}{d \phi^{3}}+\frac{d^{2} f}{d \phi^{2}}+\mu_{1} \mu_{2} \frac{d m_{1}}{d \phi}\right)\right]-\frac{d}{d \phi}\left[\frac{1}{k_{3} k_{2}^{2} \rho^{3}} \frac{d\left(k_{2} \rho\right)}{d \phi}\left(\frac{d^{2} m_{1}}{d \phi^{2}}+\frac{d f}{d \phi}+\mu_{1} \mu_{2} m_{1}\right)\right] } \\
& -\mu_{2} \mu_{3} \frac{d}{d \phi}\left[\frac{k_{2}}{k_{3}}\left(\frac{d m_{1}}{d \phi}+f\right)\right]+\mu_{3} \mu_{4} \frac{k_{3}}{k_{2}}\left(\frac{d^{2} m_{1}}{d \phi^{2}}+\frac{d f}{d \phi}+\mu_{1} \mu_{2} m_{1}\right)=0 \tag{3.5}
\end{align*}
$$

This differential equation is characterization of curves of constant breadth in the Walker 4manifold M.
If the distance between the opposite points of α and β is constant, then

$$
\begin{equation*}
\|\alpha-\beta\|^{2}=\mu_{1} m_{1}^{2}+\mu_{2} m_{2}^{2}+\mu_{3} m_{3}^{2}+\mu_{4} m_{4}^{2}=k(\text { constant }) \tag{3.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mu_{1} m_{1} \frac{d m_{1}}{d \phi}+\mu_{2} m_{2} \frac{d m_{2}}{d \phi}+\mu_{3} m_{3} \frac{d m_{3}}{d \phi}+\mu_{4} m_{4} \frac{d m_{4}}{d \phi}=0 . \tag{3.7}
\end{equation*}
$$

Using the equations (3.4) and (3.7) we get

$$
\begin{equation*}
m_{1}\left(\mu_{1} \frac{d m_{1}}{d \phi}-m_{2}\right)=0 \tag{3.8}
\end{equation*}
$$

Then we have $m_{1}=0$ or $\frac{d m_{1}}{d \phi}=\mu_{1} m_{2}$. Hence we obtain the following system equations

$$
\left\{\begin{array}{l}
m_{1}=0 \tag{3.9}\\
\frac{d m_{2}}{d \phi}=m_{3} \mu_{2} k_{2} \rho \\
\frac{d m_{3}}{d \phi}=-m_{2} \mu_{3} k_{2} \rho+m_{4} \mu_{3} k_{3} \rho \\
\frac{d m_{4}}{d \phi}=-m_{3} \mu_{4} k_{3} \rho
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\frac{d m_{1}}{d \phi}=\mu_{1} m_{2} \tag{3.10}\\
\frac{d m_{2}}{d \phi}=-\mu_{2} m_{1}+m_{3} \mu_{2} k_{2} \rho \\
\frac{d m_{3}}{d \phi}=-m_{2} \mu_{3} k_{2} \rho+m_{4} \mu_{3} k_{3} \rho \\
\frac{d m_{4}}{d \phi}=-m_{3} \mu_{4} k_{3} \rho
\end{array}\right.
$$

Suppose that m_{1} is a non-zero constant in the system (3.10). Then we have the following linear differential equations

$$
\begin{align*}
& \left(k_{3} \rho\right) \frac{d^{2} m_{3}}{d \phi^{2}}-\frac{d}{d \phi}\left(k_{3} \rho\right) \frac{d m_{3}}{d \phi}+m_{3}\left(k_{3} \rho\right)^{3}=0 \tag{3.11}\\
& \left(k_{3} \rho\right) \frac{d^{2} m_{4}}{d \phi^{2}}-\frac{d}{d \phi}\left(k_{3} \rho\right) \frac{d m_{4}}{d \phi}+m_{4}\left(k_{3} \rho\right)^{3}=0 \tag{3.12}
\end{align*}
$$

We can solve the equations (3.11) and (3.12) by considering the new variable $z=z(\phi)$ defined by $\frac{d z}{d \phi}=\left(k_{3} \rho\right)$. So we get

$$
\left\{\begin{array}{l}
\frac{d m_{3}}{d \phi}=\frac{d m_{3}}{d z}\left(k_{3} \rho\right) \tag{3.13}\\
\frac{d^{2} m_{3}}{d \phi^{2}}=\frac{d^{2} m_{3}}{d z^{2}}\left(k_{3} \rho\right)^{2}+\frac{d m_{3}}{d z} \frac{d}{d \phi}\left(k_{3} \rho\right)
\end{array}\right.
$$

By using (3.13) the equation in (3.11) becomes

$$
\begin{equation*}
\frac{d^{2} m_{3}}{d z^{2}}+m_{3}=0 \tag{3.14}
\end{equation*}
$$

Thus, general solution of m_{3} is

$$
\begin{equation*}
m_{3}=a_{1} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)+a_{2} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right) \tag{3.15}
\end{equation*}
$$

Also, if we consider m_{4}, we obtain

$$
\begin{equation*}
m_{4}=a_{2} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)-a_{1} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right) \tag{3.16}
\end{equation*}
$$

where a_{1} and a_{2} are arbitrary constants. Thus the general solution is given by

$$
\left\{\begin{array}{l}
m_{1}=a \tag{3.17}\\
m_{2}=0 \\
m_{3}=a_{1} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)+a_{2} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right) \\
m_{4}=a_{2} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)-a_{1} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right)
\end{array}\right.
$$

where a is also constant.

Theorem 3.2. Let (α, β) be a pair curve of constant breadth in the Walker 4-manifold M. If β is a curve with $m_{2}=0$ and m_{1} non-zero constant, then the curve β has the following form

$$
\begin{align*}
\beta(s)=\alpha(s) & +m_{1} T(s)+\left[a_{1} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)+a_{2} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right)\right] B_{1}(s) \\
& +\left[a_{2} \cos \left(\int_{0}^{\phi} k_{3} \rho d t\right)-a_{1} \sin \left(\int_{0}^{\phi} k_{3} \rho d t\right)\right] B_{2}(s) \tag{3.18}
\end{align*}
$$

Assume that $m_{1}=0$, then $f=\mu_{1} m_{2}$ and the differential equation in (3.5) becomes
$\frac{d}{d \phi}\left(\frac{1}{k_{3} k_{2} \rho^{2}} \times \frac{d^{2} m_{2}}{d \phi^{2}}\right)-\frac{d}{d \phi}\left(\frac{1}{k_{3} k_{2}^{2} \rho^{3}} \times \frac{d\left(k_{2} \rho\right)}{d \phi} \frac{d m_{2}}{d \phi}\right)-\mu_{2} \mu_{3} \frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}} m_{2}\right)+\mu_{3} \mu_{4} \frac{k_{3}}{k_{2}}\left(\frac{d m_{2}}{d \phi}\right)=0$.
If m_{2} is non-zero constant we have

$$
\begin{equation*}
\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}} m_{2}\right)=m_{2} \frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}}\right)=0 \tag{3.20}
\end{equation*}
$$

That is

$$
\begin{equation*}
\frac{d}{d \phi}\left(\frac{k_{2}}{k_{3}}\right)=0 \tag{3.21}
\end{equation*}
$$

Thus $\frac{k_{2}}{k_{3}}$ is constant.
Theorem 3.3. The space curve of constant breadth with the tangent component $m_{1}=0$ and the principal normal component m_{2} is non-zero constant, is a general helix in the four-dimentional Walker manifold.

4 Example of curve of constant breadth in Walker 4-manifold

In this section, we construct an example of curve of constant breadth in a given Walker 4manifold.
Let us consider the Walker 4-manifold $\left(M, g_{a, b, c}\right)$ with the functions $a(x, y, z, t)=b(x, y, z, t)=$ 0 and $c(x, y, z, t)=-\frac{8}{3} e^{3 t}$.
We consider the following curve

$$
\begin{equation*}
\alpha(s)=\left(\cosh s, \sinh s, 0,-\frac{1}{2} e^{-s}\right) . \tag{4.1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\alpha^{\prime}(s)=\left(\sinh s, \cosh s, 0, \frac{1}{2} e^{-s}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0,0, c}\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)=1 \tag{4.3}
\end{equation*}
$$

so the curve α is spacelike curve in M. By using the formula in (2.6), we get

$$
\begin{equation*}
\alpha^{\prime \prime}(s)=\left(-\frac{3}{4} e^{s}+\frac{1}{2} e^{-s}, \sinh s, 0,-\frac{1}{2} e^{-s}\right) \tag{4.4}
\end{equation*}
$$

We take

$$
\begin{equation*}
T(s)=\left(\sinh s, \cosh s, 0, \frac{1}{2} e^{-s}\right) \tag{4.5}
\end{equation*}
$$

and $\mu_{1}=g_{0,0, c}(T(s), T(s))=1$ and then

$$
\begin{equation*}
\left.N(s)=\left(-\frac{3}{4} e^{s}+\frac{1}{2} e^{-s}, \sinh s, 0,-\frac{1}{2} e^{-s}\right)\right) \tag{4.6}
\end{equation*}
$$

By using the first equation of (2.7), we have $g_{0,0, c}\left(T^{\prime}(s), N(s)\right)=\mu_{2} k_{1}=1$, that is $\mu_{2}=1$ and $k_{1}=1$. Using the last equation of (2.7), we obtain

$$
\begin{equation*}
B_{2}(s)=\left(-\frac{3}{2} e^{s}-e^{-s}, \frac{1}{2} \cosh s, 0, e^{-s}\right) \tag{4.7}
\end{equation*}
$$

where we suppose $\mu_{3}=-1$ and $k_{2}=2$.
Finally by using the third equation of (2.7), get

$$
B_{1}(s)=\left(4 e^{s}-e^{-s}, 0,0, e^{-s}\right)
$$

by taking $k_{3}=2$. Thus the Frenet apparatus of the curve α is

$$
\begin{align*}
& T(s)=\left(\sinh s, \cosh s, 0, \frac{1}{2} e^{-s}\right) \\
& N(s)=\left(-\frac{3}{4} e^{s}+\frac{1}{2} e^{-s}, \sinh s, 0,-\frac{1}{2} e^{-s}\right) \\
& B_{1}(s)=\left(4 e^{s}-e^{-s}, 0,0, e^{-s}\right) \\
& B_{2}(s)=\left(-\frac{3}{2} e^{s}-e^{-s}, \frac{1}{2} \cosh s, 0, e^{-s}\right) \tag{4.8}\\
& k_{1}=1 \\
& k_{2}=1 \\
& k_{3}=2
\end{align*}
$$

with $\mu_{1}=g_{0,0, c}(T(s), T(s))=1, \mu_{2}=g_{0,0, c}(N(s), N(s))=1, \mu_{3}=g_{0,0, c}\left(B_{1}(s), B_{1}(s)\right)=$ $-1, \mu_{4}=g_{0,0, c}\left(B_{2}(s), B_{2}(s)\right)=1$.
Then by using the formula (21) of the Theorem 3.1, we see that the curves β and α defined us following

$$
\begin{align*}
\beta(s)=\alpha(s) & +T(s)+\left[\cos \left(\int_{0}^{\phi} 2 d t\right)+\sin \left(\int_{0}^{\phi} 2 d t\right)\right] B_{1}(s) \\
& +\left[\cos \left(\int_{0}^{\phi} 2 d t\right)-\sin \left(\int_{0}^{\phi} 2 d t\right)\right] B_{2}(s) \tag{4.9}
\end{align*}
$$

where $m_{1}=a_{1}=a_{2}=1$ and $\rho=\frac{1}{k_{1}}=1$, are curves of constant breadth.

References

[1] L. Euler: De Curvis Trangularibis. Acta Acad. Petropol, 3-30 (1780).
[2] M. A. Canadas-Pinedo, M. Gutiérrez, M. Ortega, Massless particles in generalized Robertson-Walker 4-spacetimes, Annali di Matematica, 194, 259-273 (2015).
[3] M. Brozos-Vazquez, E. Garcia-Rio, P. Gilkey, S. Nikevic and R. Vazquez-Loenzo; The geometry of Walker manifolds, Synthesis Lectures on Mathematics and Statistics, 5. Morgan and Claypool Publishers, Williston, VT, (2009).
[4] W. Blaschke, Einige Bemerkungen über Kurven und Flächen Kon-stanter Breite, Ber. Verh. Sächs. Akad. Leipzig, 290-297 (1915).
[5] D. W. Yoon, Curves of constant breadth in Galilean 3-space, Applied Mathematical sciences, 8 (141), 7013-7018.
[6] Athoumane Niang, Ameth Ndiaye and Moussa Koivogui, Curves of constant breadth in a strict walker 3-manifold, Palest. J. Math. (accepted).
[7] M. Fujivara, On space curve of constant breadth.Tohoku Math. J., 5, 179-184 (1914).
[8] Ö. Köse, On space curves of constant breadth, Doğa Tr. J. Math, 10, 11-14, (1986).
[9] M. Kazaz, M. Onder and H. Kocajigit, Spacelike curves of constant breadth in Minkowski 4-space, Int. Journal of Math. Analysis2, 1061-1068 (2008).
[10] Ö. Köse, Some preperties of ovals and curves of constant width in a plane. Doga Sci. J. Serial B, 8 (2), 119-126 (1984).
[11] A. Magden, Ö. Köse and P. Piu, On the curves of constant breadth in \mathbb{E}^{4}. Turk. J. Math. 21, 277-284 (1997).
[12] D. W. Yoon, Curves of constant breadth in Galilean 3-space, Applied Mathematical Sciences, 8, 70137018, (2014)
[13] A. G. Walker, Canonical form for a Riemannian space with a parallel field of null planes, Quart. J. Math. Oxford 1, (2), 69-79 (1950).
[14] S. Yilmaz and M. Turgut, Partially null curves of constant breadth in semi-Riemannian space, Modern Applied Science, 3, 60-63, (2009).

Author information

Adama Thiandoum, Département de Mathématiques et Informatique, FST, Université Cheikh Anta Diop, B.P 5005, Dakar, Sénégal.
E-mail: adama1.thiandoum@ucad.edu.sn
Ameth NDIAYE, Département de Mathématiques, FASTEF, Université Cheikh Anta Diop, B.P 5036, Dakar, Sénégal.
E-mail: ame th1.ndiaye@ucad.edu.sn
Athoumane NIANG, Département de Mathématiques et Informatique, FST, Université Cheikh Anta Diop, B.P 5005, Dakar, Sénégal.
E-mail: athoumane.niang@ucad.edu.sn
Received: 2022-08-02
Accepted: 21-01-2023

