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Abstract In this paper, we define the concept I−primary hyperideal in multiplicative hyper-
ring R. A proper hyperideal P of R is an I−primary hyperideal if for a, b ∈ R with ab ⊆ P −IP
implies a ∈ P or b ∈

√
P . We provide some characterizations of I−primary hyperideals. Also

we conceptualize and study the notions 2−absorbing I−primary and n−absorbing I−primary
ideals into multiplicative hyperrings as generalizations of prime ideals. A proper hyperideal
P of a hyperring R is an n−absorbing I−primary hyperideal if for x1, · · · , xn+1 ∈ R such
that x1 · · ·xn+1 ⊆ P − IP , then x1 · · ·xn ⊆ P or x1 · · ·xi−1xi+1 · · ·xn+1 ⊆

√
P for some

i ∈ {1, · · · , n}. We study some properties of such generalizations. We prove that if P is an
I−primary hyperideal of a hyperring R, then each of P

J , S−1P , f(P ), f−1(P ),
√
P and P [x] are

I−primary hyperideals under suitable conditions and suitable hyperideal I , where J is a hyper-
ideal contains P . Also, we characterize I−primary hyperideals in the decomposite hyperrings.
Moreover, we show that the hyperring with finite number of maximal hyperideals in which every
proper hyperideal is n−absorbing I−primary is a finite product of fields.

1 Introduction

Many concepts in modern algebra was generalized by generalizing their structures to hyper-
structure. The French mathematician F. Marty in 1934 introduced the concept hyperstructure or
multioperation by returning a set of values instead of a single value [8]. The hyperstructures the-
ory was studied from many points of view and applied to several areas of mathematics especially
in computer science and logic. In [8] the author presented the concept hypergroup and after that
in 1937, the authors H. S. Wall [11] and M. Keranser [7] also gave their respective definitions of
hypergroup as a generalization of groups.

The hyerrings were introduced by many authors. A type of hyperring where the multiplica-
tion is a hyperoperation while the addition is just an operation introduced by Rota in 1982 and
called a multiplicative hyperring [10]. Another type of hyperring in which addition is a hyper-
operation while the multiplication is an operation introduced by M. Krasner in 1983 and called
Krasner hyperring [7]. The hyperrings in which the additions and multiplications are hyperoper-
ations where introduced by De Salvo [6]. Procesi and Rota in [9] have conceptualized the notion
of primeness of hyperideal in a multiplicative hyperring.

In the recent years many generalizations of prime ideals were introduced. Here state some of
them. The authors in [4] and [3] introduced the notions 2−absorbing and n−absorbing ideals in
commutative rings. A proper ideal P is called 2−absorbing (or n−absorbing) ideal if whenever
the product of three (or n+ 1) elements of R in P , the product of two (or n) of these elements is
in P .

In [1] and [2], the author Akray introduced the notions I−prime ideal, I−primary ideal and
n−absorbing I−ideal in classical rings as a generalization of prime ideals. For fixed proper ideal
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I of a commutative ring R with identity, a proper ideal P of R is an I−prime if for a, b ∈ R
with a.b ∈ P − IP , then a ∈ P or b ∈ P . A proper ideal P of R is an I−primary if for
a, b ∈ R with a.b ∈ P − IP , then a ∈ P or b ∈

√
P . A proper ideal P of R is an n−absorbing

I−primary ideal if for x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ∈ P − IP , then x1 · · ·xn ∈ P or
x1 · · ·xi−1xi+1 · · ·xn+1 ∈

√
P for some i ∈ {1, 2, · · · , n}.

In this paper all rings are commutative hyperring with identity. Here we want to define the
concepts I−primary ideal, 2−absorbing I−primary and n−absorbing I−primary ideal in multi-
plicative hyperrings. For fixed proper hyperideal I of a multiplicative hyperring R, a proper hy-
perideal P of R is an I−primary if a, b ∈ R with a.b ⊆ P −IP , then a ∈ P or b ∈

√
P . A proper

hyperideal P of R is a 2−absorbing I−primary if for x1, x2, x3 ∈ R such that x1x2x3 ⊆ P − IP ,
then x1x2 ⊆ P or x1x3 ⊆

√
P or x2x3 ⊆

√
P . A proper hyperideal P of a hyperring R is an

n−absorbing I−primary hyperideal if for x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ⊆ P − IP ,
then x1 · · ·xn ⊆ P or x1 · · ·xi−1xi+1 · · ·xn+1 ⊆

√
P for some i ∈ {1, · · · , n}. A proper hyper-

ideal I of a hyperring R is a radical if I =
√
I . Let I , J be two hyperideals of R, we define

(I : J) = {r ∈ R : r ◦ J ⊆ I}.

The paper is arranged as follows. In Section 2, we define the definition of an I−primary
hyperideal of a hyperring R. Then we provide some properties of I−primary hyperideal, like as
this an attractive property; let R be a hyperring and h : R −→ R be a good epimorphism and P
be an I−primary hyperideal of R with Kerh ⊆ P , then h(P ) is an h(I)−primary hyperideal. It
is shown (Theorem 2.9) that if h : R −→ L be a good homomorphism from hyperring R into L
and assume P is an I−primary hyperideal of L, then h−1(P ) is an I−primary hyperideal of R.
It is shown (Theorem 2.16) that if P be a proper hyperideal of a hyperring R, then the following
assertions are equivalent:

(i) P is I−primary hyperideal;

(ii) for r ∈ R− P , (P : r) = P ∪ (IP : r);

(iii) for r ∈ R− P , (P : r) = P or (P : r) = (IP : r);

(iv) for hyperideals J and K of R, JK ⊆ P and JK * IP imply J ⊆ P or K ⊆ P .

At the end of this section we prove that if P is an I−primary hyperideal of a hyperring R, then√
P is a

√
I−prime hyperideal. In Section 3 firstly we introduce the definition of a 2−absorbing

I−primary and n−absorbing I−primary hyperideals. We prove that if
√
P is a primary hy-

perideal of R, then P is a 2−absorbing I−primary hyperideal. Also we show that, if
√
P is a

2−absorbing primary hyperideal of R, then P is a 3−absorbing I−primary hyperideal and in
general, P is an (n + 1)−absorbing I−primary hyperideal, whenever

√
P is an n−absorbing

primary hyperideal of R. Also we prove that if P be an n−absorbing I−primary hyperideal of
R, then

√
P is n−absorbing I−primary hyperideal of R and xn ⊆ P , for each x ∈

√
P . Also

we prove that, let | Max(R) |≥ n+ 1 ≥ 2. Then each proper hyperideal of R is a n−absorbing
I−primary hyperideal if and only if each quotient of R is a product of (n + 1)−fields. At the
same time we give a lot of amazing properties of n−absorbing I−primary hyperideal. Finally,
we show that if P is an I−primary hyperideal of R, then P [x] is an I[x]−primary hyperideal of
polynomial hyperring R[x].

2 I−primary hyperideals

At this section, firstly we define the definition of an I−primary hyperideal of a hyperring R.

Definition 2.1. Let R be a multiplicative hyperring. A proper hyperideal P of R is called an
I−prime hyperideal of R if α ◦ β ⊆ P − IP for α, β ∈ R implies that α ∈ P or β ∈ P .

Definition 2.2. Let R be a multiplicative hyperring. A proper hyperideal P of R is called an
I−primary hyperideal of R if α ◦ β ⊆ P − IP for α, β ∈ R implies that α ∈ P or β ∈

√
P .
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Lemma 2.3. Let P be a proper hyperideal of a hyperring (R,+, ◦). Then P is an I−primary
hyperideal if and only if P/IP is {0}−prime in R/IP .

Proof. (⇒) Let P be an I−primary hyperideal in (R,+, ◦), and a, b ∈ R with {0} 6= (a+
IP )(b + IP ) = a ◦ b + IP ⊆ P/IP . Then a ◦ b ⊆ P − IP implies a ∈ P or b ∈

√
P , hence

a+ IP ∈ P/IP or b+ IP ∈ P/IP . So P/IP is {0}−prime hyperideal in R/IP .
(⇐) Suppose that P/IP is {0}−prime hyperideal in R/IP and take r, s ∈ R such that r ◦ s ⊆
P − IP . Then {0} 6= r ◦ s + IP = (r + IP )(s + IP ) ⊆ P/IP so r + IP ∈ P/IP or
s+ IP ∈ P/IP . Therefore r ∈ P or s ∈

√
P . Thus P is an I−primary hyperideal in R.

Proposition 2.4. Let P be an I−primary hyperideal of R and K be a subset of R. For any
a ∈ R, aK ⊆ P, aK * IP and a /∈ P implies that K ⊆

√
P . (or aK ⊆ P and K * P imply

that a ∈
√
P ).

Proof. Let aK ⊆ P , aK * IP and a /∈ P for any a ∈ R. Then we have aK = ∪aki ⊆ P for all
ki ∈ K. Hence aki ⊆ P and aki * IP for all ki ∈ K. Since P is an I−primary hyperideal and
a /∈ P , ki ∈

√
P , ∀ki ∈ K. Thus K ⊆

√
P .

Proposition 2.5. Let P be an I−primary hyperideal of R and A,B be two subsets of R. If
AB ⊆ P and AB * IP , then A ⊆ P or B ⊆

√
P .

Proof. Assume that AB ⊆ P,AB * IP,A * P and B *
√
P . Since AB =

⋃
aibi ⊆ P ,

aibi ⊆ P , for ai ∈ A, bi ∈ B and as A * P , B *
√
P , we have x /∈ P and y /∈

√
P for some

x ∈ A, y ∈ B. Then xy ⊆ AB ⊆ P and xy * IP . From being P an I−primary hyperideal, we
have x ∈ P or y ∈

√
P which is a contradiction. Thus A ⊆ P or B ⊆

√
P .

Corollary 2.6. Let P be a radical I−primary hyperideal of R and A,B ⊆ R with AB ⊆
P,AB * IP . Then A ⊆ P or B ⊆ P .

Theorem 2.7. Let R be a hyperring and h : R −→ R be a good epimorphism and let P be an
I−primary hyperideal of R with Kerh ⊆ P . Then h(P ) is an h(I)−primary hyperideal.

Proof. First we have to show that h(P ) is hyperideal of R. Let r̄ ∈ R, y ∈ h(P ). Then y = h(x)
and r̄ = h(r) for some x ∈ P and r ∈ R and so rx ∈ P . So r̄y = h(r)h(x) = h(rx) ⊆
h(P ). Now let us show that h(P ) is an I−primary hyperideal. To do this for all x, y ∈ R with
xy ⊆ h(P ) − h(I)h(P ) there exist h(P ) − h(IP ), a, b ∈ R such that x = h(a) y = h(b). So
xy = h(a)h(b) = h(ab) ⊆ h(P ) that is ab ⊆ P + Kerh. Then a ∈ P or b ∈

√
P by primary

of P , that is x = h(a) ∈ h(P ) or y = h(b) ∈
√
h(P ), so h(P ) is h(I)−primary hyperideal of

R.

It is clear that
√
h(P ) = h(

√
P ) for any good homomorphism h : R −→ L, and hyperideal

P of hyperring R. For the inverse homomorphism we have the following lemma.

Lemma 2.8. Suppose that h : R −→ L is a good homomorphism between hyperrings R and L
and P is a hyperideal of L. Then h−1(

√
P ) ⊆

√
h−1(P ).

Proof. Suppose that a ∈ h−1(
√
P ). Then h(a) ∈

√
P , and as h a good homomorphism,

(h(a))n = h (an) ⊆ P for some n ≥ 1, which is equivalent to an ⊆ h−1(P ) or a ∈
√
h−1(P )

and this is equivalent to h−1(
√
P ) ⊆

√
h−1(P ).

Theorem 2.9. Let h : R −→ L be a good homomorphism from hyperring R into L and assume
P is an I−primary hyperideal of L, then h−1(P ) is an I−primary hyperideal of R.

Proof. Assume ab ⊆ h−1(P ) for a, b ∈ R. So h(ab) = h(a)h(b) ⊆ P and as P is an I−primary
hyperideal of L, we obtain h(a) ⊆ P or h(b) ⊆

√
P . Thus, a ⊆ h−1(P ) or b ⊆ h−1(

√
P ) ⊆√

h−1(P ) by Lemma 2.8. Therefore h−1(P ) is an I−primary hyperideal of R.

Proposition 2.10. (1) Let I ⊆ J be two hyperideals of a multiplicative hyperring R. If P is an
I−primary hyperideal of R, then it is J−primary hyperideal.

(2) Let R be a commutative multiplicative hyperring and P an I-primary hyperideal that is
not primary hyperideal, then P 2 ⊆ IP . Thus, an I−primary hyperideal P with P 2 * IP is a
primary hyperideal.
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Proof. (1) The proof comes from the fact that if I ⊆ J , then P − JP ⊆ P − IP .
(2) Suppose that P 2 * IP . We show that P is a primary hyperideal. Let ab ⊆ P for a, b ∈ R.

If ab * IP , then P I−primary gives a ∈ P or b ∈
√
P . So assume that ab ⊆ IP . First,

suppose that aP * IP ; say ax * IP for some x ∈ P . Then a(x+ b) ⊆ P − IP . So a ∈ P or
x + b ∈ P and hence a ∈ P or b ∈

√
P . Hence we can assume that aP ⊆ IP and in a similar

way we can assume that bP ⊆ IP . Since P 2 * IP , there exist y, z ∈ P with yz * IP . Then
(a+ y)(b+ z) ⊆ P − IP . So P I-primary gives a+ y ∈ P or b+ z ∈

√
P and hence a ∈ P or

b ∈
√
P . Therefore P is a primary hyperideal of R.

Corollary 2.11. Let P be an I−primary hyperideal of a hyperring R with IP ⊆ P 3. Then P is
∩∞i=1P

i−primary hyperideal.

Proof. If P is primary hyperideal, then P is ∩∞i=1P
i−primary hyperideal. Assume that P is not

primary hyperideal of R. Therefore P 2 ⊆ IP ⊆ P 3. Thus IP = Pn for each n ≥ 2. So
∩∞i=1P

i = P ∩ P 2 = P 2 and (∩∞i=1P
i)P = P 2P = P 3 = IP . From being P an I-primary

hyperideal, we have P is ∩∞i=1P
i−primary hyperideal.

Corollary 2.12. Let P be an I−primary hyperideal of a hyperring R which is not primary hy-
perideal of. Then

√
P =

√
IP

Proof. Since by Proposition 2.10, P 2 ⊆ IP , hence
√
P =

√
P 2 ⊆

√
IP . The other containment

always holds.

Remark 2.13. Assume that P is an I−primary hyperideal of R but not primary. Then by Propo-
sition 2.10, if IP ⊆ P 2, then P 2 = IP . In particular, if P is a {0}−prime hyperideal but not
primary hyperideal, then P 2 = 0. Suppose that IP ⊆ P 3. Then P 2 ⊆ IP ⊆ P 3; So P 2 = P 3

and thus P 2 is an idempotent hyperideal.

Proposition 2.14. (1) Let R and S be two commutative multiplicative hyperrings and P be
{0}−primary hyperideal of R. Then P × S is I−primary hyperideal of R × S for each hy-
perideal I of R× S with ∩∞i=1(P × S)i ⊆ I(P × S) ⊆ P × S.

(2) Let P be a finitely generated proper hyperideal of a commutative hyperring R. Assume
P is an I−primary hyperideal with IP ⊆ P 3. Then either P is {0}−primary or P 2 6= 0 is
idempotent and R decomposes as T ×S where S = P 2 and P = J×S where J is {0}−primary.
Thus P is I−primary hyperideal for ∩∞i=1P

i ⊆ IP ⊆ P .

Proof. (1) Let R and S be two commutative hyperrings and P be a {0}−primary hyperideal of
R. Then P ×S need not be a {0}−primary hyperideal of R×S. In fact, P ×S is a {0}−primary
hyperideal if and only if P × S is primary hyperideal. However, P × S is I−primary hyperideal
for each I with ∩∞i=1(P × S)i ⊆ I(P × S). If P is a primary hyperideal, then P × S is a
primary hyperideal and thus is I−primary for all I . Assume that P is not primary hyperideal.
Then P 2 = 0 and (P × S)2 = 0 × S. Hence ∩∞i=1(P × S)i = ∩∞i=1P

i × S = 0 × S. Thus
P × S − ∩∞i=1(P × S)i = P × S − 0× S = (P − 0)× S. Since P is {0}−primary hyperideal,
P × S is ∩∞i=1(P × S)i−primary hyperideal and as ∩∞i=1(P × S)i ⊆ I(P × S), P × S is an
I−primary hyperideal.

(2) If P is a primary hyperideal, then P is {0}−primary. So we can assume that P is not
primary hyperideal. Then P 2 ⊆ IP by Proposition 2.10 and hence P 2 ⊆ IP ⊆ P 3. So P 2 = P 3.
Hence P 2 is idempotent. Since P 2 is a finitely generated, P 2 =< e > for some idempotent
e ∈ R. Suppose P 2 = 0. Then IP ⊆ P 3 = 0. So IP = 0 and hence P is {0}−primary. Assume
P 2 6= 0. Put S = P 2 = Re and T = R(1 − e), so R decomposes as T × S where S = P 2. Let
J = P (1 − e), so P = J × S where J2 = (P (1 − e))2 = P 2(1 − e)2 =< e > (1 − e) = 0.
To show that J is {0}−primary hyperideal, let a ◦ b ⊆ J − 0, so (a, 1)(b, 1) = (a ◦ b, 1) ⊆
J × S − (J × S)2 = J × S − 0× S ⊆ P − IP . Since IP ⊆ P 3, IP ⊆ P 3 = (J × S)3 = 0× S.
Hence (a, 1) ∈ P or (b, 1) ∈ P , so a ∈ J or b ∈ J . Therefore J is a {0}−primary hyperideal.

Corollary 2.15. Let (R,+, ◦) be an indecomposable commutative hyperring and P a finitely
generated I−primary hyperideal of (R,+, ◦), where IP ⊆ P 3. Then P is a {0}−primary
hyperideal.
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Theorem 2.16. Let P be a proper hyperideal of a hyperring R. Then the following assertions
are equivalent:

(i) P is I−primary hyperideal;

(ii) for r ∈ R− P , (P : r) = P ∪ (IP : r);

(iii) for r ∈ R− P , (P : r) = P or (P : r) = (IP : r);

(iv) for hyperideals J and K of R, JK ⊆ P and JK * IP imply J ⊆ P or K ⊆ P .

Proof. (1)⇒ (2) Suppose r ∈ R − P and s ∈ (P : r). So rs ⊆ P . If rs ⊆ P − IP , then s ∈ P .
If rs ⊆ IP , then s ∈ (IP : r), So (P : r) ⊆ P ∪ (IP : r). The other containment always holds.

(2) ⇒ (3) Note that if a hyperideal is a union of two hyperideals, then it is equal to one of
them.

(3) ⇒ (4) Let J and K be two hyperideals of R with JK ⊆ P . Assume that J * P and
K * P . We claim that JK ⊆ IP . Suppose r ∈ J . First, let r /∈ P . Then rK ⊆ P gives
K ⊆ (P : r). Now K * P , so (P : r) = (IP : r). Thus rK ⊆ IP . Next, let r ∈ J ∩ P and
choose s ∈ J −P . Then r+ s ∈ J −P . By the first case sK ⊆ IP and so (r+ s)K ⊆ IP . Pick
t ∈ K. Then rt = (r + s)t− st ⊆ IP and rK ⊆ IP. Hence JK ⊆ IP .

(4) ⇒ (1) Let rs ⊆ P − IP . Then (r)(s) ⊆ P . But (r)(s) * IP. So (r) ⊆ P or (s) ⊆
√
P

which means r ∈ P or s ∈
√
P .

Let P be an I−primary hyperideal of a hyperring R and J ⊆ P be a hyperideal of R.
Then P/J is I−primary hyperideal of R/J . Let x, y ∈ R with x̄ ◦ ȳ ⊆ P/J − I(P/J) =
P/J − (IP + J)/J where x̄, ȳ are the images of x, y in R/J . Thus x ◦ y ⊆ P − IP . So x ∈ P
or y ∈

√
P . Therefore x̄ ∈ P/J or ȳ ∈

√
P/J . So P/J is I−primary hyperideal.

Assume R1 and R2 are two hyperrings. It is known that the primary hyperideals of R1 ×
R2 have the form P × R2 or R1 × Q, where P and Q are primary hyperideals of R1 and R2
respectively. We next, generalize this result to I−primary hyperideals.

Theorem 2.17. For i = 1, 2 let Ri be hyperring and Ii be a hyperideal of Ri. Let I = I1 × I2.
Then the I−primary hyperideals of R1 ×R2 have exactly one of the following three types:
(1) P1 × P2, where Pi is a proper hyperideal of Ri with IiPi = Pi.
(2) P1 ×R2 where P1 is an I1−primary hyperideal of R1 and I2R2 = R2.
(3) R1 × P2, where P2 is an I2−primary hyperideal of R2 and I1R1 = R1.

Proof. We first prove that a hyperideal of R1 ×R2 having one of these three types is I−primary
hyperideal. The first type is clear since P1 × P2 − I (P1 × P2) = P1 × P2 − (I1P1 × I2P2) =
φ. Suppose that P1 is I1−primary hyperideal and I2R2 = R2. Let (a, b)(x, y) ⊆ P1 × R2 −
(I1P1 × I2R2) = P1 × R2 − (I1P1 ×R2) = (P1 − I1P1) × R2. Then ax ⊆ P1 − I1P1 implies
that a ∈ P1 or x ∈

√
P1, so (a, b) ∈ P1 × R2 or (x, y) ∈

√
P1 ×R2. Hence P1 × R2 is

I−primary hyperideal. Similarly we can prove the last case. Next, let P1 × P2 be an I−primary
and ab ⊆ P1 − I1P1. Then (a, 0)(b, 0) = (ab, 0) ⊆ P1 ×P2 − I (P1 × P2), so (a, 0) ∈ P1 ×P2 or
(b, 0) ∈ P1×P2, that is, a ∈ P1 or b ∈ P1. Hence P1 is I1−primary. Likewise, P2 is I2−primary.

Assume that P1 × P2 6= I1P1 × I2P2, say P1 6= I1P1. Let x ∈ P1 − I1P1 and y ∈ P2. Then
(x, 1)(1, y) = (x, y) ⊆ P1 × P2. So (x, 1) ∈ P1 × P2 or (1, y) ⊆

√
P1 × P2. Thus P2 = R2 or

P1 = R1. Assume that P2 = R2. Then P1 × R2 is an I−primary, where P1 is an I1−primary of
R1.

Lemma 2.18. If P is an I−primary hyperideal of a hyperring R, then
√
P is a

√
I−prime

hyperideal of R.

Proof. Let ab ⊆
√
P −

√
I
√
P =

√
P −

√
IP for a, b ∈ R. Then (ab)n = anbn ⊆ P for some

n ∈ N and (ab)m * IP for all m ∈ N. So anbn ⊆ P − IP and as P is an I−primary hyperideal
of R, an ⊆ P or bn ⊆

√
P , that is a ∈

√
P or b ∈

√
P which means that

√
P is a

√
I−prime

hyperideal of R.
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We can contract the localization of a multiplicative hyperring R as follows: Let S be a mul-
tiplicative closed subset of R, that is, S is closed under the hypermultiplication and contains the
identity. Let S−1R be the set (R× S/ ∼) of equivalence classes where

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃s ∈ S such that ss1r2 = ss2r1

Let r/s be the equivalence class of (r, s) ∈ R × S under the equivalence relation ∼. The
operation addition and the hyperoperation multiplication are defined by

r1

s1
+
r2

s2
=
s1r2 + s2r1

s1s2
= {a+ b

c
: a ∈ s1r2, b ∈ s2r1, c ∈ s1s2}

r1

s1
· r2

s2
=
r1r2

s1s2
= {a

b
, a ∈ r1r2, b ∈ s1s2}

Note that the localization map f : R → S−1R, f(r) = r
1 is a homomorphism of hyperrings.

It is easy to see that the localization of a hyperideal is a hyperideal.

Theorem 2.19. Let P be an I−primary hyperideal of a hyperringR. Then S−1P is an S−1I−primary
hyperideal of the hyperring S−1R.

Proof. Let r1
s1
, r2
s2
∈ S−1R such that r1r2

s1s2
⊆ S−1P − S−1IS−1P = S−1P − S−1(IP ). Then

for each n ∈ r1r2 and s ∈ s1s2, we have n
s ∈ S

−1P − S−1(IP ). So, there exists q ∈ S with
qn ⊆ P − IP , that is qr1r2 ⊆ P − IP . As P is an I−primary hyperideal, qr1 ⊆ P or rn2 ⊆ P

for some n ∈ N, which means r1
s1

= qr1
qs1
⊆ P or rn2

sn2
⊆ P that is r1

s1
∈ S−1P or r2

s2
∈
√
P . Thus

S−1P is an S−1I−primary hyperideal of S−1R.

3 2−absorbing I−primary and n−absorbing I−primary hyperideals

In this section, we begin to define the definition of a 2−absorbing I−primary and n−absorbing
I−primary hyperideals of a hyperring R.

Definition 3.1. Let R be a multiplicative hyperring. A proper hyperideal P of R is siad to be a
2−absorbing I−primary hyperideal of R if x ◦ y ◦ z ⊆ P − IP for x, y, x ∈ R then x ◦ y ⊂ P or
x ◦ z ⊆

√
P or y ◦ z ⊆

√
P .

Definition 3.2. A proper hyperideal P of a hyperring R is an n−absorbing I−primary hy-
perideal if for x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ⊆ P − IP , then x1 · · ·xn ⊆ P or
x1 · · ·xi−1xi+1 · · ·xn+1 ⊆

√
P for some i ∈ {1, · · · , n}.

Theorem 3.3. Let h : R→ L be a bijective good homomorphism of hyperrings R and L, and P
be a 2−absorbing I−primary hyperideal of L, then h−1(P ) is a 2−absorbing h−1(I)−primary
hyperideal of R.

Proof. Suppose that abc ⊆ h−1(P )−h−1(I)h−1(P ) = h−1(P )−h−1(IP ), for each a, b, c ∈ R.
So h(abc) = h(a)h(b)h(a) ⊆ P and h(abc) * IP . From being P a 2−absorbing I−primary
hyperideal, we have h(a)h(b) ⊆ P or h(a)h(c) ⊆

√
P or h(b)h(c) ⊆

√
P . That is h(ab) ⊆ P or

h(ac) ⊆
√
P or h(bc) ⊆

√
P , which implies ab ⊆ h−1(P ) or ac ⊆ h−1(

√
P ) or bc ⊆ h−1(

√
P ).

By Lemma 2.8 gives that h−1(P ) is a 2−absorbing h−1(I)−primary hyperideal of R.

Every I−primary hyperideal is 2−absorbing I−primary hyperideal. Let (ab)c ⊆ P − IP ,
implies that ab ⊆ P or bc ⊆

√
P or ac ⊆

√
P . If ab * P then by I−primary hyperideal of P , we

have c ∈
√
P and so ac ⊆

√
P or bc ⊆

√
P . Hence P is a 2−absorbing I−primary hyperideal of

R.

Theorem 3.4. Suppose that P is a proper hyperideal of hyperring R. If
√
P is a primary hyper-

ideal, then P is a 2−absorbing I−primary hyperideal of R.
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Proof. Assume xyz ⊆ P − IP and xy * P , for each x, y, z ∈ R. So < xz >< yz >=

< xyz2 >⊆ P ⊆
√
P and from being

√
P a primary hyperideal, we have xz ⊆

√
P or yz ⊆

√
P

by Proposition 2.5. Hence P is a 2−absorbing I−primary hyperideal of R.

Theorem 3.5. If
√
P is a 2−absorbing primary hyperideal of R, then P is a 3−absorbing

I−primary hyperideal of R and in general, P is an (n+ 1)−absorbing I−primary hyperideal,
whenever

√
P is an n−absorbing primary hyperideal of R.

Proof. Let abcd ⊆ P − IP and abc * P . Then (ad)bc ⊆ P ⊆
√
P and by hypothesis we have

(ad)b ⊆
√
P or (ad)c ⊆

√
P or bc ⊆

√
P . Hence adb ⊆

√
P or adc ⊆

√
P or bcd ⊆

√
P , which

guarantees the 3−absorbing primary hyperideal condition of P .

Proposition 3.6. Let P be a hyperideal of a hyperring R and P1, P2, · · · , Pn be 2−absorbing
I−primary hyperideals of R, such that

√
Pi = P for all i = 1, · · · , n. Then

⋂n
i=1 Pi is a

2−absorbing I−primary hyperideal of R and
√⋂n

i=1 Pi = P .

Proof. Assume P =
⋂n

i=1 Pi, and
√⋂n

i=1 Pi =
⋂n

i=1
√
Pi = P . Let xyz ⊆ P − IP and xy * P ,

for x, y, z ∈ R. Thus xy * Pi for some i = 1, 2, · · · , n. From being Pi is a 2−absorbing
I−primary hyperideal and xyz ⊆ P − IP ⊆ Pi, we have xz ⊆

√
Pi = P or yz ⊆

√
Pi = P .

This implies that xz ⊆
√
P or yz ⊆

√
P , which means that P is a 2−absorbing I−primary

hyperideal of R.

Theorem 3.7. Suppose that h : R1 → R2 is a good homomorphism of multiplicative hyperrings.
Then the following statements hold.
(1) Let P2 be a n-absorbing I−primary hyperideal of R2, then h−1 (P2) is a n-absorbing
I−primary hyperideal of R1.

(2) Let h be an epimorphism, P1 is aC−hyperideal ofR1 and P1 is an n-absorbing I−primary
hyperideal of R1 containing Kerh, then h (P1) is a n-absorbing I−primary hyperideal of R2.

Proof. (1) Let a1, · · · , an+1 ∈ R1 and a1 · · · an+1 ⊆ h−1 (P2)− h−1 (I2)h−1 (P2) = h−1(P2)−
h−1(I2P2). Then h (a1 · · · an+1) = h (a1) · · ·h (an+1) ⊆ P2−I2P2. From bing P2 is n−absorbing
I−primary hyperideal ofR2, then a1 · · · an ⊆ P2 or (a1 · · · ai−1ai+1 · · · an+1)r ⊆ P2 for some i ∈
{1, · · · , n} and r ∈ N. We suppose that h(a1) · · ·h(an) ⊆ P2 or (h(a1) · · ·h(ai−1)h(ai+1) · · ·
h(an+1))r ⊆ P2 for some i ∈ {1, · · · , n} and r ∈ N and so a1 · · · an ⊆ h−1(P2) or (a1 · · · ai−1ai+1
· · · an+1)r ⊆ h−1(P2) for some i ∈ {1, · · · , n} and r ∈ N. Hence, h−1 (P2) is an n−absorbing
I−primary hyperideal of R1.

(2) Let x1, · · · , xn+1 ∈ R2 and x1 · · ·xn+1 ⊆ h (P1)−h (I2P1). Then we have y1, · · · , yn+1 ∈
R1 such that h (y1) = x1, · · · , h (yn+1) = xn+1, and h (y1 · · · yn+1) = x1 · · ·xn+1. Here, we
pick any element m ∈ y1 · · · yn+1. Then we obtain h(m) ∈ h (y1 · · · yn+1) ⊆ h (P1) and
so h(m) = h(n) for some n ∈ P1. This implies that h(m − n) = 0, that is, m − n ∈
Ker(h) ⊆ P1 and so m ∈ P1. Since P1 is a C−hyperideal of R1, then we conclude that
y1 · · · yn+1 ⊆ P1. Since P1 is an n−absorbing I−primary hyperideal of R1, then y1 · · · yn ⊆ P1
or y1 · · · yi−1yi+1 · · · yn+1 ⊆

√
P1 for some i ∈ {1, · · · , n}. Without loss of generality, we may

assume that h(y1) · · ·h(yn) ⊆ h(P1) or h(y1) · · ·h(yi−1)h(yi+1) · · ·h(yn+1) ⊆ h(
√
P1) for some

i ∈ {1, · · · , n} which is equivalent to x1 · · ·xn ⊆ h(P1) or x1 · · ·xi−1xi+1 · · ·xn+1 ⊆
√
h(P1)

for some i ∈ {1, · · · , n}. Hence h (P1) is a n−absorbing I−primary hyperideal of R2.

Theorem 3.8. Let P be an n−absorbing I−primary hyperideal of R. Then
√
P is n−absorbing

I−primary hyperideal of R and xn ⊆ P , for each x ∈
√
P .

Proof. Let x ∈
√
P , so xr ⊆ P for some r ∈ N. If r ≤ n, then xn ⊆ P , otherwise, we can use

the n−absorbing I−primary condition on the products xx · · ·xr−n−1 ⊆ P up to conclude that
xn ⊆ P . Now to prove that

√
P is an n−absorbing I−primary hyperideal, take x1x2 · · ·xn+1 ⊆√

P−I
√
P for x1, x2, · · ·xn+1 ∈ R. Then xn1 x

n
2 · · ·xnn+1 ⊆ P and xn1 x

n
2 · · ·xnn+1 * IP ⊆ I

√
P .

Being P an n−absorbing I−primary hyperideal of R gives us xn1 · · ·xni−1x
n
i+1 · · ·xnn+1 ⊆

√
P .

Thus x1 · · ·xi−1xi+1 · · ·xn+1 ⊆
√
P and hence

√
P is an n−absorbing I−primary hyperideal of

R.
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Proposition 3.9. Let Pi be an ni−absorbing I−primary hyperideal of a hyperring R, for i =
1, 2, · · · ,m and IPi = IPj , for all i 6= j. Then ∩mi=1Pi is an n−absorbing I−primary hyperideal
of R, where n =

∑m
i=1 ni.

Proof. Let k > n and x1 · · ·xk ⊆ ∩mi=1Pi − I ∩mi=1 Pi. Then by the hypothesis for each i =
1, · · · ,m there exists a product of ni of these k−elements in Pi. Let Ai be the collection of these
elements and let A = ∪ki=1Ai. Thus A has at most n−elements. Now, as Pi is an ni−absorbing
I−primary hyperideal of R, the product of all elements of A must be in each Pi so ∩Pi contains
a product of at most n−elements and therefore it is an n−absorbing I−primary hyperideal of
R.

Theorem 3.10. Let R =
∏n+1

i=1 Ri be a product of hyperrings Ri and P be a proper nonzero
hyperideal of R. If P is an (n+ 1)−absorbing I−primary hyperideal of R, then P = P1×P2×
· · · ×Pn+1, for some proper n−absorbing Ii−primary hyperideals Pi of Ri, where I =

∏n+1
i=1 Ii

and Ii is an hyperideal of Ri, for i = 1, · · · , n+ 1.

Proof. Let x1, · · · , xn+1 ∈ R with x1 · · ·xn+1 ⊆ P1 − I1P1 and suppose by contrary that P1 is
not n−absorbing I1−primary hyperideal of R. Set ai = (xi, 1, 1, · · · , 1) for i = 1, · · · , n + 1
and an+2 = (1, 0, 0, · · · , 0). Then we have a1 · · · · an+2 = (x1x2 · · ·xn+1, 0, 0, · · · , 0) ⊆ P −IP ,
a1a2 · · · an+1 = (x1x2 · · ·xn+1, 1, 1, · · · , 1) * P and a1 · · · ai−1ai+1 · · · an+1 = (x1x2 · · ·xi−1xi+1

· · ·xn+1, 0, 0, · · · , 0) *
√
P for i = 1, · · · , n + 1, which is a contradiction with being P an

(n + 1)−absorbing I−primary hyperideal of R. By similar arguments, we can show that Pi is
an n−absorbing Ii−primary hyperideal of Ri for i = 1, · · · , n+ 1.

Theorem 3.11. Let R =
∏n+1

i=1 Ri, where Ri is a hyperring for i ∈ {1, · · · , n + 1}. If P is an
n−absorbing I−primary hyperideal of R, then either P = IP or P = P1 × P2 × · · · × Pi−1 ×
Ri × Pi+1 · · · × Pn+1 for some i ∈ {1, · · · , n + 1} and if Pj 6= Ri for j 6= i, then Pj is an
n−absorbing Ij−primary hyperideal in Ri.

Proof. Let P =
∏n+1

i=1 Pi be an n−absorbing I−primary hyperideal of R. Then there ex-
ists (x1, · · · , xn+1) ∈ P − IP , and so (x1, 1, · · · , 1)(1, x2, 1 · · · , 1) · · · (1, 1, · · · , 1, xn+1) =
(x1, x2, · · · , xn+1) ⊆ P . As P is an n−absorbing I−primary hyperideal of R, we have
(x1, x2, · · · , xi−1, 1, xi+1, · · · , xn+1) ⊆ P for some i ∈ {1, 2, · · · , n+1}. Thus (0, 0, · · · , 0, 1, 0, · · · , 0)
⊆ P and hence P = P1×P2×· · ·×Pi−1×Ri×Pi+1 · · ·×Pn+1. If Pj 6= Ri for j 6= i, then we have
to prove Pj is an n−absorbing hyperideal of Ri. Let i < j and take x1x2 · · ·xn+1 ⊆ Pj − IjPj .
Then (0, 0, · · · , 0, 1, 0, · · · , 0, x1x2 · · · xn+1, 0 · · · , 0) = (0, 0, · · · , 1, 0, · · · , 0, x1, 0 · · · , 0)
(0, 0, · · · , 1, 0, · · · , 0, x2, 0 · · · , 0) · · · (0, 0, · · · , 1, 0, · · · , 0, xn+1, 0 · · · , 0) ⊆ P − IP . Since P
is an n−absorbing I−primary hyperideal, (0, 0, · · · , 0, 1, 0, · · · , 0, x1x2 · · ·xk−1xk+1 · · ·xn+1,
0, · · · , 0) ⊆

√
P for some k ∈ {1, 2, · · · , n + 1}. Thus x1x2 · · ·xk−1xk+1 · · ·xn+1 ⊆

√
Pj and

hence Pj is an n−absorbing Ij−hyperideal of Ri. We can do similar arguments for the case
i > j.

In the following result, we characterize hyperrings in which every proper hyperideal of R is
an n−absorbing I−primary hyperideal.

Theorem 3.12. Let |Max(R) |≥ n+1 ≥ 2. Then each proper hyperideal ofR is a n−absorbing
I−primary hyperideal if and only if each quotient of R is a product of (n+ 1)−fields.

Proof. (⇒) Let P be a proper hyperideal of R. Then R
IP
∼= F1 × · · · × Fn+1 and P

IP
∼=

P1 × · · · × Pn+1, where Pi is a hyperideal of Fi, for i = 1, · · · , n+ 1. If P = IP , then
there is nothing to prove, otherwise we have Pj = 0, for at least one j ∈ {1, · · · , n+ 1} since
P
IP is a proper. So P

IP is an n−absorbing {0}−primary hyperideal of R
IR which means P is an

n−absorbing I−primary hyperideal of R.
(⇐) Let m1, · · · ,mn+1 be distinct maximal hyperideals of R. Then m =

∏n+1
i=1 mi is an

n−absorbing I−primary hyperideal of R. we claim that m is not an n−absorbing hyperideal.
First, if mi ⊆ ∪j 6=imj , then there exists mj with mi ⊆ mj by Prime Avoidance Lemma and this
contradicts the maximality of mi. Hence mi * ∪j 6=imj and so, there exists xi ∈ mi − ∪n+1

j 6=i mj

so that x1 · · ·xn+1 ⊆ m. If there exists j ∈ {1, · · · , n+1}with a = x1x2 · · ·xj−1xj+1 · · ·xn+1 ⊆
m ⊆ mj , then xi ∈ mj for some i 6= j which is contradiction. Hence m is not an n−absorbing
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hyperideal. and so mn+1 = Im. Then by the Chinese Reminder Theorem we have R
Im '

R
mn+1

1
× R

mn+1
2
× · · · × R

mn+1
n+1

. Put Fi = R
mi

. If Fi is not a field, then it has a nonzero proper

hyperideal H and so 0×0× ..×0×H ×0×· · ·×0 is an n−absorbing {0}−primary hyperideal
of R

Im . Thus, by Theorem 3.11, we have H = Fi or H = {0} which is impossible. Hence Fi is
a field.

Corollary 3.13. Suppose | Max(R) |≥ n + 1 ≥ 2. Then each proper hyperideal of R is an
n−absorbing {0}−primary hyperideal if and only if R ∼= F1 × ..× Fn+1, where F1, .., Fn+1 are
fields.

Let (R,+, ◦) be a hyperring and x be an indeterminate. Then (R[x],+,2) is polynomial
hyperring by the hyper multiplication.

axn2bxm = (a ◦ b)xn+m

Theorem 3.14. Suppose that P is an I−primary hyperideal of R. Then P [x] is an I[x]−primary
hyperideal of R[x].

Proof. Let a(x) · b(x) ⊆ P [x] − I[x] · P [x] = P [x] − (IP )[x]. Without loss of generality, we
suppose a(x) = cxn and b(x) = dxm. Then c · dxn+m ⊆ P [x], cd ⊆ P and cdxn+m * (IP [x])
implies that cd * IP . P is an I−primary hyperideal gives us c ∈ P or dr ∈ P for some
positive integer r. Thus a(x) = cxn ∈ P [x] or (b(x))r = drxrm ∈ P [x] and so a(x) ∈ P [x] or
b(x) ∈

√
P [x].

Corollary 3.15. Let P be an I−primary hyperideal. Then P [x] is I−primary hyperideal ofR[x].

In a multiplicative hyperring (R,+, ◦) a non empty subset L of R is called a multiplicative
set whenever a, b ∈ A⇒ a ◦ b ∩A 6= φ.

The result [5, Proposition 2.10] is not true for n−absorbing I−primary hyperideal. For exam-
ple, assume that (Z,+, ·) is the ring of integers and for any a, b ∈ Z, we define the hyperoperation
a ◦ b = {2ab, 4ab}. Then (Z,+, ◦) is a multiplicative hyperring. It is clear that 2Z is not prime,
since 1◦1 = {2, 4} ⊆ 2Z but 1 /∈ P , while 2Z is a 2Z−prime, since 1◦1 = {2, 4} * 2Z−4Z. As
2Z is 2Z−prime we have 2Z is a 2Z−primary implies that 2Z is an n−absorbing 2Z−primary.
The set Z − 2Z = {2n+ 1 : n ∈ Z} = Zodd is not a multiplicative set of Z. For 3, 5 ∈ Z − 2Z
but 3 ◦ 5 = {30, 60} * Z− 2Z.

4 Conclusion

We introduced two new generalizations to prime ideals in multiplicative hyperrings called I−primary
hyperideal and n−absorbing I−primary hyperideal. We concluded that they inherit many of the
prime ideal characterizations and properties. Among the main results that we proved is about the
characterizing the hyperrings in which every proper hyperideal is of such types of generalizations
that we introduced. Furthermore, we show that under suitable condition such generalize is closed
under taking radical, homomorphic image, inverse homomorphic image, product, intersect and
adjoining an indeterminate.
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