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Abstract K.S.S. Nambooripad introduced a group lattice as a lattice with group action [5, 6].
Here we extend this idea to the action of semigroups on lattices. In 1971 Donald B. McAl-
ister proved that certain linear representations of a group extend to a linear representation of
completely 0-simple semigroups [4]. The main theorem here is analogous to this observation.

1 Introduction

An action of a group G on any algebraic structure gives a way to represent G by automorphisms
of the respective structure. K.S.S. Nambooripad introduced the action of a group on a lattice, and
he described the resulting structure as a group lattice. In particular, Nambooripad was interested
in studying group actions on arguesian geomodular lattices, and he obtained exciting results on
the action of groups on such lattices [5].

A semigroup lattice is a generalization of a group lattice since semigroup actions are always
an extension of group actions to a broad domain. The action of a semigroup on a lattice affords
the structure called a semigroup lattice. The action of a semigroup S on any algebraic structure
represents S by endomorphisms of the structure. Here one can observe a one-one correspon-
dence between S-lattices and representations of S by lattice endomorphisms. In this paper, we
discuss the semigroup lattices of completely 0-simple semigroups, which is a semigroup with
zero whose only ideals are {0} and itself and has a primitive idempotent. Rees theorem char-
acterizes completely 0-simple semigroups by regular Rees matrix semigroupsM0(G; I,Λ;P ),
which is a matrix semigroup having entries from G ∪ {0}.

In 1971, Donald B. McAlister studied linear representations of completely 0-simple semi-
groups, and he observed that every linear representation of S =M0(G; I,Λ;P ) induces a linear
representation of G. He also noted that certain linear representations of G extend to a linear
representation of S, and he called them extendable representations [4]. We observe the same
thing while studying S-lattices over completely 0-simple semigroups. That is, every S-lattice of
S =M0(G; I,Λ;P ) induces a G-lattice, and there are certain G-lattices that can be extended to
a S-lattices. We illustrate this using the S3-lattice L(S3), the lattice of all subgroups of S3, where
S3 acts by conjugation.

This paper consists of three sections. In the second section, we define the semigroup lattice
with an example. In the third section, we discuss the semigroup lattices over completely 0-simple
semigroups and include the action of a union of the band of groups on lattices as its subsection.

2 Semigroup lattices

Semigroup actions arise as a generalization of group actions. K.S.S. Nambooripad introduced
the action of a group on lattices, and he termed the resulting structure a G-lattice [5]. In this
section, we extend this concept to S-lattices.
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Definition 2.1. Let S be a semigroup and 〈L,≤,∨,∧〉 be a lattice. An action of S on L is a map
(s,m)→ sm ∈ L where s ∈ S and m ∈ L satisfies the following for each s, t ∈ S and m,n ∈ L.

(i) s(tm) = (st)m

(ii) m ≤ n implies sm ≤ sn
(iii) s(m ∨ n) = sm ∨ sn
(iv) s(m ∧ n) = sm ∧ sn

Then L is called an S − lattice. A semigroup lattice is an S−lattice for some semigroup S.
Consider the latticeL(Z) = {nZ | n ∈ N} of all principal ideals of Z with the usual inclusion,

mZ ∨ nZ = gcd(m,n)Z and mZ ∧ nZ = lcm(m,n)Z. The semigroup N under multiplication
acts on L(Z) by a(mZ) = (am)Z and satisfies the following.

(i) a(b(nZ)) = a(bn)Z = (ab)nZ
(ii) mZ ⊆ nZ implies (am)Z ⊆ (an)Z

(iii) a(mZ ∨ nZ) = a(gcd(m,n))Z = gcd(am, an)Z = amZ ∨ anZ
(iv) a(mZ ∧ nZ) = a(lcm(m,n))Z = lcm(am, an)Z = amZ ∧ anZ
Hence L(Z) is an N-lattice.

A semigroup action gives a representation of S by endomorphisms of the respective structure.
Theorem 2.2 is the analogous result for S-lattices.

Theorem 2.2. Let S be a semigroup, and L be a lattice. Then L is an S-lattice if and only if
there exists a representation Γ of S by endomorphisms on L.

Proof. Let Γ : S → End(L) be a representation of S by lattice homomorphisms on L. For
s ∈ S and m ∈ L define sm = Γ(s)(m). Since Γ is a representation and each Γ(s) is a lattice
homomorphism, the above product satisfies properties i to iv of Definition 2.1 and so L is an
S-lattice.
Conversely, let L be an S-lattice. For each s ∈ S define Γ(s) : L→ L such that Γ(s)(m) = sm.
Properties i to iv of Definition 2.1 implies that each Γ(s) is a lattice homomorphism. Also Γ :
S → End(L), which takes each s ∈ S to Γ(s) is a representation of S by lattice endomorphisms.

3 On the action of a completely 0-simple semigroup on lattices

A Rees matrix semigroup S =M0(G; I,Λ;P ) is a semigroup whose elements are I×Λ matrices
over G ∪ {0} having at most one nonzero entry and the binary operation is sandwich matrix
multiplication with P = [pλi]Λ×I . The matrix P = [pλi]Λ×I is called the sandwich matrix. A
matrix having its unique nonzero entry g ∈ G at the (i, λ)th position can be identified as the
triplet (g, i, λ). The binary operation is given by,

(g, i, λ)(h, j, µ) =

{
(gpλjh, i, µ) if pλj 6= 0;
0 otherwise.

The matrix P is said to be regular if each row and each column of P has at least one nonzero
entry. A regular Rees matrix semigroup is a Rees matrix semigroup with a regular sandwich
matrix. Rees theorem characterizes completely 0-simple semigroups by regular Rees matrix
semigroups [3]. In the following, we consider semigroup lattices of completely 0-simple semi-
groups.

In 1971 Donald B. McAlister proved that every linear representation Γ of a completely 0-
simple semigroup S = M0(G; I,Λ;P ), induce a linear representation γ of G and Γ can be
reconstructed in terms of γ. Conversely, there are certain linear representations γ of G which
can be extended to a representation of S. He termed γ′s with this property as extendable rep-
resentations [4]. It is already seen that every G-lattice gives a representation of G by lattice
automorphisms, and every S-lattice gives a representation of S by lattice endomorphisms. Now
we aim to have an observation analogous to that of D. B. McAlister in lattice theoretic terms
(Theorem 3.2).
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Lemma 3.1. Let S be a semigroup with a subgroup G and L be an S-lattice. Then there exists a
sublattice of L, which is a G-lattice.

Proof. Let L be an S-lattice. Le = {em | m ∈ L} be the set of all elements in L moved by the
identity e in G. Le is a sublattice of L, where em ≤ en whenever m ≤ n, em ∨ en = e(m ∨ n)
and em ∧ en = e(m ∧ n). The restriction of the action to G× Le gives an action of the group G
on Le, so Le is a G-lattice.

Let S =M0(G; I,Λ;P ) be a completely 0-simple semigroup. For pλi 6= 0,Hiλ = {(g, i, λ) |
g ∈ G} is a subgroup of S isomorphic with G. Using Lemma 3.1, every S-lattice L gives an
Hiλ-lattice on a sublattice of L denoted as Liλ. As Hiλ

∼= G, Liλ is a G-lattice.

Theorem 3.2. Let S =M0(G; I,Λ;P ) be a completely 0-simple semigroup, L an S-lattice and
Γ : S → End(L) be the corresponding representation. For pλi 6= 0, let L′ be a G-lattice
equivalent to the G-lattice Liλ, having γ : G → Aut(L′) as the representation. Then there
exist lattice homomorphisms Rj : L′ → L and Qµ : L → L′ such that QµRj = γ(pµj) and
Γ(g, j, µ) = Rjγ(g)Qµ for all (g, j, µ) ∈ S.

Conversely, let γ : G → Aut(L′) be the representation corresponding to a G-lattice L′ and
L be any lattice admitting lattice homomorphisms Rj : L′ → L and Qµ : L → L′ such that
QµRj = γ(pµj). Then Γ : S → End(L) such that Γ(g, j, µ) = Rjγ(g)Qµ for all (g, j, µ) ∈ S,
defines an action of S on L. Further, the G-lattice Liλ is equivalent to the G-lattice L′.

Proof. S = M0(G; I,Λ;P ) be a completely 0-simple semigroup and L be an S-lattice. For
pλi 6= 0 the group Hiλ is isomorphic with G and by Lemma 3.1, Liλ = {(pλi−1, i, λ)m |
m ∈ L} is a G-lattice. The representation associated with the G-lattice Liλ be γiλ : G →
Aut(Liλ), which is the composition of the isomorphism between G and Hiλ and the restriction
of Γ into Hiλ. Let L′ be any G-lattice isomorphic with Liλ and γ : G → Aut(L′) be the
associated representation of G. Then there exists an isomorphism α : Liλ → L′ such that
γiλ(g) = α−1γ(g)α for all g ∈ G. Let s = (g, j, µ) be any element in S. If e denotes the identity
in G,

s = (e, j, λ)(pλi
−1g, i, λ)(pλi

−1, i, µ).

So
Γ(s) = Γ(e, j, λ)Γ(pλi−1g, i, λ)Γ(pλi−1, i, µ)

= Γ(e, j, λ)γiλ(g)Γ(pλi−1, i, µ)

= Γ(e, j, λ)α−1γ(g)αΓ(pλi−1, i, µ)

= Rjγ(g)Qµ

where Rj = Γ(e, j, λ)α−1 : L′ → L and Qµ = αΓ(pλi−1, i, µ) : L→ L′. Then

QµRj = αΓ(pλi−1, i, µ)Γ(e, j, λ)α−1

= αΓ(pλi−1pµj , i, λ)α−1

= αγiλ(pµj)α−1 = γ(pµj).

Conversely, assume that L′ is a G-lattice and γ : G → Aut(L′) be the corresponding represen-
tation. Also assume that, for each j ∈ I and µ ∈ Λ, Rj : L′ → L and Qµ : L → L′ are lattice
morphisms such that such that QµRj = γ(pµj) for some lattice L. Since P is a regular matrix,
each row and each column of P has at least one nonzero entry. Hence, for each Rj , there exists
a Qµ such that QµRj is invertible, so Rj is injective. Using the same argument, Qµ is surjective.
Define Γ : S → End(L) such that, for each s = (g, j, µ) in S,

Γ(s) = Rjγ(g)Qµ.

Γ is a representation of S by lattice homomorphisms on L and hence L is an S-lattice. The
restriction of Γ into Hiλ gives a G-lattice structure on Liλ with γiλ : G → Aut(Liλ) as the
associated representation. We need to show that the G-lattices L′ and Liλ are isomorphic. We
have,

Liλ = Γ(pλi
−1, i, λ)(L) = Riγ(pλi

−1)Qλ(L) = Riγ(pλi
−1)L′
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since Qλ is surjective. Since Ri and γ(pλi−1) are injective, so is their composition, hence the
corestriction of Riγ(pλi−1) into Liλ is a lattice isomorphism between L′ and Liλ. Let it be
denoted by η. Now,

γiλ(g)η = Riγ(pλi−1g)QλRiγ(pλi−1)

= Riγ(pλi−1g)γ(pλi)γ(pλi−1)

= Riγ(pλi−1)γ(g)

= ηγ(g)

Hence η(gm) = ηγ(g)(m) = γiλ(g)η(m) = gη(m) for all g ∈ G and m ∈ L and so the
G-lattices L′ and Liλ are isomorphic.

We illustrate the theorem in the following example.

Example 3.3. Consider S3 and the lattice of its subgroups L(S3).

S3

{ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3}

{ρ0}

Figure 1. Lattice diagram of L(S3)

It can be seen that L(S3) is a an S3-lattice under conjugation. Then the corresponding represen-
tation γ : S3 → Aut(L(S3)) is as follows.

◦ S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}

γ(ρ0) S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
γ(ρ1) S3 {ρ0, ρ1, ρ2} {ρ0, µ3} {ρ0, µ1} {ρ0, µ2} {ρ0}
γ(ρ2) S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ3} {ρ0, µ1} {ρ0}
γ(µ1) S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ3} {ρ0, µ2} {ρ0}
γ(µ2) S3 {ρ0, ρ1, ρ2} {ρ0, µ3} {ρ0, µ2} {ρ0, µ1} {ρ0}
γ(µ3) S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ1} {ρ0, µ3} {ρ0}

Table 1. γ : S3 → Aut(L(S3))

Let S = M0(S3; 1, 2;P ) where P is the 2 × 1 matrix, having both entries equal to ρ0.
Consider R1 : L(S3)→ L(S3) and Q1, Q2 : L(S3)→ L(S3).

R1 =

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ3} {ρ0, µ1} {ρ0}

)

Q1 = Q2 =

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ3} {ρ0, µ1} {ρ0, µ2} {ρ0}

)
Clearly Q1R1 = Q2R1 = IL(S3) = γ(ρ0). Define Γ : S → End(L(S3)) such that Γ(s) =
Riγ(g)Qµ for each s = (g, i, λ) ∈ S.
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Γ(ρ0, 1, 1) = R1γ(ρ0)Q1 = R1γ(ρ0)Q2 = Γ(ρ0, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}

)
Γ(ρ1, 1, 1) = R1γ(ρ1)Q1 = R1γ(ρ1)Q2 = Γ(ρ1, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ3} {ρ0, µ1} {ρ0, µ2} {ρ0}

)
Γ(ρ2, 1, 1) = R1γ(ρ2)Q1 = R1γ(ρ2)Q2 = Γ(ρ2, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ3} {ρ0, µ1} {ρ0}

)
Γ(µ1, 1, 1) = R1γ(µ1)Q1 = R1γ(µ1)Q2 = Γ(µ1, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ3} {ρ0, µ2} {ρ0, µ1} {ρ0}

)
Γ(µ2, 1, 1) = R1γ(µ2)Q1 = R1γ(µ2)Q2 = Γ(µ2, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ1} {ρ0, µ3} {ρ0}

)
Γ(µ3, 1, 1) = R1γ(µ3)Q1 = R1γ(µ3)Q2 = Γ(µ3, 1, 2)

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ3} {ρ0, µ2} {ρ0}

)
It is easy to verify that Γ is a representation of S by lattice morphisms on L(S3). Consider
H11 = {(g, 1, 1) | g ∈ S3} and γ11 : G → Aut(L(S3)) be the representation of G induced by
the restriction of Γ into H11. Then η = R1γ(ρ0) = R1 is a lattice isomorphism. Further, η is an
S3-lattice isomorphism. ie., η(gH) = gη(H) for all g ∈ S3 and H ∈ L(S3). For consider,

γ11(ρ0)η = Γ(ρ0, 1, 1)η

=

(
S3 {ρ0, ρ1, ρ2} {ρ0, µ1} {ρ0, µ2} {ρ0, µ3} {ρ0}
S3 {ρ0, ρ1, ρ2} {ρ0, µ2} {ρ0, µ3} {ρ0, µ1} {ρ0}

)
= ηγ(ρ0).

Similarly, γ11(g)η = ηγ(g) for all g ∈ S3 and so η : L(S3) → L(S3) is an isomorphism
between the two S3-lattice structures on L(S3). So the theorem is verified for this example.

3.1 Action of union of band of groups on lattices

Let S be a semigroup, admitting a decomposition S =
⋃
α∈Ω

Sα by a family {Sα | α ∈ Ω} of

disjoint subsemigroups. If, for each α, β in the indexing set Ω there exists γ ∈ Ω such that
SαSβ ⊆ Sγ , then Ω is a band with respect to a product αβ = γ whenever SαSβ ⊆ Sγ . S is
called union of band Ω of semigroups Sα or simply, a band of semigroups. If each Sα is a group,
S =

⋃
α∈Ω

Sα is called a band of groups. If, in addition, Ω is commutative, the band of groups is

called a Clifford semigroup.

Remark 3.4. Let S =
⋃
α∈Ω

Gα be a union of band Ω of groups. By Lemma 3.1, each S-lattice

gives Gα-lattices for each α.

The converse of the above remark is not valid. That is, the action of Gαs on a lattice need not
always generate an action of S. See the following example.
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Example 3.5. Let S3 = {ρ0, ρ1, ρ2, µ1, µ2, µ3} be the symmetric group on 3 letters where ρ’s are
rotations and µ’s stand for reflections. Consider C3 = {e, a, a2}, the cyclic group of order 3,
generated by a. Since C3 is isomorphic with the alternating group A3, there is a homomorphism
φ : C3 → S3 such that, φ(e) = ρ0, φ(a) = ρ1 and φ(a2) = ρ2.

S = S3 ∪ C3 is a semigroup with respect to the following binary operation.

s ◦ t =


st if s, t ∈ S3 or s, t ∈ C3;
sφ(t) if s ∈ S3 and t ∈ C3;
φ(s)t if s ∈ C3 and t ∈ s3.

◦ S3 C3

S3 S3 S3

C3 S3 C3

Table 2. The multiplication table of S

S is Clifford semigroup. Consider the lattice L(S3) of all subgroups of S3. Let ∗1 be the
trivial action of S3 on L(S3), that is g ∗1 H = H for all g ∈ G and H ∈ L(S3). Define an
action of C3 on L(S3) using the homomorphism φ as, g ∗2 H = φ(g)Hφ(g)−1 for g ∈ C3 and
H ∈ L(S3). So, L(S3) is an S3-lattice and a C3-lattice simultaneously.

If we define an action of S on L(S3), using ∗1 and ∗2 as,

s ∗H =

{
s ∗1 H if s ∈ S3;
s ∗2 H if s ∈ C3.

∗ fails to satisfy the property i of Definition 2.1. For, consider µ1 ∈ S3, a ∈ C3 and {ρ0, µ2} ≤ S3.

µ1 ∗ (a ∗ {ρ0, µ2}) = µ1 ∗1 (a ∗2 {ρ0, µ2}) = µ1 ∗1 {ρ0, µ1} = {ρ0, µ1}

(µ1 ◦ a) ∗ {ρ0, µ2} = µ3 ∗1 {ρ0, µ2} = {ρ0, µ2}

So
µ1 ∗ (a ∗ {ρ0, µ2}) 6= (µ1 ◦ a) ∗ {ρ0, µ2}

and ∗ is not an action of S on L(S3).
However, the converse of Remark 3.4 holds under certain conditions, which is proved as the

following theorem.

Theorem 3.6. Let S =
⋃
α∈Ω

Gα be a band of groups and L be Gα-lattice for all α ∈ Ω, with the

action g ∗α m ∈ L for g ∈ Gα and m ∈ L. If,

s ∗α (t ∗β m) = (st) ∗γ m (3.1)

for all s ∈ Gα, t ∈ Gβ with GαGβ ⊆ Gγ and m ∈ L, ∗α’s together give an action of S on L.

Proof. Let S =
⋃
α∈Ω

Gα be a band of groups and L beGα-lattice for all α such that s∗α(t∗βm) =

(st) ∗γ m. For s ∈ S and m ∈ L, define s ∗m = s ∗α m whenever s ∈ Gα. Then for s ∈ Gα,
t ∈ Gβ such that GαGβ ⊆ Gγ , we have,

(i) s ∗ (t ∗m) = s ∗α (t ∗β m) = st ∗γ m = st ∗m

(ii) m ≤ n implies s ∗α m ≤ s ∗α n, which means s ∗m ≤ s ∗ n

(iii) s ∗ (m ∨ n) = s ∗α (m ∨ n) = s ∗α m ∨ s ∗α n = s ∗m ∨ s ∗ n

(iv) s ∗ (m ∧ n) = s ∗α (m ∧ n) = s ∗α m ∧ s ∗α n = s ∗m ∧ s ∗ n

so ∗ is an action of S on L and L is an S-lattice.
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An illustration of the theorem is the following example.

Example 3.7. Consider the Clifford semigroup S = S3 ∪ C3 in Example 3.5. The lattice L(S3)
of all subgroups of S3 is an S3-lattice under conjugation [6], given by g∗3H = gHg−1 for g ∈ S3
and H ∈ L(S3). Also, L(S3) is a C3-lattice with respect to the action ∗2 in Example 3.5. Define

s ∗H =

{
s ∗3 H if s ∈ S3;
s ∗2 H if s ∈ C3.

For s, t ∈ S, we have the following four cases.

(i) If s, t ∈ S3,
s ∗3 (t ∗3 H) = s(tHt−1)s−1 = (st)H(st)−1 = (s ◦ t) ∗3 H .

(ii) If s,∈ S3 and t ∈ C3,
s ∗3 (t ∗2 H) = s(φ(t)Hφ(t)−1)s−1 = (s ◦ t)H(s ◦ t)−1 = (s ◦ t) ∗3 H .

(iii) If s ∈ C3 and t ∈ S3,
s ∗2 (t ∗3 H) = φ(s)(tHt−1)φ(s)−1 = (s ◦ t)H(s ◦ t)−1 = (s ◦ t) ∗3 H .

(iv) If s, t ∈ C3,
s ∗2 (t ∗2 H) = φ(s)(φ(t)Hφ(t)−1)φ(s)−1 = φ(st)Hφ(st)−1 = st ∗2 H = (s ◦ t) ∗2 H .

Hence the actions ∗3 and ∗2 satisfies Equation: (3.1) of Theorem 3.6. So, they together give an
action of S on L(S3), so that L(S3) is an S-lattice.
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