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Abstract In this study, we have pointed out a fatal error in the proofs of the main results of
Golhare and Aage [Int. J. Nonlinear Anal. Appl., 12(2021), No. 2, 173-191] to conclude that the
paper is wrong. Next in context of the paper we have presented the most generalized form of the
concerned results and investigated some coincidence point results as applications of our main
results. Our results extend a number of existing results. Moreover, we provide some examples
to justify that the generalizations are proper.

1 Introduction

Banach contraction principle [5] is one of the most impressing results in fixed point theory. Be-
cause of its simplicity and usefulness it has become a popular tool for solving various problems
in nonlinear analysis. Several authors successfully extended this celebrated result in diverse ways
(see [2, 7, 8, 18, 19, 21, 22] and references therein). Hitzler and Seda [14] introduced the concept
of dislocated metric spaces as a generalization of partial metric spaces and obtained an important
characterization of the Banach contraction principle. After that, Amini-Harandi [13] initiated the
notion of metric-like spaces. Karapinar et al.[16] noticed that the notions of dislocated metric
spaces and metric-like spaces are exactly the same. In 2015, R. George et al.[9] introduced the
concept of rectangular b-metric spaces and proved analogue of Banach contraction principle and
Kannan type fixed point theorem in rectangular b-metric spaces. Golhare and Aage [11] intro-
duced dislocated quasi rectangular b-metric spaces as a generalization of rectangular b-metric
spaces and dislocated quasi metric spaces. Very recently, Golhare et al.[10] proved some fixed
point theorems of cyclic contraction mappings in dislocated quasi rectangular b-metric spaces. In
this article, we have pointed out a fatal error in the proofs of their main results [10] and presented
the most generalized form of the concerned results.

2 Some Basic Concepts

In this section, we recall some basic definitions, notations and crucial results in dislocated quasi
rectangular b-metric spaces. Throughout this article, N, R, R+ denote the set of natural num-
bers, the set of real numbers and the set of all nonnegative real numbers, respectively.

Definition 2.1. [14] Let X be a nonempty set. A function σ : X × X → [0,∞) is said to be a
dislocated metric (or a metric-like) on X if for any x, y, z ∈ X , the following conditions hold:

(σ1) σ(x, y) = 0 =⇒ x = y;

(σ2) σ(x, y) = σ(y, x);

(σ3) σ(x, y) ≤ σ(x, z) + σ(z, y).
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The pair (X,σ) is then called a dislocated metric (or metric-like) space.

It is valuable to note that a partial metric [17] is also a dislocated metric but the converse is
not true, in general. A trivial example of a dislocated metric is given by σ(x, y) = max{x, y}
for all x, y ≥ 0.

The following example illustrates the above fact.

Example 2.2. [3] Let X = {1, 2, 3} and consider the dislocated metric σ : X × X → [0,∞)
given by

σ(1, 1) = 0, σ(2, 2) = 1, σ(3, 3) =
2
3
,

σ(1, 2) = σ(2, 1) =
9
10
, σ(2, 3) = σ(3, 2) =

4
5
,

σ(1, 3) = σ(3, 1) =
7
10
.

Since σ(2, 2) 6= 0, σ is not a metric and since σ(2, 2) > σ(1, 2), σ is not a partial metric.

Definition 2.3. [4] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X .

The pair (X, d) is called a b-metric space.

Definition 2.4. [20] Let X be a nonempty set. Let d : X ×X → [0,∞) be a mapping and s ≥ 1
be a constant such that

(i) d(x, y) = 0 = d(y, x) if and only if x = y;

(ii) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X .

Then d is called a quasi b-metric onX and (X, d) is called a quasi b-metric space with coefficient
s.

Definition 2.5. [6] Let X be a nonempty set and d : X ×X → [0,∞) be a function such that

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, u)+d(u, v)+d(v, y) for all x, y ∈ X and all distinct points u, v ∈ X\{x, y}.

Then d is called a rectangular metric on X and (X, d) is called a rectangular metric space.

Definition 2.6. [10, 11] Let X be a nonempty set and d : X × X → [0,∞) be a function such
that

(i) d(x, y) = 0 = d(y, x) =⇒ x = y;

(ii) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)]

for all x, y ∈ X and all points u, v ∈ X \ {x, y}.

Then d is called a dislocated quasi or dq-rectangular b-metric on X and (X, d) is called a dislo-
cated quasi or dq-rectangular b-metric space with coefficient s.
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Example 2.7. Let us take X = [0,∞) and let d : X ×X → [0,∞) be given by

d(x, y) = |x− y|2 + x

9
+

y

10
, ∀x, y ∈ X.

Then, d(x, y) = 0 = d(y, x) =⇒ x = y and for all u, v ∈ X \ {x, y}, we have

d(x, y) = |x− y|2 + x

9
+

y

10

= |x− u+ u− v + v − y|2 + x

9
+

y

10

≤ 3[|x− u|2 + |u− v|2 + |v − y|2] + x

9
+

y

10
≤ 3[d(x, u) + d(u, v) + d(v, y)].

Therefore, (X, d) is a dislocated quasi rectangular b-metric space with coefficient s = 3. Note
that d(1, 1) = 19

90 6= 0 and hence d is not a metric on X .

In a dislocated quasi rectangular b-metric space (X, d), we define an open ball Br(x) for
x ∈ X and r > 0 as follows:

Br(x) = {y ∈ X : max{| d(x, y)− d(x, x) |, | d(y, x)− d(x, x) |} < r} .

Definition 2.8. [10] Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient
s. A subset U ⊆ X is said to be open if for every x ∈ U there exists r > 0 such that Br(x) ⊆ U .

A subset V ⊆ X is said to be closed if X \ V is open.
The family of all open subsets of X will be denoted by τdq .

Theorem 2.9. τdq defines a topology on (X, d).

Remark 2.10. Let (X, d) be a dislocated quasi rectangular b-metric space, (xn) be a sequence
in X and x ∈ X . Then (xn) converges to x with respect to(w.r.t.) τdq if lim

n→∞
d(xn, x) =

lim
n→∞

d(x, xn) = d(x, x).

Suppose that lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = d(x, x). We shall show that xn → x w.r.t.

τdq . Let U ∈ τdq and x ∈ U . Then there exists ε > 0 such that Bε(x) ⊆ U . By hypothesis, there
exists n0 ∈ N such that | d(xn, x) − d(x, x) |< ε and | d(x, xn) − d(x, x) |< ε for all n ≥ n0.
This ensures that xn ∈ Bε(x) for all n ≥ n0 and hence xn ∈ U for all n ≥ n0. Therefore, (xn)
converges to x w.r.t. τdq on X .

Definition 2.11. [11] Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient
s and let (xn) be a sequence in X . Then

(i) (xn) converges to a point x ∈ X if lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = d(x, x). This will be

denoted as lim
n→∞

xn = x or xn → x(n→∞).

(ii) (xn) is called a Cauchy sequence if lim
n→∞

d(xn+i, xn) and lim
n→∞

d(xn, xn+i) exist and are
finite for all i ∈ N.

(iii) (X, d) is said to be complete if every Cauchy sequence in X is convergent in X .

Lemma 2.12. [10] A subset A of a dislocated quasi rectangular b-metric space (X, d) is closed
if and only if the following statement holds:
If (xn) is a sequence of points in A converging to some point x ∈ X implies that x ∈ A.

Definition 2.13. Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient s
and let (xn) be a sequence in X . Then,

(i) (xn) is called a 0-Cauchy sequence if

lim
n→∞

d(xn, xn+p) = lim
n→∞

d(xn+p, xn) = 0, ∀ p ∈ N.
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(ii) (X, d) is said to be 0-complete if every 0-Cauchy sequence inX converges to a point x ∈ X
such that d(x, x) = 0.

It is to be noted that if a dislocated quasi rectangular b-metric space (X, d) is complete, then
it is 0-complete. The converse assertion is not true, in general. The following example supports
the above remark.

Example 2.14. Let X = [0,∞) and d : X ×X → [0,∞) be defined by

d(x, y) = |x− y|2 + x

9
+

y

10
, ∀x, y ∈ X.

Then (X, d) is a dislocated quasi rectangular b-metric space with coefficient s = 3. Let Y =
[0,∞) ∩ Q and dY : Y × Y → [0,∞) be defined by

dY (x, y) = d(x, y), ∀x, y ∈ Y.

Then (Y, dY ) is a dislocated quasi rectangular b-metric subspace of (X, d). We now show that
(Y, dY ) is 0-complete but it is not complete.
Let (xn) be a 0-Cauchy sequence in (Y, dY ). Then,

lim
n→∞

dY (xn, xn+p) = lim
n→∞

dY (xn+p, xn) = 0, ∀p ∈ N.

That is, lim
n→∞

[|xn+p − xn|2 +
xn+p

9
+
xn
10

] = 0.
Now,

0 ≤ |xn+p − xn| ≤ |xn+p|+ |xn|
≤ 10|xn+p|+ 9|xn|

≤ 90[|xn+p − xn|2 +
xn+p

9
+
xn
10

].

Taking limit as n→∞, we have

lim
n→∞

|xn+p − xn| = 0, ∀p ∈ N.

Therefore, (xn) is a Cauchy sequence in [0,∞) with usual metric and hence converges in [0,∞).
So, there exists x ∈ [0,∞) such that | xn − x |→ 0 as n→∞.

Now,

|d(xn, x)− d(x, x)| = ||xn − x|2 +
xn
9

+
x

10
− x

9
− x

10
|

≤ |xn − x|2+ |
xn − x

9
|

→ 0, as n→∞.

This gives that,
lim
n→∞

d(xn, x) = d(x, x).

Similarly, we have
lim
n→∞

d(x, xn) = d(x, x).

Again, for all p ∈ N

|d(xn, xn+p)− d(xn, x)| = ||xn − xn+p|2 +
xn
9

+
xn+p

10
− |xn − x|2 −

xn
9
− x

10
|

≤ |xn − xn+p|2 + |xn − x|2+ |
xn+p − x

10
|

→ 0, as n→∞.
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This implies that,
lim
n→∞

d(xn, xn+p) = lim
n→∞

d(xn, x), ∀p ∈ N.

Therefore,
lim
n→∞

dY (xn, xn+p) = lim
n→∞

d(xn, x) = d(x, x).

So, it follows that d(x, x) = 19x
90 = 0 which ensures that x = 0. Hence x ∈ Y . Thus, we obtain

that
lim
n→∞

dY (xn, x) = lim
n→∞

dY (x, xn) = dY (x, x) = 0.

This proves that (Y, dY ) is 0-complete.

We now show that (Y, dY ) is not complete.

Let us consider the sequence xn = (1 + 1
n)
n in (Y, dY ). Then, | xn − e |→ 0 as n → ∞.

Obviously, e ∈ X but e 6∈ Y , as e is not a rational number.
For all p ∈ N, we have

| d(xn, xn+p)− d(e, e) | = || xn − xn+p |2 +
xn
9

+
xn+p

10
− e

9
− e

10
|

≤ | xn − xn+p |2 + |
xn − e

9
| + | xn+p − e

10
|

→ 0, as n→∞.

Thus, lim
n→∞

d(xn, xn+p) = d(e, e) =
19e
90

, ∀p ∈ N.

This shows that, lim
n→∞

d(xn, xn+p) exists and is finite.

Similarly, lim
n→∞

d(xn+p, xn) = d(e, e) =
19e
90

exists and is finite.

Therefore, (xn) is a Cauchy sequence in (Y, dY ). It is easy to check that

lim
n→∞

d(xn, e) = lim
n→∞

d(e, xn) = d(e, e).

Thus, (xn) ⊆ (Y, dY ) converges to e ∈ X but e 6∈ Y . Therefore, (Y, dY ) is not complete.
Moreover, the sequence (xn) with xn = (1 + 1

n)
n for each n ∈ N is a Cauchy sequence in

(Y, dY ), but it is not a 0-Cauchy sequence in (Y, dY ).

Theorem 2.15. Every closed subset of a 0-complete dislocated quasi rectangular b-metric space
(X, d) is 0-complete.

Proof. Let Y be a closed subset of (X, d). Let (yn) be a 0-Cauchy sequence in (Y, dY ), where
dY : Y × Y → R+ is defined by dY (u, v) = d(u, v) for all u, v ∈ Y . Then (yn) is also a
0-Cauchy sequence in (X, d). As (X, d) is 0-complete, (yn) converges to a point x ∈ X . By
applying Lemma 2.12, it follows that x ∈ Y . Thus, (Y, dY ) becomes a 0-complete dislocated
quasi rectangular b-metric space.

3 Background and Motivations

Let X be a nonempty set and A, B be nonempty subsets of X . A mapping T : A∪B → A∪B is
called cyclic if T (A) ⊆ B and T (B) ⊆ A. In 2021, Golhare et al.[10] proved the following fixed
point theorems of cyclic contraction mappings in dislocated quasi rectangular b-metric spaces.

Definition 3.1. [10] Let A and B be nonempty subsets of a dislocated quasi rectangular b-metric
space (X, d) with coefficient s, then a cyclic mapping T : A ∪ B → A ∪ B is called a dq-
rectangular b-cyclic Banach mapping if there exists α ∈ [0, 1

s) such that

d(Tx, Ty) ≤ αd(x, y)

for all x ∈ A, y ∈ B.



6 Sushanta Kumar Mohanta and Priyanka Biswas

Theorem 3.2. [10] Let (X, d) be a complete dislocated quasi rectangular b-metric space with
coefficient s > 1 and A, B be two nonempty closed subsets of X . If T : A ∪ B → A ∪ B is a
dq-rectangular b-cyclic Banach mapping then T has a unique fixed point in A ∩B.

Definition 3.3. [10] Let A and B be nonempty subsets of a dislocated quasi rectangular b-metric
space (X, d) with coefficient s, then a cyclic mapping T : A ∪ B → A ∪ B is called a dq-
rectangular b-cyclic Kannan mapping if there exists γ ∈ [0, 1

2s ] such that

d(Tx, Ty) ≤ γ[d(x, Tx) + d(y, Ty)]

for all x ∈ A, y ∈ B.

Theorem 3.4. [10] Let (X, d) be a complete dislocated quasi rectangular b-metric space with
coefficient s > 1 and A, B be two nonempty closed subsets of X . If T : A ∪ B → A ∪ B is a
dq-rectangular b-cyclic Kannan mapping then T has a unique fixed point in A ∩B.

Remark 3.5. Though Theorem 3.2 seems to be a significant improvement of Banach contraction
theorem in the setting of dislocated quasi rectangular b-metric spaces, but a close look will reveal
that there is a serious error in the proof of Theorem 3.2. In Theorem 3.2, the authors assumed
that

d(Tx, Ty) ≤ αd(x, y) (3.1)
for all x ∈ A, y ∈ B, where d is a dislocated quasi rectangular b-metric on X .

In the proof of Theorem 3.2 (see p. 177 of [10]), a sequence (xn) in X has been constructed
in such a way that xn = Txn−1 for all n ∈ N, xn ∈ A if n is even and xn ∈ B if n is odd, where
A, B are nonempty closed subsets of X . From condition (3.1), they obtained

d(xn−1, xn) = d(Txn−2, Txn−1) ≤ αd(xn−2, xn−1) (3.2)

for all n ∈ N. Moreover, the inequality (3.2) has been used repeatedly to obtain the following
inequality

d(xn−1, xn) ≤ αd(xn−2, xn−1) ≤ · · · ≤ αn−1 d(x0, x1) (3.3)
for all n ∈ N. But there is a lacuna in the computations as if we consider n be an even natural
number then we can not apply condition (3.1) to obtain inequality (3.2). In fact, for even natural
number n, xn−1 ∈ B and xn ∈ A, so inequality (3.2) can not be obtained from condition (3.1).
Consequently, inequality (3.3) does not hold true.

Also, in the proof of Theorem 3.4 (see p. 181 of [10]), there is a same lacuna in the compu-
tations.

We close this section by presenting two examples to ensure that Theorems 3.2 and 3.4 are not
correct.

Example 3.6. Let X = N and d : X ×X → [0,∞) be given by

d(x, y) =



a, if x is odd and y is even,

4a, if x is even but not divisible by 4 and y is odd,

13a
4 , if x is divisible by 4 and y is odd,

a
4 , otherwise,

where a > 0 is a constant. Then (X, d) is a complete dislocated quasi rectangular b-metric space
with coefficient s = 16

15 > 1. But it is not a dislocated quasi rectangular metric space. Because,
for x = 6, y = 3, u = v = 8, we have

d(6, 3) = 4a

> [d(6, 8) + d(8, 8) + d(8, 3)]

=
a

4
+
a

4
+

13a
4

=
15a

4
.
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We take A = {x ∈ N : x is even} and B = {x ∈ N : x is odd}. Then, X = A ∪B = N and
A, B are nonempty closed subsets of (X, d). Let T : X → X be defined as follows:

Tx =


x+ 1, if x is odd,

x− 1, if x is even.

Obviously, T (A) ⊆ B and T (B) ⊆ A, i.e., T is cyclic.

For x ∈ A and y ∈ B, we have the following two cases:

Case(1) : x is even but not divisible by 4 and y is odd. Then,

d(Tx, Ty) = d(x− 1, y + 1) = a <
1
3
.4a = αd(x, y),

where α = 1
3 <

15
16 .

Case(2) : x is divisible by 4 and y is odd. Then,

d(Tx, Ty) = d(x− 1, y + 1) = a <
1
3
.
13a

4
= αd(x, y).

Thus, T : A ∪ B → A ∪ B is a dq-rectangular b-cyclic Banach mapping. Therefore, all the
conditions of Theorem 3.2 are satisfied. But we observe that T has no fixed point. This proves
that Theorem 3.2 is wrong.

Remark 3.7. It is worth mentioning that T : A ∪ B → A ∪ B is not a dq-rectangular b-cyclic
Banach mapping according to our Definition 4.1.

Example 3.8. Suppose that (X, d), A, B and T are all same as in Example 3.6. For x ∈ A and
y ∈ B, we have the following two cases:

Case(1) : x is even but not divisible by 4 and y is odd. Then,

d(x, Tx) + d(y, Ty) = d(x, x− 1) + d(y, y + 1) = 4a+ a = 5a

and

d(Tx, Ty) = d(x− 1, y + 1)

= a

<
6
25
.5a

= γ[d(x, Tx) + d(y, Ty)],

where γ = 6
25 <

15
32 = 1

2s .
Case(2) : x is divisible by 4 and y is odd. Then,

d(x, Tx) + d(y, Ty) = d(x, x− 1) + d(y, y + 1) =
13a

4
+ a =

17a
4

and

d(Tx, Ty) = d(x− 1, y + 1)

= a

<
6
25
.
17a

4
= γ[d(x, Tx) + d(y, Ty)].

Thus, T : A ∪ B → A ∪ B is a dq-rectangular b-cyclic Kannan mapping. Therefore, all the
conditions of Theorem 3.4 are satisfied but T has no fixed point. This proves that Theorem 3.4
is wrong.

Remark 3.9. It is valuable to note that T : A ∪ B → A ∪ B is not a dq-rectangular b-cyclic
Kannan mapping according to our Definition 4.2.

In this study, our motivation is to present the corrected version of the concerned results.
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4 Main Results

We have already pointed out the errors of [10]. So, with the techniques and resources available
at present, the only option is to present the corrected version of the concerned results. That’s
why we are going to define new dq-rectangular b-cyclic Banach mappings and dq-rectangular
b-cyclic Kannan mappings in the following manner.

Definition 4.1. Let A and B be nonempty subsets of a dislocated quasi rectangular b-metric
space (X, d) with coefficient s. A cyclic mapping T : A∪B → A∪B is called a dq-rectangular
b-cyclic Banach mapping if there exists α ∈ [0, 1

s) such that

max{d(Tx, Ty), d(Ty, Tx), d(Tx, Tx), d(Ty, Ty)} ≤ αmin{d(x, y), d(y, x)} (4.1)

for all x ∈ A, y ∈ B.
If A = B = X , then T : X → X satisfying condition (4.1) is called a dq-rectangular b-Banach
mapping.

Definition 4.2. Let A and B be nonempty subsets of a dislocated quasi rectangular b-metric
space (X, d) with coefficient s. A cyclic mapping T : A∪B → A∪B is called a dq-rectangular
b-cyclic Kannan mapping if there exists γ ∈ [0, 1

1+s) such that

max

{
d(Tx, Ty), d(Ty, Tx),

d(Tx, Tx), d(Ty, Ty)

}
≤ γmin

{
d(x, Tx) + d(y, Ty),

d(Tx, x) + d(Ty, y)

}
(4.2)

for all x ∈ A, y ∈ B.
If A = B = X , then T : X → X satisfying condition (4.2) is called a dq-rectangular b-Kannan
mapping.

Theorem 4.3. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with co-
efficient s ≥ 1 and A, B be two nonempty closed subsets of X . If T : A ∪ B → A ∪ B is
a dq-rectangular b-cyclic Banach mapping, then T has a unique fixed point u in A ∩ B with
d(u, u) = 0.

Proof. Let us take an arbitrary point x0 ∈ A. As Tx0 ∈ B, there exists x1 ∈ B such that
x1 = Tx0. Similarly, as Tx1 ∈ A, there exists x2 ∈ A such that x2 = Tx1. So, we may construct
a sequence (xn) in X such that xn = Txn−1 for all n ∈ N. It is to be noted that xn ∈ A if n
is even and xn ∈ B if n is odd. If xn−1 = xn for some n ∈ N, then xn−1 = Txn−1 and hence
xn−1 becomes a fixed point of T . Therefore, we assume that xn−1 6= xn for all n ∈ N.

From condition (4.1), we get

d(x2n−1, x2n) = d(Tx2n−2, Tx2n−1)

≤ max

{
d(Tx2n−2, Tx2n−1), d(Tx2n−1, Tx2n−2),

d(Tx2n−2, Tx2n−2), d(Tx2n−1, Tx2n−1)

}
≤ αmin{d(x2n−2, x2n−1), d(x2n−1, x2n−2)}
≤ αd(x2n−2, x2n−1). (4.3)

Again,

d(x2n, x2n+1) = d(Tx2n−1, Tx2n)

≤ max

{
d(Tx2n, Tx2n−1), d(Tx2n−1, Tx2n),

d(Tx2n, Tx2n), d(Tx2n−1, Tx2n−1)

}
≤ αmin{d(x2n, x2n−1), d(x2n−1, x2n)}
≤ αd(x2n−1, x2n). (4.4)

By repeated use of (4.3) and (4.4), we obtain that

d(x2n, x2n+1) ≤ α2nd(x0, x1) (4.5)
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and

d(x2n−1, x2n) ≤ α2n−1d(x0, x1). (4.6)

Combining (4.5) and (4.6), we get

d(xn, xn+1) ≤ αnd(x0, x1),∀n ∈ N. (4.7)

Similarly,

d(xn+1, xn) ≤ αnd(x1, x0),∀n ∈ N. (4.8)

Moreover,

d(xn, xn) = d(Txn−1, Txn−1)

≤ max

{
d(Txn−1, Txn), d(Txn, Txn−1),

d(Txn−1, Txn−1), d(Txn, Txn)

}
≤ αmin{d(xn−1, xn), d(xn, xn−1)}
≤ αnd(x0, x1), ∀n ∈ N. (4.9)

We claim that xm 6= xn for all m, n ∈ N with m 6= n. If possible, suppose that xm = xn for
some m, n ∈ N with m > n. Let us put m − n = p ∈ N. As xn 6= xn+1, it follows that at least
one of d(xn, xn+1) and d(xn+1, xn) is non-zero. We assume that d(xn, xn+1) 6= 0. Now,

d(xn, xn+1) = d(xn, Txn) = d(xm, Txm)

= d(xm, xm+1)

= d(xn+p, xn+p+1)

≤ αp d(xn, xn+1).

This gives that αp ≥ 1, a contradiction since 0 ≤ α < 1
s . Thus, our claim is justified.

We now show that (xn) is a 0-Cauchy sequence in (X, d). That is, we have to show that

lim
n→∞

d(xn+p, xn) = 0 = lim
n→∞

d(xn, xn+p), ∀p ∈ N.

First we show that lim
n→∞

d(xn, xn+p) = 0, ∀p ∈ N.

Case− I : Suppose p is even, that is, p = 2m for some m(> 1) ∈ N. Then by using
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conditions (4.7) and (4.9), we get

d(xn, xn+p) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)] + s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+s3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+sm−1[d(xn−4+2m, xn−3+2m) + d(xn−3+2m, xn−2+2m)]

+sm−1d(xn−2+2m, xn+2m)

≤ sαn[1 + sα2 + s2α4 + · · · ]d(x0, x1)

+sαn+1[1 + sα2 + s2α4 + · · · ]d(x0, x1)

+sm−1d(xn−2+2m, xn+2m)

≤ 1 + α

1− sα2 sα
nd(x0, x1) + sm−1.s[d(xn−2+2m, xn−1+2m)

+d(xn−1+2m, xn−1+2m) + d(xn−1+2m, xn+2m)]

≤ 1 + α

1− sα2 sα
nd(x0, x1) + sm[αn−2+2md(x0, x1)

+αn−1+2md(x0, x1) + αn−1+2md(x0, x1)]

=
1 + α

1− sα2 sα
nd(x0, x1)

+(αs)m[(αm+n−2 + αm+n−1)d(x0, x1) + αm+n−1d(x0, x1)]

<
1 + α

1− sα2 sα
nd(x0, x1)

+[(αm+n−2 + αm+n−1)d(x0, x1) + αm+n−1d(x0, x1)].

Passing to the limit as n→∞, we have

lim
n→∞

d(xn, xn+p) = 0.

If m = 1, then

d(xn, xn+p) = d(xn, xn+2) ≤ s[d(xn, xn+1) + d(xn+1, xn+1) + d(xn+1, xn+2)]

≤ s[αnd(x0, x1) + αn+1d(x0, x1) + αn+1d(x0, x1)]

→ 0 as n→∞.

Thus,

lim
n→∞

d(xn, xn+p) = 0 for all even p ∈ N. (4.10)

Case− II : Suppose p is odd, that is, p = 2m− 1 for some m ∈ N.
If m = 1, then

d(xn, xn+p) = d(xn, xn+1) ≤ αnd(x0, x1)→ 0 as n→∞.
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If m > 1, then by using condition (4.8), we get

d(xn, xn+p) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m−1)]

≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

+s2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+s3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+sm−1[d(xn−4+2m, xn−3+2m) + d(xn−3+2m, xn−2+2m)]

+sm−1d(xn−2+2m, xn−1+2m)

≤ sαn[1 + sα2 + s2α4 + · · · ]d(x0, x1)

+sαn+1[1 + sα2 + s2α4 + · · · ]d(x0, x1)

=
1 + α

1− sα2 sα
nd(x0, x1).

Passing to the limit as n→∞, we have

lim
n→∞

d(xn, xn+p) = 0 for all odd p ∈ N. (4.11)

It follows from (4.10) and (4.11) that

lim
n→∞

d(xn, xn+p) = 0, ∀p ∈ N. (4.12)

We now show that lim
n→∞

d(xn+p, xn) = 0, ∀p ∈ N.
We consider the following two cases:

Case(a) : Suppose p is even, that is, p = 2m for some m ∈ N.
If m = 1, then by using conditions (4.8) and (4.9), we get

d(xn+p, xn) = d(xn+2, xn) ≤ s[d(xn+2, xn+1) + d(xn+1, xn+1) + d(xn+1, xn)]

≤ s[αn+1d(x1, x0) + αn+1d(x0, x1) + αnd(x1, x0)]

→ 0 as n→∞.

If m > 1, then

d(xn+p, xn) ≤ s[d(xn+2m, xn+2) + d(xn+2, xn+1) + d(xn+1, xn)]

≤ s[d(xn+2, xn+1) + d(xn+1, xn)]

+s2[d(xn+4, xn+3) + d(xn+3, xn+2)]

+s3[d(xn+6, xn+5) + d(xn+5, xn+4)] + · · ·
+sm−1[d(xn−2+2m, xn−3+2m) + d(xn−3+2m, xn−4+2m)]

+sm−1d(xn+2m, xn−2+2m)

≤ sαn+1[1 + sα2 + s2α4 + · · · ]d(x1, x0)

+sαn[1 + sα2 + s2α4 + · · · ]d(x1, x0)

+sm−1d(xn+2m, xn−2+2m)

≤ α+ 1
1− sα2 sα

nd(x1, x0) + sm[d(xn+2m, xn−1+2m)

+d(xn−1+2m, xn−1+2m) + d(xn−1+2m, xn−2+2m)]

≤ α+ 1
1− sα2 sα

nd(x1, x0)

+(αs)m[(αm+n−1 + αm+n−2)d(x1, x0) + αm+n−1d(x0, x1)]

<
α+ 1

1− sα2 sα
nd(x1, x0)

+[(αm+n−1 + αm+n−2)d(x1, x0) + αm+n−1d(x0, x1)], as αs < 1.
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Passing to the limit as n→∞, we have

lim
n→∞

d(xn+p, xn) = 0.

Thus,
lim
n→∞

d(xn+p, xn) = 0 for all even p ∈ N. (4.13)

Case(b) : Suppose p is odd, that is, p = 2m− 1 for some m ∈ N.
By an argument similar to that used in Case− II, we can show that

lim
n→∞

d(xn+p, xn) = 0 for all odd p ∈ N. (4.14)

It follows from (4.13) and (4.14) that

lim
n→∞

d(xn+p, xn) = 0, ∀p ∈ N. (4.15)

From (4.12) and (4.15), it follows that

lim
n→∞

d(xn, xn+p) = lim
n→∞

d(xn+p, xn) = 0, ∀p ∈ N.

Therefore, (xn) is a 0-Cauchy sequence in (X, d). As (X, d) is 0-complete, there exists
u ∈ X such that

lim
n→∞

d(u, xn) = lim
n→∞

d(xn, u) = d(u, u) = 0.

Obviously, subsequences (x2n) ⊆ A and (x2n−1) ⊆ B are also converge to u ∈ X . As A and B
are closed, by Lemma 2.12, it follows that u ∈ A ∩B.

We shall show that u is a fixed point of T .
We assume that xn, xn+1 ∈ X \ {u, Tu} for large n ∈ N. Because if xn+1 = u, then xn+2 =
Txn+1 = Tu which implies that d(u, Tu) = d(xn+1, xn+2) ≤ αn+1d(x0, x1) → 0 as n → ∞.
This gives that d(u, Tu) = 0. Similarly, we can prove that d(Tu, u) = 0. Consequently, it
follows that Tu = u. On the other hand, if xn+1 = Tu, then d(u, Tu) = d(u, xn+1) → 0 as
n → ∞. Therefore, d(u, Tu) = 0. By an argument similar to that used above we can show that
d(Tu, u) = 0 and hence Tu = u.

Now,

d(u, Tu) ≤ s [d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= s [d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ s[d(u, xn) + αnd(x0, x1) + αmin{d(xn, u), d(u, xn)}]
→ 0 as n→∞.

This gives that d(u, Tu) = 0. Similarly, we have d(Tu, u) = 0. Thus, Tu = u. This proves that
u is a fixed point of T .

To prove the uniqueness, let v ∈ A ∩ B be another fixed point of T such that d(v, v) = 0.
Then,

d(u, v) = d(Tu, Tv) ≤ max{d(Tu, Tv), d(Tv, Tu), d(Tu, Tu), d(Tv, Tv)}
≤ αmin{d(u, v), d(v, u)}
≤ αd(u, v),

which gives that d(u, v) = 0 since 0 ≤ α < 1
s . Similarly, we have d(v, u) = 0. Therefore, u = v.

Hence T has a unique fixed point u in A ∩B with d(u, u) = 0.

Corollary 4.4. Let (X, d) be a complete metric space and T : X → X be a mapping such that

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X , where α ∈ [0, 1) is a constant. Then T has a unique fixed point in X .
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Proof. The proof follows from Theorem 4.3 by considering the metric d as a dislocated quasi
rectangular b-metric with coefficient s = 1 and A = B = X .

Theorem 4.5. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with co-
efficient s ≥ 1 and A, B be two nonempty closed subsets of X . If T : A ∪ B → A ∪ B is
a dq-rectangular b-cyclic Kannan mapping, then T has a unique fixed point u in A ∩ B with
d(u, u) = 0.

Proof. As in Theorem 4.3, by taking an arbitrary point x0 ∈ A, we can construct a sequence
(xn) where xn = Txn−1 for all n ∈ N such that xn ∈ A if n is even and xn ∈ B if n is odd.
Moreover, we assume that xn−1 6= xn for all n ∈ N.

From condition (4.2), we get

d(x2n−1, x2n) = d(Tx2n−2, Tx2n−1)

≤ max

{
d(Tx2n−2, Tx2n−1), d(Tx2n−1, Tx2n−2),

d(Tx2n−2, Tx2n−2), d(Tx2n−1, Tx2n−1)

}

≤ γmin

{
d(x2n−2, Tx2n−2) + d(x2n−1, Tx2n−1),

d(Tx2n−2, x2n−2) + d(Tx2n−1, x2n−1)

}

= γmin

{
d(x2n−2, x2n−1) + d(x2n−1, x2n),

d(x2n−1, x2n−2) + d(x2n, x2n−1)

}
≤ γ{d(x2n−2, x2n−1) + d(x2n−1, x2n)}.

This gives that,

d(x2n−1, x2n) ≤
γ

1− γ
d(x2n−2, x2n−1) = αd(x2n−2, x2n−1), (4.16)

where α = γ
1−γ ∈ [0, 1

s).
Again,

d(x2n, x2n+1) = d(Tx2n−1, Tx2n)

≤ max

{
d(Tx2n−1, Tx2n), d(Tx2n, Tx2n−1),

d(Tx2n, Tx2n), d(Tx2n−1, Tx2n−1)

}

≤ γmin

{
d(x2n−1, Tx2n−1) + d(x2n, Tx2n),

d(Tx2n−1, x2n−1) + d(Tx2n, x2n)

}

= γmin

{
d(x2n−1, x2n) + d(x2n, x2n+1),

d(x2n, x2n−1) + d(x2n+1, x2n)

}
≤ γ{d(x2n−1, x2n) + d(x2n, x2n+1)}

which gives that,

d(x2n, x2n+1) ≤
γ

1− γ
d(x2n−1, x2n) = αd(x2n−1, x2n). (4.17)

From conditions (4.16) and (4.17), it follows that

d(xn, xn+1) ≤ αd(xn−1, xn),∀n ∈ N. (4.18)

By repeated use of condition (4.18), we get

d(xn, xn+1) ≤ αn d(x0, x1),∀n ∈ N. (4.19)

Similarly,
d(xn+1, xn) ≤ αnd(x1, x0),∀n ∈ N.
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Moreover,

d(xn, xn) = d(Txn−1, Txn−1)

≤ max

{
d(Txn−1, Txn), d(Txn, Txn−1),

d(Txn−1, Txn−1), d(Txn, Txn)

}

≤ γmin

{
d(xn−1, xn) + d(xn, xn+1),

d(xn, xn−1) + d(xn+1, xn)

}
≤ γ{d(xn−1, xn) + d(xn, xn+1)}
≤ γαn−1(1 + α)d(x0, x1)

= γ(αn−1 + αn)d(x0, x1), ∀n ∈ N.

By an argument similar to that used in Theorem 4.3, we have xm 6= xn for all m, n ∈ N with
m 6= n.

Proceeding similarly to that of Theorem 4.3, we can show that (xn) is a 0-Cauchy sequence
in (X, d). As (X, d) is 0-complete, there exists u ∈ X such that

lim
n→∞

d(u, xn) = lim
n→∞

d(xn, u) = d(u, u) = 0.

Obviously, subsequences (x2n) ⊆ A and (x2n−1) ⊆ B are also converge to u ∈ X . As A and B
are closed, by Lemma 2.12, it follows that u ∈ A ∩B.

We shall show that u is a fixed point of T . As in Theorem 4.3, we assume that xn, xn+1 ∈
X \ {u, Tu} for large n ∈ N. Then by using conditions (4.2) and (4.19), we obtain that

d(u, Tu) ≤ s [d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

≤ s [d(u, xn) + αn d(x0, x1) + d(Txn, Tu)]

≤ s [d(u, xn) + αn d(x0, x1)]

+s max{d(Txn, Tu), d(Tu, Txn), d(Txn, Txn), d(Tu, Tu)}
≤ s [d(u, xn) + αn d(x0, x1)]

+s γmin{d(xn, Txn) + d(u, Tu), d(Txn, xn) + d(Tu, u)}
≤ s [d(u, xn) + αn d(x0, x1)] + s γ{d(xn, xn+1) + d(u, Tu)}
≤ s [d(u, xn) + αn d(x0, x1)] + s γ{αn d(x0, x1) + d(u, Tu)}.

Taking limit as n→∞, we get

d(u, Tu) ≤ sγ d(u, Tu).

Since 0 ≤ sγ < 1, it follows that d(u, Tu) = 0.
Similarly, we can prove that d(Tu, u) = 0. Hence, we have u = Tu, i.e., u is a fixed point of

T .
To prove the uniqueness, let v be another fixed point of T such that v ∈ A∩B and d(v, v) = 0.
Then,

d(u, v) = d(Tu, Tv)

≤ max{d(Tu, Tv), d(Tv, Tu), d(Tu, Tu), d(Tv, Tv)}
≤ γ min{d(u, Tu) + d(v, Tv), d(Tu, u) + d(Tv, v)}
= γ [d(u, u) + d(v, v)]

= 0.

This proves that d(u, v) = 0. By similar arguments, we have d(v, u) = 0 and hence, u = v.
Therefore, T has a unique fixed point u ∈ A ∩B with d(u, u) = 0.
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Corollary 4.6. Let (X, d) be a complete metric space and T : X → X be a mapping such that

d(Tx, Ty) ≤ γ[d(x, Tx) + d(y, Ty)]

for all x, y ∈ X , where γ ∈ [0, 1
2) is a constant. Then T has a unique fixed point in X .

Proof. The proof follows from Theorem 4.5 by considering the metric d as a dislocated quasi
rectangular b-metric with coefficient s = 1 and A = B = X .

Definition 4.7. Let A and B be nonempty subsets of a dislocated quasi rectangular b-metric
space (X, d) with coefficient s. A cyclic mapping T : A∪B → A∪B is called a dq-rectangular
b-cyclic Fisher mapping if there exists γ ∈ [0, 1

s+s2 ) such that

max

{
d(Tx, Ty), d(Ty, Tx),

d(Tx, Tx), d(Ty, Ty)

}
≤ γ

[
min

{
d(x, Ty) + d(y, Tx),

d(Ty, x) + d(Tx, y)

}

−(1 + s)max{d(x, x), d(y, y)}
]

(4.20)

for all x ∈ A, y ∈ B.
If A = B = X , then T : X → X satisfying condition (4.20) is called a dq-rectangular b-Fisher
mapping.

Theorem 4.8. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with co-
efficient s ≥ 1 and A, B be two nonempty closed subsets of X . If T : A ∪ B → A ∪ B is a
dq-rectangular b-cyclic Fisher mapping, then T has a unique fixed point u (say) in A ∩ B with
d(u, u) = 0.

Proof. As in Theorem 4.3, if x0 ∈ A is arbitrary, then we can construct a sequence (xn) where
xn = Txn−1 for all n ∈ N such that xn ∈ A if n is even and xn ∈ B if n is odd. Moreover, we
assume that xn−1 6= xn for all n ∈ N.

From condition (4.20), we get

d(x2n−1, x2n) = d(Tx2n−2, Tx2n−1)

≤ max

{
d(Tx2n−2, Tx2n−1), d(Tx2n−1, Tx2n−2),

d(Tx2n−2, Tx2n−2), d(Tx2n−1, Tx2n−1)

}

≤ γ

[
min

{
d(x2n−2, Tx2n−1) + d(x2n−1, Tx2n−2),

d(Tx2n−1, x2n−2) + d(Tx2n−2, x2n−1)

}

−(1 + s)max{d(x2n−2, x2n−2), d(x2n−1, x2n−1)}
]

= γ

[
min

{
d(x2n−2, x2n) + d(x2n−1, x2n−1),

d(x2n, x2n−2) + d(x2n−1, x2n−1)

}

−(1 + s)max{d(x2n−2, x2n−2), d(x2n−1, x2n−1)}
]

≤ γ

[
d(x2n−2, x2n) + d(x2n−1, x2n−1)− (1 + s)d(x2n−1, x2n−1)

]
≤ γ

[
s{d(x2n−2, x2n−1) + d(x2n−1, x2n−1) + d(x2n−1, x2n)}

−sd(x2n−1, x2n−1)

]
= γs

[
d(x2n−2, x2n−1) + d(x2n−1, x2n)

]
.
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This gives that

d(x2n−1, x2n) ≤
γs

1− γs
d(x2n−2, x2n−1) = αd(x2n−2, x2n−1), (4.21)

where α = γs
1−γs ∈ [0, 1

s).

Again,

d(x2n, x2n+1) = d(Tx2n−1, Tx2n)

≤ max

{
d(Tx2n, Tx2n−1), d(Tx2n−1, Tx2n),

d(Tx2n, Tx2n), d(Tx2n−1, Tx2n−1)

}

≤ γ

[
min

{
d(x2n, Tx2n−1) + d(x2n−1, Tx2n),

d(Tx2n−1, x2n) + d(Tx2n, x2n−1)

}

−(1 + s)max{d(x2n, x2n), d(x2n−1, x2n−1)}
]

= γ

[
min

{
d(x2n, x2n) + d(x2n−1, x2n+1),

d(x2n, x2n) + d(x2n+1, x2n−1)

}

−(1 + s)max{d(x2n, x2n), d(x2n−1, x2n−1)}
]

≤ γ

[
d(x2n, x2n) + d(x2n−1, x2n+1)− (1 + s)d(x2n, x2n)

]
≤ γ

[
s{d(x2n−1, x2n) + d(x2n, x2n) + d(x2n, x2n+1)} − sd(x2n, x2n)

]
= γs

[
d(x2n−1, x2n) + d(x2n, x2n+1)

]
.

This implies that

d(x2n, x2n+1) ≤
γs

1− γs
d(x2n−1, x2n) = αd(x2n−1, x2n). (4.22)

From conditions (4.21) and (4.22), we get

d(xn, xn+1) ≤ αd(xn−1, xn),∀n ∈ N. (4.23)

By repeated use of condition (4.23), we obtain that

d(xn, xn+1) ≤ αnd(x0, x1),∀n ∈ N. (4.24)

Similarly,

d(xn+1, xn) ≤ αnd(x1, x0),∀n ∈ N.
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Moreover,

d(xn, xn) = d(Txn−1, Txn−1)

≤ max

{
d(Txn−1, Txn), d(Txn, Txn−1),

d(Txn−1, Txn−1), d(Txn, Txn)

}

≤ γ

[
min

{
d(xn−1, xn+1) + d(xn, xn),

d(xn+1, xn−1) + d(xn, xn)

}

−(1 + s)max{d(xn−1, xn−1), d(xn, xn)}
]

≤ γ

[
d(xn−1, xn+1) + d(xn, xn)− (1 + s)d(xn, xn)

]
≤ γ

[
s{d(xn−1, xn) + d(xn, xn) + d(xn, xn+1)} − sd(xn, xn)

]
= γs

[
{d(xn−1, xn) + d(xn, xn+1)}

]
≤ γsαn−1(1 + α)d(x0, x1)

≤ γsαn−1(1 +
1
s
)d(x0, x1)

≤ αn−1d(x0, x1), ∀n ∈ N

and

d(xn−1, xn+1) ≤ s[d(xn−1, xn) + d(xn, xn) + d(xn, xn+1)]

≤ s[αn−1d(x0, x1) + αn−1d(x0, x1) + αnd(x0, x1)]

= s(2αn−1 + αn)d(x0, x1).

Proceeding similarly to that of Theorem 4.3, we can show that xm 6= xn for all m, n ∈ N
with m 6= n.

By the techniques that adapted in Theorem 4.3, it follows that (xn) is 0-Cauchy in (X, d). As
(X, d) is 0-complete, there exists u ∈ X such that

lim
n→∞

d(u, xn) = lim
n→∞

d(xn, u) = d(u, u) = 0.

Obviously, subsequences (x2n) ⊆ A and (x2n−1) ⊆ B are also converge to u ∈ X . As A and B
are closed, by Lemma 2.12, it follows that u ∈ A ∩B.

We shall show that u is a fixed point of T . If possible, suppose that Tu 6= u. As in Theorem
4.3, we assume that xn, xn+1 ∈ X \ {u, Tu} for large n ∈ N. Then by using conditions (4.20)
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and (4.24), we obtain that

d(u, Tu) ≤ s [d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

≤ s[d(u, xn) + αnd(x0, x1) + d(Txn, Tu)]

≤ s

[
d(u, xn) + αnd(x0, x1)

+max{d(Txn, Tu), d(Tu, Txn), d(Txn, Txn), d(Tu, Tu)}
]

≤ sd(u, xn) + sαnd(x0, x1)

+sγ

[
min{d(xn, Tu) + d(u, Txn), d(Tu, xn) + d(Txn, u)}

−(1 + s)max{d(xn, xn), d(u, u)}
]

≤ sd(u, xn) + sαnd(x0, x1)

+sγ

[
d(xn, Tu) + d(u, xn+1)− (1 + s)d(xn, xn)

]
≤ sd(u, xn) + sαnd(x0, x1)

+sγ

[
s{d(xn, xn+1) + d(xn+1, u) + d(u, Tu)}+ d(u, xn+1)

]
≤ sd(u, xn) + sαnd(x0, x1)

+sγ

[
s{αnd(x0, x1) + d(xn+1, u) + d(u, Tu)}+ d(u, xn+1)

]
.

Taking limit as n→∞, we get

d(u, Tu) ≤ s2γd(u, Tu).

Since 0 ≤ s2γ < 1, it follows that d(u, Tu) = 0. Similarly, d(Tu, u) = 0. Therefore, Tu = u, a
contradiction. Hence, we have u = Tu, i.e., u is a fixed point of T .

To prove the uniqueness, let v be another fixed point of T such that v ∈ A∩B and d(v, v) = 0.
Then,

d(u, v) = d(Tu, Tv) ≤ max{d(Tu, Tv), d(Tv, Tu), d(Tu, Tu), d(Tv, Tv)}
≤ γmin{d(u, Tv) + d(v, Tu), d(Tv, u) + d(Tu, v)}
= γ[d(u, v) + d(v, u)].

This implies that
d(u, v) ≤ γ

1− γ
d(v, u).

Similarly, d(v, u) ≤ γ
1−γ d(u, v). Thus,

d(u, v) ≤ γ

1− γ
d(v, u) ≤

(
γ

1− γ

)2

d(u, v).

Since 0 ≤ γ
1−γ < 1, it follows that d(u, v) = 0. Similarly, we can show that d(v, u) = 0.

Therefore, u = v. Hence, T has a unique fixed point u in A ∩B with d(u, u) = 0.

Corollary 4.9. Let (X, d) be a complete metric space and T : X → X be a mapping such that

d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)]

for all x, y ∈ X , where γ ∈ [0, 1
2) is a constant. Then T has a unique fixed point in X .
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Proof. The proof follows from Theorem 4.8 by considering the metric d as a dislocated quasi
rectangular b-metric with coefficient s = 1 and A = B = X .

Remark 4.10. We note that Theorem 4.3 is a proper generalization(see Example 4.13) of the
famous Banach contraction theorem [5].

Remark 4.11. It is worthy to note that several fixed point results in quasi b-metric spaces and
dislocated metric spaces can be derived from Theorems 4.3, 4.5 and 4.8.

Remark 4.12. The results of this study are obtained under the weaker assumption that the un-
derlying dislocated quasi rectangular b-metric space is 0-complete. However, they also valid if
the space is complete.

We now present an example to justify the validity of our first main result. It should be noticed
that the well known Banach contraction theorem can not explain the existence of fixed point in
the following example.

Example 4.13. Let A =
{

0, 1
2 , 2

}
, B =

{ 1
n : n ∈ N, n ≥ 2

}
and X = A ∪ B. Let d :

X ×X → [0,∞) be defined by

d(x, y) =



1
2 , if x, y ∈ A \ { 1

2}, except x = y = 0;

1
3 , if x, y ∈ B \ { 1

2};

1
4 , if x ∈ A \ { 1

2} and y ∈ B \ { 1
2};

2
9 , if x ∈ B \ { 1

2} and y ∈ A \ { 1
2};

2
9 , if (x = 1

2 , y ∈ B \ {
1
2}) or (x ∈ B \ { 1

2}, y =
1
2);

1
9 , if (x = 0, y = 1

2) or (x = 1
2 , y = 0);

1
2 , if (x = 2, y = 1

2) or (x = 1
2 , y = 2);

0, otherwise.

Then (X, d) is a dislocated quasi rectangular b-metric space with coefficient s = 9
5 . Let

T : X → X be defined by

Tx =


1
2 , if x ∈ A,

0, if x ∈ B \ { 1
2}.

Obviously, T (A) ⊆ B and T (B) ⊆ A and hence T is cyclic.

If we consider the usual metric ρ(x, y) =| x− y | for all x, y ∈ X , then (X, ρ) is a complete
metric space. For x = 0, y = 1

5 , we have Tx = 1
2 , T y = 0. Therefore,

ρ(Tx, Ty) =
1
2
> αρ(x, y)

for any α ∈ [0, 1) and hence T is not a contraction operator on (X, ρ). So, Banach contraction
theorem can not explain the existence of fixed point of T . However, our first main result can
explain it.

We find that the constant sequence (xn) where xn = 0 for all n ∈ N and the constant
sequence (xn) where xn = 1

2 for all n ∈ N are the only 0-Cauchy sequences in (X, d). In fact,
for xn = 0 for all n ∈ N, we have

lim
n→∞

d(xn, xn+p) = lim
n→∞

d(xn+p, xn) = 0, ∀p ∈ N
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and
lim
n→∞

d(xn, 0) = lim
n→∞

d(0, xn) = d(0, 0) = 0.

Moreover, for xn = 1
2 for all n ∈ N, we have

lim
n→∞

d(xn, xn+p) = lim
n→∞

d(xn+p, xn) = 0, ∀p ∈ N

and
lim
n→∞

d(xn,
1
2
) = lim

n→∞
d(

1
2
, xn) = d(

1
2
,

1
2
) = 0.

Thus, every 0-Cauchy sequence in (X, d) converges to a point x ∈ X such that d(x, x) = 0 and
hence (X, d) is 0-complete.

Furthermore, it is easy to compute that T : A∪B → A∪B is a dq-rectangular b-cyclic Banach
mapping for α = 1

2 ∈ [0, 1
s) and A, B are closed subsets of (X, d). Thus, all the hypotheses of

Theorem 4.3 hold true and 1
2 ∈ A ∩B is a unique fixed point of T with d( 1

2 ,
1
2) = 0.

We now cite an example to support our Theorem 4.5.

Example 4.14. Let us take X = {2}∪{2+ 1
3n : n ∈ N} = {2}∪{2+ 1

9q : q ∈ N}∪{2+ 1
3r : r ∈

N, r is not divisible by 3}. For r, q, r1, q1 ∈ N with r 6= r1, q 6= q1 and r, r1 are not divisible
by 3, we define d : X ×X → [0,∞) by

d(2, 2) = 0, d(2 +
1
3r
, 2 +

1
3r

) = 10, d(2 +
1
9q
, 2 +

1
9q

) = 3,

d(2, 2 +
1
3r

) = 6, d(2 +
1
3r
, 2) = 7, d(2 +

1
9q
, 2) = 2,

d(2, 2 +
1
9q

) = 1, d(2 +
1
3r
, 2 +

1
9q

) = 15, d(2 +
1
9q
, 2 +

1
3r

) = 16,

d(2 +
1
3r
, 2 +

1
3r1

) = 11, d(2 +
1
9q
, 2 +

1
9q1

) = 4.

Then (X, d) is a dislocated quasi rectangular b-metric space with coefficient s = 2.
Let T : X → X be defined by

Tx =


x+4

3 , if x ∈ {2 + 1
3r : r ∈ N, r is not divisible by 3},

2, otherwise.

If we consider the usual metric ρ(x, y) =| x− y | for all x, y ∈ X , then (X, ρ) is a complete
metric space. For x = 2 and y = 7

3 , we have
ρ(Tx, Ty) = ρ(2, 19

9 ) =
1
9 and ρ(x, Tx) + ρ(y, Ty) = ρ(2, 2) + ρ( 7

3 ,
19
9 ) =

2
9 . Therefore,

ρ(Tx, Ty) > α[ρ(x, Tx) + ρ(y, Ty)]

for any α ∈ [0, 1
2) and hence T is not a Kannan operator on (X, ρ). So, Kannan fixed point

theorem cannot be used to get fixed point of T . However, we can apply our second main result.
We note that (X, d) is 0-complete as the constant sequence (xn) where xn = 2 for all n ∈ N

is the only 0-Cauchy sequence in (X, d) and

lim
n→∞

d(xn, 2) = lim
n→∞

d(2, xn) = d(2, 2) = 0.

We take two closed subsets A, B of X as follows:

A = {2} ∪ {2 +
1
9q

: q ∈ N}, B = {2} ∪ {2 +
1
3r

: r ∈ N, r is not divisible by 3}.
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Then, X = A ∪B, T (A) ⊆ B and

T (B) = {2} ∪ {2 +
1
9r

: r ∈ N, r is not divisible by 3} ⊆ A.

This proves that T is cyclic.

It is easy to compute that condition (4.2) holds true for γ = 4
15 ∈ [0, 1

1+s). Hence, all
the conditions of Theorem 4.5 are satisfied and T has a unique fixed point 2 ∈ A ∩ B with
d(2, 2) = 0.

The following example supports our Theorem 4.8.

Example 4.15. Let us take X = [0, 1]. We define d : X ×X → [0,∞) by

d(x, y) =



0, if x = y = 1
2 ;

1
3 , if x = y 6= 1

2 ;

2, if (x = 1
2 and y ∈ [0, 1

2)) or (x ∈ [0, 1
2) and y = 1

2);

8, if x, y ∈ [0, 1
2) and x 6= y;

16, if x ∈ ( 1
2 , 1] and y = 1

2 ;

18, if x = 1
2 and y ∈ ( 1

2 , 1];

20, otherwise.

Then (X, d) is a dislocated quasi rectangular b-metric space with coefficient s = 2.
We define T : X → X by

Tx =


x− 1

2 , if x ∈ ( 1
2 , 1],

1
2 , otherwise.

We now verify that T does not satisfy Fisher fixed point theorem with respect to the usual
metric defined on X . For x = 1

2 and y = 3
4 , we have

d(Tx, Ty) = d( 1
2 ,

1
4) =

1
4 and d(x, Ty) + d(y, Tx) = d( 1

2 ,
1
4) + d( 3

4 ,
1
2) =

1
2 . So,

d(Tx, Ty) > α[d(x, Ty) + d(y, Tx)],

for any α ∈ [0, 1
2). Hence, Fisher fixed point theorem with respect to usual metric cannot be used

to get fixed point of T . However, we can apply our third main result.
We note that (X, d) is 0-complete as the constant sequence (xn) where xn = 1

2 for all n ∈ N
is the only 0-Cauchy sequence in (X, d) and

lim
n→∞

d(xn,
1
2
) = lim

n→∞
d(

1
2
, xn) = d(

1
2
,

1
2
) = 0.

We takeA = [0, 1
2 ], B = [ 1

2 , 1]. ThenA, B are closed subsets ofX with T (A) ⊆ B, T (B) =
(0, 1

2 ] ⊆ A and so T is cyclic. Finally, condition (4.20) holds true for γ = 4
25 ∈ [0, 1

s+s2 ). Thus,
all the hypotheses of Theorem 4.8 are fulfilled and T has a unique fixed point 1

2 ∈ A ∩ B with
d( 1

2 ,
1
2) = 0.
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5 Some Coincidence Point Results

Definition 5.1. [1] Let f and g be self mappings of a set X . If y = fx = gx for some x in X ,
then x is called a coincidence point of f and g and y is called a point of coincidence of f and g.

Definition 5.2. [15] The mappings f, g : X → X are weakly compatible, if for every x ∈ X , the
following holds:

g(fx) = f(gx) whenever fx = gx.

Proposition 5.3. [1] Let f and g be weakly compatible self maps of a nonempty set X . If f and
g have a unique point of coincidence y = fx = gx, then y is the unique common fixed point of
f and g.

We state the following lemma which is a key result in this section.

Lemma 5.4. [12] LetX be a nonempty set and f : X → X a function. Then there exists a subset
G ⊆ X such that f(G) = f(X) and f : G→ X is one-to-one.

As an application of Theorem 4.3, we obtain the following result.

Theorem 5.5. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with co-
efficient s ≥ 1. If T : X → X is a dq-rectangular b-Banach mapping, then T has a unique fixed
point u in X with d(u, u) = 0.

Proof. The proof follows from Theorem 4.3 by taking A = B = X .

Theorem 5.6. Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient s ≥ 1
and the mappings T, g : X → X satisfy the following condition:

max{d(Tx, Ty), d(Ty, Tx), d(Tx, Tx), d(Ty, Ty)} ≤ αmin{d(gx, gy), d(gy, gx)} (5.1)

for all x, y ∈ X , where α ∈ [0, 1
s) is a constant. If T (X) ⊆ g(X) and g(X) is a 0-complete

subspace ofX , then T and g have a unique point of coincidence u(say) in g(X) with d(u, u) = 0.
Moreover, if T and g are weakly compatible, then T and g have a unique common fixed point in
g(X).

Proof. By Lemma 5.4, there existsG ⊆ X such that g(G) = g(X) and g : G→ X is one-to-one.
Define h : g(G) → g(G) by h(gx) = Tx. This is possible as T (X) ⊆ g(X). Then h is well
defined, as g is one-to-one on G.

For all gx, gy ∈ g(G), we obtain from condition (5.1) that

max

{
d(h(gx), h(gy)), d(h(gy), h(gx)),

d(h(gx), h(gx)), d(h(gy), h(gy))

}
= max

{
d(Tx, Ty), d(Ty, Tx),

d(Tx, Tx), d(Ty, Ty)

}
≤ αmin{d(gx, gy), d(gy, gx)}.

This proves that h : g(G)→ g(G) is a dq-rectangular b-Banach mapping. Since g(G) = g(X) is
0-complete, by Theorem 5.5, there exists a unique gx0 ∈ g(X) such that h(gx0) = gx0 = u, say
with d(u, u) = 0. That is, Tx0 = gx0 = u. Hence, T and g have a unique point of coincidence
u in g(X).
If T and g are weakly compatible, then by Proposition 5.3 it follows that T and g have a unique
common fixed point in g(X).

Corollary 5.7. Let (X, d) be a complete metric space and let g : X → X be an onto mapping
satisfying

d(gx, gy) ≥ k d(x, y)

for all x, y ∈ X , where k > 1 is a constant. Then g has a unique fixed point in X .

Proof. The proof follows from Theorem 5.6 by taking T = I , the identity map on X , s = 1 and
α = 1

k .
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The following result is an application of Theorem 4.5.

Theorem 5.8. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with co-
efficient s ≥ 1. If T : X → X is a dq-rectangular b-Kannan mapping, then T has a unique fixed
point u in X with d(u, u) = 0.

Proof. The proof follows from Theorem 4.5 by taking A = B = X .

The following theorem is a consequence of Theorem 5.8 and Lemma 5.4.

Theorem 5.9. Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient s ≥ 1
and the mappings T, g : X → X satisfy the following condition:

max

{
d(Tx, Ty), d(Ty, Tx),

d(Tx, Tx), d(Ty, Ty)

}
≤ γmin

{
d(gx, Tx) + d(gy, Ty),

d(Tx, gx) + d(Ty, gy)

}
(5.2)

for all x, y ∈ X , where γ ∈ [0, 1
1+s) is a constant. If T (X) ⊆ g(X) and g(X) is a 0-complete

subspace ofX , then T and g have a unique point of coincidence u(say) in g(X) with d(u, u) = 0.
Moreover, if T and g are weakly compatible, then T and g have a unique common fixed point in
g(X).

Proof. By an argument similar to that used in Theorem 5.6 and by using condition (5.2), we can
show that h : g(G)→ g(G) is a dq-rectangular b-Kannan mapping. Then, by applying Theorem
5.8, there exists a unique gx0 ∈ g(X) such that h(gx0) = gx0 = u, say with d(u, u) = 0. That
is, Tx0 = gx0 = u. Hence, T and g have a unique point of coincidence u in g(X).
If T and g are weakly compatible, then by Proposition 5.3 it follows that T and g have a unique
common fixed point in g(X).

We now apply Theorem 4.8 to obtain the following result.

Theorem 5.10. Let (X, d) be a 0-complete dislocated quasi rectangular b-metric space with
coefficient s ≥ 1. If T : X → X is a dq-rectangular b-Fisher mapping, then T has a unique fixed
point u in X with d(u, u) = 0.

Proof. The proof follows from Theorem 4.8 by taking A = B = X .

The following theorem is a consequence of Theorem 5.10 and Lemma 5.4.

Theorem 5.11. Let (X, d) be a dislocated quasi rectangular b-metric space with coefficient s ≥ 1
and the mappings T, g : X → X satisfy the following condition:

max

{
d(Tx, Ty), d(Ty, Tx),

d(Tx, Tx), d(Ty, Ty)

}
≤ γ

[
min

{
d(gx, Ty) + d(gy, Tx),

d(Ty, gx) + d(Tx, gy)

}

−(1 + s)max{d(gx, gx), d(gy, gy)}
]

(5.3)

for all x, y ∈ X , where γ ∈ [0, 1
s+s2 ) is a constant. If T (X) ⊆ g(X) and g(X) is a 0-complete

subspace ofX , then T and g have a unique point of coincidence u(say) in g(X) with d(u, u) = 0.
Moreover, if T and g are weakly compatible, then T and g have a unique common fixed point in
g(X).

Proof. By an argument similar to that used in Theorem 5.6 and by using condition (5.3), we can
show that h : g(G) → g(G) is a dq-rectangular b-Fisher mapping. Then, by applying Theorem
5.10, there exists a unique gx0 ∈ g(X) such that h(gx0) = gx0 = u, say with d(u, u) = 0. That
is, Tx0 = gx0 = u. Hence, T and g have a unique point of coincidence u in g(X).
If T and g are weakly compatible, then by Proposition 5.3 it follows that T and g have a unique
common fixed point in g(X).
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6 Conclusion remarks

In this study, we introduced some new generalized cyclic mappings in dislocated quasi rectan-
gular b-metric spaces and discussed their fixed points. Moreover, we have investigated some
coincidence point results as applications of our main results. The results of this work extend
several important results in the existing literature.
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