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Abstract In this paper we consider a fourth order nonlinear differential equation with two
integral boundary conditions. We establish the existence, uniqueness and positivity of solutions
and propose iterative methods both on continuous and on discrete levels for finding the solution.
The numerical solution is proved to be of second order accuracy. Many examples demonstrate
the validity of the obtained theoretical results, the efficiency of the numerical method and the
applicability of it to a wide class of problems.

1 Introduction

In this paper we consider the boundary value problem

W (t) = ftu(t), ' (t),d" (t),d"(t), 0<t<]l, (1.1)

1
u(0) = / g(s)u(s)ds, u(1) =0,
"1 (1.2)
u’(0) = [ h(s)u"(s)ds, v (1) =0,
0
where f: [0,1] x R* = R, g,k : [0,1] — R are continuous functions.

This problem is a natural generalization of the problem considered in [6], where instead of
the fully nonlinear term it was f (¢, u(t), v’ (¢)). In the above-mentioned paper, based upon the
Krein-Rutman theorem and the global birfucation techniques, the authors established the ex-
istence of at least one positive solution. Many complicated conditions on the behavior of the
function f (¢, u, p) near zero and at infinity are posed and they are related to the first generalized
eigenvalue of the generalized eigenvalue problem associated with the problem under considera-
tion. So, the authors could not show examples, where the required conditions are satisfied.

Boundary value problems with integral boundary conditions arise in many applied fields such
as heat conduction, chemical engineering, hydrodynamics, thermoelastisity, and plasma physics.
Therefore, recently they have attracted attention from many researchers. Among them are many
works concerning fourth order nonlinear differential equations with integral boundary conditions
(see, e.g., [1, 6, 7,8, 11,9, 10, 12, 13]). In the mentioned works some interesting results on
the existence and multiplicity of solutions are obtained by using different fixed theorems and
the method of lower and upper solutions. It should be emphasized that these works concern
with only the existence and multiplicity of solutions. The methods for finding solutions are not
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considered in these works. And to the best of our knowledge, in these works the authors only
could show the examples, where the assumptions of the theorems of existence of solutions are
satisfied but could not show the solutions themselves. Even in the works [6, 11] such examples
are absent.

Very recently, in [5] for the first time we investigated the existence and uniqueness of so-
Iutions and iterative method for finding the solution of the problem with one integral boundary
condition

u""(t) = f(t,u(t),d(t),u"(t),u"(t), 0<t<I,
1
W(0) = u"(0) = /(1) =0, u(0) = [ g(s)u(s)ds
0
where f:[0,1] x R* = R*, g:[0,1] — R* are continuous functions.

The present paper is a further development of the technique used in [5] for the problem
(1.1)-(1.2). We establish the existence, uniqueness and positivity of solutions for the problem
and study iterative methods at both continuous and discrete levels for finding the solution. Some
examples demonstrate the applicability of the obtained theoretical results and the efficiency of the
discrete iterative method. Then the numerical method is applied successfully to find solutions of

the problem with non-homogeneous boundary conditions and for problems with singular right-
hand side.

2 Existence and uniqueness of solution

To investigate the problem (1.1)- (1.2) we set
99(t) = f(ta u(t)7 ul(t)7 u//(t)a u///(t))’

g(s)u(s)ds, @)

Then the problem becomes
uw(0) = a, u(1) =0, (2.2)

This problem has a solution presented in the form

1
u(t):/o Golt, s)p(s)ds + Pla, B,8), 0<t<1, 2.3)

where G (¢, s) is the Green function of the operator u”” (t) = 0 associated with the homogeneous
boundary conditions «(0) = u(1) = 0,4”(0) = v”(1) =0,

L s(I=t) (P -2t+ ), 0<s<t<l1
Go(t,s)——g {t(l—s)(s2—28—|—t2), 0<t<s<l @4
and 5
Pla, B,t) = a1 —t) — %(2—315“2). (2.5)

It is easy to see that Gy(t,s) > 0 V¢, s € [0,1] and P(«, 8,t) > 0Vt € [0,1] fora > 0, 8 <O0.
It is obvious that the solution (2.3) depending on ¢, «, 5 must satisfy the relations (2.1). We shall
express this by an operator equation for the triplet w = (¢, o, 3)7. For this reason, we introduce
the space B = C[0, 1] x R x R of these triplets w and equip it with the norm

lwlls = max([|¢l], 7lal, r|5]), (2.6)
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where r is a number, » > 1 and ||| = maxo<;<; |¢(t)|. The number r will be chosen later for
each particular problem.
Further, define the operator A acting on elements w € B by the formula

FQu(t), w' (), u” (), u” (1))
Aw = fo g(s)u(s)ds , 2.7)

fo h(s)u”(s)ds

where u(t) is the solution of the problem (2.2).
Assuming that the function f (¢, u, y,v, z) is continuous and the functions g(s), h(s) are inte-
grable on [0, 1] we have Aw € B. It is easy to verify the following

Lemma 2.1. If w = (p,,3)T is a fixed point of the operator A in the space B, i.e., w is a
solution of the operator equation
Aw =w (2.8)

in B, then the function u(t) determined from the problem (2.2) solves the original problem (1.1)-
(1.2). Conversely, if u(t) is a solution of the problem (1.1)-(1.2), then the triplet (o, o, 3) defined
by (2.1) is a solution of the operator equation (2.8).

Thus, by this lemma, the problem (1.1)-(1.2) is reduced to the fixed point problem for A in
the space 5.

Now, we study the properties of A. For this purpose we consider the solution of the problem
(2.2).

Differentiating both sides of (2.3) we obtain

/Glts s)ds + P'(«, B3,1),

u'(t) = Gz(t, s)e(s)ds + P"(a, B,1), 2.9)
0
1
u"'(t) = Gs(t,s)p(s)ds + P («, B, 1),
0
where _
Gilt,s) = aGgit(f’S), (i=1,2,3).

Notice that

and G»(t,s) <0Vt,s € [0,1].
Now denote

»_max/ |G, (t,5)|ds,

0<t<1 (2.10)
= || PY, (i=0,1,2,3).
Here P is the derivative of order i in ¢ of the function P(c, 3,t).
It is easy to verify that
5 1 1 1
My= ) My= o=, My =, My =
0734 T T4 T T T 2 2.1

1 1
Py < o| + 6|ﬁ\7 P <|a|l+ §\5|7 P, =P =|p|.
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Then, from (2.3), (2.9) and (2.10) we obtain the following estimates for the solution of the
problem (2.2):

[ull < Mollll + Fo,
o[l < Millell + P,

" (2.12)
[l < Mallgl| + P,
[u™|| < Ms]l]l + Ps.
For any number M > 0 define the domain
7 4
Dy ={(t,u,y,v,2) [0 <t <1, ful < (Mo + —)M, |y| < (M + )M,
6r 3r
| | (2.13)
o] < (M2 + )M, |2] < (M5 + )M}
and as usual, denote by B[0, M] the closed ball in B.
From now on suppose that the function f (¢, u,y) is continuous in D). Further, denote
1 1
0= [ lats)ids, 6= [ In(s)lds. 2.14)
0 0

Lemma 2.2. Suppose that there exists a number M > O such that the function f(t,u,y,v,z) is
continuous and bounded by M in Dy, i.e.,

|f(t,u,y,v,2)| <M V(t,u,y,v,2) € Dy (2.15)

and the condition

7 1
qr == max{r@l(Mo + 5), T@Q(Mz + ;)} <1 (2.16)

holds, then the operator A defined by (2.7) maps the closed ball B0, M] in B into itself.
Proof. Letw = (p,a,8)T € B[0, M]. Then ||p|| < M and |o| < 2 |8] < Y. Consider the

r

problem (2.2). From the estimates (2.12) for the solution (t) and its derivatives, and (2.11) we
obtain

7 4
<(Moy+— | M nN<{M+—\|M
full < (Mo-+ & ) M. 'l < (4 4 51 ) o,

" 1 " 1
o) < (s D)1y, o) < (a5 + Dy

Therefore, (¢, u(t),u'(t),u”(t),u" (t)) € Dy forany ¢t € [0, 1]. Hence, by the assumption (2.15)
we have
[ (& u(), ' (8), w" (8), (1)) < M.

Next, there hold the estimates

7
<rbi||ul| <70 (Mo + —)M < 1M < M.

" 6r

[ stoptsys

Similarly, we have

1
1
/ h(s)u” (s)ds| < 10a(Ms + L)M < M.
0 T

r
Therefore,

[ Awl|s < M.
This means that the operator A maps the closed ball B[0, M| C B into itself. O

Lemma 2.3. The operator A is a compact operator in B[0, M].
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Proof. The compactness of A follows from the compactness of the integral operators (2.3) and
(2 9) the continuity of the function f (¢, u,y, v, z) and the compactness of the integral operators

fo s)ds and fo Yu" (s)ds. o

Theorem 2.4. Suppose the conditions of Lemma 2.2 are satisfied. Then the problem (1.1)-(1.2)
has a solution.

Proof. By Lemma 2.2 and Lemma 2.3, the operator A is a compact operator mapping the closed
ball B[0, M] in the Banach space B into itself. Therefore, according to the Schauder fixed point
theorem, the operator A has a fixed point in B[0, M]. This fixed point generates a solution of the
problem (1.1)-(1.2). O

Now we study the positivity of solutions in the case when g(s) > 0 h(s) > 0. In this case we
introduce the domain D;, by the formula

7 4
Dy, {(tuy,v 2)|0<t<1, O<u<(M0—|—6 )M, \y|<(M1+3 )M
X X " (2.17)
—(Mz+ )M < <0, [o] < (Ms + ;)M}
and instead of the ball B[0, M| we introduce the set
Sy = {(<p,a,5)T, 0<p<M 0<ra<M, —MST/J’SO}
Theorem 2.5 (Positivity of solution). Suppose g(s) > 0,h(s) > 0in [0, 1] and
(i) The function f(t,u,y,v, z) is continuous and
0 < f(t,u,y,v,2) < M in D}, (2.18)

(ii) The condition (2.16) is satisfied.
Then the problem (2.2) has a nonnegative solution. Besides, if f(t,0,0,0,0) £ 0in (0,1)

then the solution is positive.

Proof. 1t is easy to verify that under the conditions of the theorem, the operator A maps Sy, into
itself. Indeed, for any w € Sy, w = (p,, B)T wehave 0 < p < M,0<ra < M,—M <rf3 <
0. Since Go(t,s) > 0for0 <t,s <1,and P(«, 3,¢) > 0for 0 <t,s <1, from (2.3) and (2.12)
we have

7 4
0<ut) < (Mo+ )M, [W'(t)] < (Mi+ 7-)M
for any 0 < ¢ < 1. Next, since G(t,s) < 0for0 <¢,s < 1,and P"(«,3,t) <O0for0 <t <1
and 8 < 0 we also have
1 " n 1
—(M; + ;)M <d'(t) <0, |u" ()] < (M3 + ;)M

for any 0 < ¢ < 1. Therefore, for the solution u(¢) of (2.2) we have
(t,u(t),u'(t), u” (), u" (t)) € D}y,
and by the condition (2.18) we obtain
0 < f(t,ut),d(t),u"(t),u"(t)) < M.

Due to (2.16) we have also

7
)M < M,

1
0< 7"/ g(s)u(s)ds < ro (Mo + <
0 67‘
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1 1
—M < —r0(My + )M <7 / h(s)u" (s)ds < 0.
0

Hence, (f(t,u(t), u/(t),u”(t),u’”(t)),rfol g(s)u(s)ds,rfol h(s)u"(s)ds)T € Sy, ie. A: Sy —
S

Also, as shown above, A is a compact operator in S, due to this A has a fixed point in
S, which generates a solution of the problem (2.2). This solution is nonnegative. Due to the
condition f(¢,0,0,0,0) # 0in (0, 1) the function u(¢) = 0 cannot be the solution of the problem.
It implies that the solution must be positive. O

Theorem 2.6 (Existence and uniqueness). Suppose that the functions hi(s), ha(s) are integrable
on [0, 1] and there exist numbers M > 0 and Ly, L1, Ly, L3 > 0 such that the following hypothe-
ses are satisfied:

(H1) The function f(t,u,v,v,z) is continuous and | f(t,u,y,v, z)| < M for any (t,u,y,v,z) €
Dy, where Dy is defined by (2.13).

(H2) [f(t,u2,y2,v2,22) — f(t,ur,y1,v1, 21)| < Lolua —ui|+ Li|yz — y1| + La|vy —vi| + L3| 22 —
Zl|7 v(tvuivyhvivzi) S DM7 1= 152

(H3) ¢ :=max{q,q:} < 1, where q is defined by (2.16) and

7 4 1 1
¢ = Lo(My + 67) + Ly (M, + 37) + Lo(M; + ;) + L3(M; + ;).

Then the problem has a unique solution u € C*[0,1].

Proof. Under the hypotheses (H1) and (H3) by Lemma 2.2 the operator A defined by (2.9) is
a mapping from the closed ball B0, M] into itself. Taking in addition the hypothesis (H2)
into account it is easy to prove that the operator A is a contraction mapping from B[0, M] into
itself with the contraction coefficient q. Therefore, it has a unique fixed point in B[0, M| which
corresponds to a unique solution of the problem (2.2). This solution is, of course, belongs to
C*0,1] O

Analogously as the above theorem, it is easy to prove the following

Theorem 2.7 (Existence and uniqueness of positive solution). Suppose g(s) > 0,h(s) > 0 in
[0, 1]. If in Theorem 2.6 replace Dy by D}, defined by (2.17), Hypothesis (H1) by (2.18) then
the problem has a unique nonnegative solution u(t) € C*[0, 1]. Besides, if f(t,0,0,0,0) # 0 in
(0, 1) then the solution is positive.

Remark 2.8. If g(s) = 0 (or h(s) = 0) then a = 0 (or 8 = 0), therefore, some corresponding
changes should be taken into account in the definitions of D), ’D&, 01,60, and ¢, in the above
theorems.

3 Solution method

To solve the problem (1.1)-(1.2) consider the following iterative method, which in essence is a
realization of the successive iterative method for finding the fixed point of the operator A in the
ball B[O, M]:

(i) Given

@o(t) = f(t,0,0,0,0), ap =0, By =0. 3.1



180 Quang A Dang and Quang Long Dang

(ii) Knowing @ (¢) and a, B (k =0, 1,...) compute

1

Uk (t) = | Go(t, S)QOk(S)dS + P(Oék, B, t),
1
ye(t) = [ Gi(t, s)er(s)ds + P'(ow, Br,t),
. (3.2)
Vg (t) = A Gz(t, S)QOk(S)dS + P//(Oék, B, t),
1
2k (t) = A G3(t, S)QOk(S)dS + P’”(ozk, B, t)
(iii) Update
er1(t) = f(t,ur(t), yx(t), vi(t), 2x(1)),
1
gyl = /0 g(s)ur(s)ds, (3.3)

1
Br+1 2/0 h(s)vg(s)ds.

This iterative method converges with the rate of geometric progression and there holds the esti-
mate

k
ok = wlis < 3 lwr = wolls = pid,

where wy, — w = (sak -, ap —a, By — 5)T and

¢
Pk =10 d = |lw —wolB. (3.4)
—q
From the definition of the norm in B it follows
¢
llor — ol < 1—_q||w1 —wol s = prd,
1 ¢* 1
log, —af < = w1 —wols = —prd.
rl—gq r
1 ¢* 1
1B — B < = g lwi —wol|lg = —prd.
rl—gq r

These estimates imply the following result of the convergence of the iterative method (3.1)-(3.3).

Theorem 3.1. The iterative method (3.1)-(3.3) converges and for the approximate solution u(t)
there hold estimates

7 4
o=l < (Mo + & Y, i = 'l < (1+ 5 ) .

3
" " 1 " n 1
lug —w"l < { M2+ — ) prd, Jlug' = u™| < ( M+ — | ped,

where u is the exact solution of the problem (1.1)-(1.2), pi, and d are defined by (3.4), and r is
the number available in (2.6).

To numerically realize the above iterative method we construct a corresponding discrete iter-
ative method. For this purpose cover the interval [0, 1] by the uniform grid &, = {t; = ih, h =
1/N,i = 0,1,..., N} and denote by @y (¢), Ux (), Yi(t), Vi(t), Zx(¢) the grid functions, which
are defined on the grid @;, and approximate the functions . (t), u (t), yx (t), vk (t), 2k (t) on this
grid. We also denote by ), the approximation of o, and ), the approximation of .

Consider now the following discrete iterative method:
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(i) Given A
Do(t;) = £(¢,0,0,0,0), i =0,....N; G =0, 5o =0. 3.5

(ii) Knowing ®(¢;), i =0, ..., N and &y, B (k=0,1,...) compute approximately the definite
integrals (3.2) by trapezium formulas

N
U th]GO t“t )¢)k( )+P(ak75k7 )7
j=0
N
Yits) = hp;Gi(ti, t;)@u(ty) + P' (G, B i),
7=0
. (3.6)
Vi( thjcz ti t)®Pr(t;) + P (G, Brs ti),
j=0
N
Zi(ti) = hpiG3(ti, t;) P (t5) + P (6, B, 1),
§=0
1=0,...,N,
where p; is the weight of the trapezium formula
1/2, j=0,N
Pj = .
,j=12,.,N—-1
and
s, 0<s<t<1,
Giltis) =4 —1/2+s, s=t,
—1+s, 0<t<s<l.
(iii) Update
D1 (t:) = f(ts, U(ts), Yi(ti), U (), Y (i) (t:), Ya(t:)), (1 = 0, ..., N),
N
Ak = hpig(t;)Uk(t;),
= (3.7)

N
Bkﬂ = Z hpjih(t;)Vi(t;)
§=0
Analogously as done in [5] we obtain the following result of the convergence of the discrete
iterative method (3.5)-(3.7):

Theorem 3.2. Under the assumptions of Theorem 2.6, for the approximate solution of the prob-
lem (1.1)-(1.2) obtained by the discrete iterative method on the uniform grid with grid size h
there hold the estimates

7
00 = ull < (Mo + - ) ma-+ 002),
¥ — ] < (Ml n )pkd+ o),
(3.8)

||V *u//| S M, + )pkd-i-O(hz)

12y, — || < (Mg + )pkd—|— O(h?).
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4 Examples

In this section we demonstrate the validity of the obtained theoretical results and the efficiency
of the numerical method proposed in the previous section. In all numerical examples below we
perform the iterative method (3.5)-(3.7) until

max {||q>k — @y ||, 7|ak — @], 7Bk — Bk—l|} <1077,

Example 1. Consider the following problem

4
S = T cosm(t — ;) +

. 1
75 sinm(t — =)

2

1250
L ot — Yy ) +u@ ), 0<t<t,

625 2
A.1)

with the exact solution u(t) = 5 cos m(t — %)

For this example g(s) =s—1,h(s)=s—%and f = f(t,u,y) = 5= -~ cos r(t— D+ g sinm(t—
1) — s cos> m(t — §) +u? +uy. Itis easy to see that 6, = 6, = 1/4,. Itis p0551ble to verify that
with the selection r = 10, M = 5 we have r6; (M + £-) = 0.3242,r6,(M> + 1) = 0.5625, so
q1 = 0.5625. The function f (¢, u, y) satisfies the Lipschitz condition in u, y with the coefficients
Lo =2.1719, L) = 0.6484 in D). Therefore, ¢ = 0.3951, and, consequently, ¢ = 0.5625 < 1.
Thus, all the assumptions of Theorem 2.6 are satisfied. By this theorem, the problem (4.1) has a
unique solution. This is the above exact solution.

The results of convergence of the iterative method (3.5)-(3.7) are given in Table 2. In the

Table 1. The convergence in Example 1.
N h? K Error
50 4.0000e-04 10 8.607%-10
100 1.0000e-04 10 4.7898e-11
200 2.5000e-05 10 1.6051e-11

table N + 1 is the number of grid points on [0, 1], K is the number of iterations performed,
Error = ||Ug — ul|, u is the exact solution. From this table we see that the accuracy of the
iterative method is much better than O(h?). So, the iterative method is very efficient.

Example 2. Consider the following problem

u™(t) = 1+ sint + u?(t) +
1

u(0) :/ s*u(s)ds, u(1) =0, 4.2)
0

W (0) = /0 S (s)ds, (1) = 0

In this example 0 < f(t,u,y,v,2) = 1+sint+u>+ 35>+ 574 We can choose M = 2.6,r =
10 so that in the domain D7}, the function 0 < f(¢,u,y,v,2) < M and it satisfies the Lipschitz
conditions with the coefficients Ly = 0.6744, L; = 0.4550, L, = 0.1300, L3 = 0.4043. We
have also 0, = fol $2ds = %, 0, = fol s/2ds = }1. Hence, it is easy to see that all the conditions
of Theorem 2.7 are satisfied. Therefore, the problem (4.2) has a unique positive solution. The
results of convergence of the iterative method for the example are reported in Table 2.
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Table 2. The convergence in Example 2.

N K (075:¢ B[{
50 10 0.0053 -0.0411
100 10 0.0054 -0.0411
200 10 0.0054 -0.0411
500 10 0.0054 -0.0411

The approximate solution found by the discrete iterative method after 10 iterations for N =
100 is depicted in Figure 1.

0.03

0.025 F \
0.02 |
0.015 - / N\
0.01f \
/ \

0.005 \ q

-0.005 : : : :
0] 0.2 0.4 0.6 0.8 1

Figure 1. The graph of the approximate solution in Example 2.

Remark 4.1. Consider a generalized version of the problem (1.1)-(1.2), namely, the problem
with non-homogeneous boundary conditions

um/(t) = f(tv u(t)a ul(t)v u”(t)v um(f'))v

O<t<l,
u(0) = /0 g(s)u(s)ds + c1, u(l) = ez,

u”(0) = /0 h(s)u"(s)ds + c3, u” (1) = ¢4,

where ¢y, ¢;, ¢3, ¢4 are real numbers.

For solving the problem we propose an iterative method similar to the iterative method (3.5)-
(3.7) for the problem (1.1)-(1.2) with only a difference that instead of P(«, 3,t) defined by (2.7)
there stands

P(a?IB7 t) = ap + a]t + a2t2 + Cl3t3,
where

ag — « Cl, 4] = —«& 3 C1 (&) 303 664,

1 1 1
as = 5(54-03), a3 = ¢4 — 8(54-03)«

In all numerical examples below we perform the iterative method (3.5)-(3.7) until

max { [ — @1, 16k — A1, B — B} < 107°.



184 Quang A Dang and Quang Long Dang

Example 3. Consider the following problem

W (t) =24 — (t* + 1) — 12(483 + D)2+ P () Fu(t)u(t), 0<t<l1,

u(0) :/0 su(s)ds — 3 u(1) =2,

I
u”(0) :/ 1u”(s)ds - é, (1) =12,
) 2 2

This problem has the exact solution u(t) = t* + t. The results of computation by the iterative
method (3.5)-(3.7) for this problem are given in Table 3. In Table 3 a i and Sk are the computed

Table 3. The convergence in Example 3.
N h2 K 16774 Bx Error
50 4.0000e-04 12 0.5002 1.5006 2.2617e-04
100 1.0000e-04 12 0.5001 1.5002 5.6546e-05
200 2.5000e-05 12 0.5000 1.5000 1.4137e-05
500 4.0000e-06 12 0.5000 1.5000 2.2619e-06

approximate values of o = fol su(s)ds and 8 = fol su”(s)ds.

Example 4. Consider the problem

W () = \}E(\/l F ) T+ @ m)2), 0<i<,
u(0) = /01 su(s)ds, u(1) =0,

1
u”(0) = / s*u" (s)ds, u"(1) = 0.
0
Notice that since the function

p(t) = Ftult) ' (1), 0" (1) = jg (y/1+ () + 1+ @ (0w(0)?)

has a weak singularity at ¢ = 0 then fol Gi(t, s)e(s)ds (I = 0,1,2,3) exist. Therefore, the iter-
ative method (3.1)-(3.3) can be carried out. In the discrete version of the method for computing
the above integrals by (3.6) we put @ (t;) = P (0) = 0 because G, (¢;,0) = 0.

The results of convergence of the iterative method (3.5)-(3.7) for this example are given in
Table 4. The graph of the approximate solution is depicted in Figure 2.

Table 4. The convergence in Example 4.
N K [(677¢ 5]{
50 11 0.0176 -0.0807
100 11 0.0176 -0.0808
200 11 0.0176 -0.0808
500 11 0.0176 -0.0809

5 Conclusion

In this paper we have established the existence, uniqueness and positivity of solutions of a fourth
order nonlinear differential equation with two integral boundary conditions. The idea of the



SOLUTION OF A FOURTH ORDER NONLINEAR DIFF. EQN. 185

0.06

005 yd 1

0.04 - / B

0.03 + /// \ 1
0.02 |, \ i

0.01 4

Figure 2. The graph of the approximate solution in Example 4.

method used is to reduce the problem to a fixed point problem for an operator defined on triplets
of functions and real numbers. It is a further development of the method applied by ourselves
before for other local and nonlocal nonlinear boundary value problems. We also have studied
an iterative method for solving the problem at continuous level and a discrete scheme for re-
alizing the continuous iterative method. We have obtained the total error of the approximate
discrete solution, which consists of the error of the continuous iterative method and the error
of discretization at each iteration. Many examples demonstrate the applicability of the obtained
theoretical results and efficiency of the iterative method.

The method used in this paper and in [5] for nonlinear fourth order differential equations
with integral boundary conditions can be extended to nonlinear differential equations of any
order n > 2 with m < n linear integral boundary conditions provided that the Green functions
for them are known.
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