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Abstract: The aim of this research note is to discuss the characteristics of a 3-dimensional
quasi-Sasakian manifold in terms of n-Einstein Solitons. We prove that an n-Einstein soliton
on 3-dimensional quasi-Sasakian manifold is an 7-Einstien manifold. Moreover, we consider 7-
Einstein solitons in a 3-dimensional quasi-Sasakian manifold with a Ricci tensor of Codazzi type
and cyclic parallel Ricci tensor. Besides these, we discuss, conformally flat and ¢-Ricci symmet-
ric n-Einstein soliton in a 3-dimensional quasi-Sasakian manifold. Also, n-Einstein soliton on
a 3-dimensional quasi-Sasakian manifold with the curvature condition Q.R = 0 and Q.W, =0
have been discussed. Moreover, we furnish an example of 7-Einstein solitons in a 3-dimensional
quasi-Sasakian-manifold. Finally, we explore an application of n-Einstein solitons in a complete
and compact 3-dimensional quasi-Sasakian-manifold to Number theory in terms of homotopy

group.

1 Introduction

Geometric flows are important tools for understanding the topological and geometric structures
in Riemannian geometry. In 1982, Hamilton [16] introduced that the Ricci solitons move under
the Ricci flow simply by diffeomorphisms of the initial metric that is they are stationary points

of the Ricci flow given by

99 _ ,p
5= 2Ric(g). (L.1)

A Ricci soliton (g, V, ) on a Riemannian manifold is defined by
Lyvg+25S+2X2=0, (1.2)

where S is the Ricci tensor, Ly is the Lie derivative along the vector field V' on M and ) is a
real scalar. Ricci soliton is said to be shrinking, steady, or expanding accordingto A < 0, A =0
and A\ > 0, respectively.

If the vector field V is the gradient of a potential function -1 , where ¢ is some smooth
function ¢» : M — R, then g is called a gradient Ricci soliton and equation (1.2) assumes the
form

VVi =85+ Ag. (1.3)

It is well known that the quantity
a(g, ) == R+ |V¢?| — ¢

must be constant on M and it is often called the auxiliary constant. When 1 is constant the
gradient Ricci soliton is simply an Einstein manifold. Thus Ricci solitons are natural extensions
of Einstein metrics, an Einstein manifold with a constant potential function is called a trivial
gradient Ricci soliton. Gradient Ricci solitons play an important role in Hamiltonian Ricci flow
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as they correspond to self-similar solutions, and often arise as singularity models. They are also
related to smooth metric measure spaces, since equation (1.3) is equivalent to co-Bakry-Emery
Ricci tensor Ricy) = 0. In physics, a smooth metric space (M, g, e, dvol) with Ricyp = Mg is
called quasi-Einstein manifold. Therefore it is important to study the geometry and topology of
gradient Ricci solitons and their classifications.

In general, one cannot expect potential function v to grow or decay linearly along all direc-
tions at infinity, because of the product property: the product of any two gradient steady Ricci
solitons is also a gradient steady Ricci soliton. Consider for example (R, g,), where g is the
standard Euclidean metric, 1(z1,z;,) = z;. v is constant along z, direction, so without addi-
tional conditions, ¢ may not have linear growth at infinity.

In 2016, Catino and Mazzieri introduced the notion of Einstein solitons [8], which generate
self-similar solutions to Einstein flow

dg scal

Our interest in studying this equation from different points of view arises from concrete physical
problems. On the other hand, gradient vector fields play a central role in Morse-Smale theory.
In what follows, after characterizing the manifold of constant scalar curvature via the existence
of n-Einstein solitons. The existence of an n-Einstein soliton implies that the manifold is quasi-
Einstein. Remark that quasi-Einstein manifolds arose during the study of exact solutions of
Einstein field equations.

Sharma [25] initiated the study of Ricci solitons in contact Riemannian geometry. After
that, many geometers extensively studied Ricci soliton in almost contact metric manifolds (see
[13, 32]). In 2009, Cho and Kimura [9] introduced the notion of 7-Ricci solitons and gave a
classification of real hypersurfaces in non-flat complex space forms admitting n-Ricci solitons.
In [4], Blaga studied the notion of 7n-Einstein solitons. Siddiqi also studied some properties of
n-Einstein solitons in [26, 27, 28, 29, 30, 31] which is closely related to this study.

On the other side, in 1967, Blair [5] introduced the study of quasi-Sasakian structures to
unify Sasakian and cosymplectic structures. Quasi-Sasakian manifold can be viewed as an odd
dimensional counter part of Kahler structure. In [33] Tanno also studied some facts about the
quasi-Sasakian structurs. The properties of quasi-Sasakian manifolds have been studied by sev-
eral authors, viz., Gonzalez and Chinea [15], Kanemaki [17] and Oubina [19]. In 1990, Kim
[18] studied quasi-Sasakian manifolds and proved that fibred Riemannian spaces with invariant
fibers normal to the structure vector field do not admit nearly Sasakian or contact structure but a
quasi-Sasakian or cosymplectic structure.

Recently, quasi-Sasakian manifolds have been the subject of growing interest in view of find-
ing significant applications to physics, in particular to supergravity and magnetic theory (see [1],
[2]). Quasi-Sasakian structures have wide applications in the mathematical analysis of string the-
ory (see[3], [14]). Motivated by the roles of curvature tensor and Ricci tensor of quasi-Sasakian
manifolds in string theory [3]. On a 3-dimensional quasi-Sasakian manifold, the structure func-
tion S was defined by Olszak [20] and with the help of this function. He has obtained the
necessary and sufficient conditions for the manifold to be conformally flat [21]. Next, he has
proved that if the manifold is additionally conformally flat with 5 = constant, then
(a) the manifold is locally a product of R and a two-dimensional Kéehlerian space of constant
Gauss curvature (the cosymplectic case), or,

(b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-
Sasakian structure is homothetic to a Sasakian structure)[33].

Therefore inspired by the above research literature in the present framework authors exten-
sively studies the 7-Einstein solitons on 3-dimensional quasi-Sasakian manifold and a Number
theoretic approach to the same setting.

2 Preliminaries

Let M be a (2n + 1)-dimensional connected differentiable manifold endowed with an almost
contact metric structure (¢, &, n, g), where ¢, £, n are tensor field on M of types (1,1), (1,0),
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(0, 1) respectively, such that (see [6], [7])

X =X +n(X)g, (2.1

n(§) =1, (2.2)

n(X) =g(X,§), ¢{=0, nop=0, 2.3)
9(pX,¢Y) = g(X,Y) = n(X)n(Y), X,Y eT(M), 2.4)

where T'(M) is the Lie algebra of the vector fields of manifold M.
Let & be the fundamental 2-form of M defined by

P(X,Y) =g(X,9Y), X,YeT(M). (2.5)

Then (X, &) = 0, X € T(M). M is said to be quasi-Sasakian if the almost contact structure
(¢, &,7m) is normal and the fundamental 2-form & is closed, that is, for every X,Y € ['(M)>**!,
where I'(M)?>"*+! denotes the module of vector fields on M,

[0, 0](X,Y) 4 dn(X, V)€ =0, (2.6)

AP =0, &(X,Y)=g(X,eY). 2.7)

This was first introduced by Blair [5]. There are many types of quasi-Sasakian structures ranging
from the cosymplectic case, dn = O(rankn = 1), to the Sasakian case, n(dn)n # O(rankn =
2n + 1, = dn). The 1 form 7 has rank r = 2p if (dn)? # 0 and 7(dn)? = 0, and has rank
r = 2p+ 1if (dn)? = 0 and n(dn)? # 0. We also say that r is the rank of the quasi-Sasakian
structure. Blair [5] also proved that there are no quasi-Sasakian structure of even rank. In order
to study the properties of quasi-Sasakian manifolds Blair [5] proved some theorems regarding
Kihlerian manifolds and existence of quasi-Sasakian manifolds.

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian manifold, if and
only if its satisfies the following relations [6]

Vx§=—BpX, (2.8)

for a certain function S on M, such that £5 = 0, V being the operator of the covariant differenti-
ation with respect to the Levi-Civita connection of M. Clearly, such a quasi-Sasakian manifold
is cosymplectic if and only if 5 = 0.

As a consequence of (2.8), we have [20]

(Vxp)Y = Bg(X,Y)§ —n(Y)X] (2.9)

(Vxn)Y = =Bg(¢X,Y) (2.10)

forall X,Y € T(M).
In a 3-dimensional Riemannian manifold, the curvature tensor is given by:

R(X,Y)Z = [S(Y,2)X — S(X, 2)Y + (Y, Z2)QX — ¢(X, Z)QY] 2.11)
—%[g(Y, 2)X — g(X, 2)Y], (2.12)

where 7 is the scalar curvature of M.
Throughout this paper, we consider 3 as a constant. Let 3-dimensional quasi-Sasakian man-
ifold. Since 5 is constant The Ricci tensor S and the Ricci operator () is given by [20]

S(X.Y) = (5 - 4) 9(XY) + (38 = 5 ) n(XOm(Y), 2.13)
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OX = (g _ ﬁ2) X+ (352 - %) n(X)¢ (2.14)

Moreover, the curvature tensor R, the Ricci tensor .S and the Ricci operator () in a 3-dimensional
quasi-Sasakian manifold M also satisfy the following relations [20]

R(X,Y)¢ = B [n(Y)X —n(X)Y] (2.15)
R X)Y = B[g(X,Y) — n(X)Y] (2.16)
S(X,€) =26n(X) 2.17)

Q¢ = 2p%, (2.18)

where g(QX,Y) = S(X,Y). Also, from (2.13) we have
S(eX, oY) = S(X,Y) = 28n(X)n(Y). (2.19)

3 n-Einstein solitons on (M, ¢, &, 1, g)
Let (M, p,&, 7,9, 5) be an almost contact metric manifold. Consider the equation
Leg+2S+ (2N = scal) +2un@n =0, (3.1)

where L; is the Lie derivative operator along the vector field &, S is the Ricci curvature tensor
field of the metric g, scal is the scalar curvature of the Riemannian metric g and A and p are real
constants. For u # 0, the data (g, £, A, 1) will be called n-Einstein soliton [4].

Remark that if the scalar curvature scal of the manifold is constant, then the n-Einstein soliton
(9,6, A — SCZ‘” , iv) reduces to an n-Ricci soliton [9] and, moreover, if © = 0, to a Ricci soliton
[25] (g, &, A — %“l) Therefore, the two concepts of n-Einstein soliton [4] and 7-Ricci soliton are
distinct on manifolds of non constant scalar curvature.

Writing L¢g in terms of the Levi-Civita connection V, we obtain [4]:

28(X,Y) = —g(Vx&Y) — g(X,Vy§) — (2X = scal)g(X,Y) = 2un(X)n(Y), (3.2

forany X,Y € x(M).

The data (g, ¢, A, 1) which satisfy the equation (3.1) is said to be an n-Einstein soliton on M
[10]. In particular if © = O then (g, &, \) is called Ricci soliton [32] and it is called shrinking,
steady or expanding, according as X is negative, zero or positive respectively [9].

Here is an example of n-Einstein soliton on 3-dimensional quasi-Sasakian manifold.

Example 3.1. Let M = {(z,y,2) € R? : 2 # 0} where (z,y, z) are the standard coordinates of
R3.

The vector fields are

0 0 0

=% Yor _(‘3y Ox

Let g be the Riemannian metric defined by

gler,er) = g(ez,e2) = g(es,e3) =1, gler,e3) = g(ez,e3) = g(er,e2) =0

that is, the form of the metric becomes Let 1 be the 1-form defiend by 1(Z) = ¢g(Z, e3) for any
Z € x(M).
Also, let o be the (1, 1) tensor field defined by

99(61) = —ey, tp(ez) =ey, np(e3) =0.
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Thus using the linearity of ¢ and g, we have
n(es) =0, nler) =0, nle2) =0,

le1, €] = €3 le2,e3] =0, [er,e3] =0,

O’z =—7+ n(Z)es

9(pZ, W) = g(Z,W) = n(Z)n(W)

forany Z, W € x(M).
Then for e3 = £, the structure ¢, £, 17, g) defines an almost contact metric structure on M.
Let V be the Levi-Civita connection with respect to the metric g, then we have

Zg(VXY, Z) = Xg(Y,Z) + Yg(Z,X) - Zg(X,Y) - g(X, [Yv ZD

—g(Y, [X’ Z]) + g(Z, [X7 YDv

which is known as Koszul’s formula.
Using Koszul’s formula we have

1 1
Velel = O; v€1€2 = _1637 V61€3 = 1637
1
Veze] = 1637 veZGZ = 07 v€263 = _1617
1 1
Ve3€1 = 162, Ve362 = —1617 Ve3eo =0. (33)

From (3.3) we find that the structure (¢, &, 7, g) satisfies the formula (2.8) for 8 = i and £ =
e3. Hence the manifold is a 3-dimensional quasi-Sasakian manifold with the constant structure
function 8 = § [13].

Then the Riemannian and Ricci curvature tensor fields are given by:

1 1
R(61762)€3 =0, R(62,63)63 = Reg, R(e],e3)e3 = Eel,
3 1
R(er,ex)es = ———e1, R(ez,e3)es = ——es,  Rer,e3)er =0,
16 16
Rler.ex)er = —es, Rlen,es)er =0, Rlen,esle = — =
€1,€e2)er = 1662, ey,ez)e; = U, e|,ez)e = 1663'
From the above expressions of the curvature tensor we obtain
1
S(er,e1) = g(R(e1,ea)ez, e1) + g(R(er, e3)es, er) = -3

similarly we have

1
and 5(63,63) ==

1
5(61,61)25(62,62):—* 3

8 )
. In case of n-Einstein soliton, from the relation (3.9) it is sufficient to verify that

scal

Stene) = = (A= 550 glesced) = (et G4

forall i = 1,2,3, and scal = —§, we get

Ser,er) = — ()\ —~ 2) gler,er)
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which implies

Also,
scal
S(es,e3) = — ()\ - 2) g(es, e3) — pn(es)n(es) 3.5
By using A = 1—16 and scal = —% in (3.5) we obtain p = —%.

Therefore, the data (g,&, A — “2‘” , i) is an n-Einstein soliton in 3-dimensional quasi-Sasakian
manifold.

For this example we have A\ = %,
quasi-Sasakian manifold is expanding.

i.e. A > 0 so that the n-Einstein soliton in 3-dimensional

Proposition 3.2. An n-Einstein soliton on a 3-dimensional quasi-Sasakian manifold is an n-
Einstien manifold.

Proof. Let us consider that a 3-dimensional quasi-Sasakian manifold admits a proper n-Einstein
scal

soliton (g,&, A — 2%, 11). Then from the relation (3.1) yields
(Leg)(X,Y) +2S(X,Y) + (2\ — scal)g(X,Y) + 2un(X)n(Y) = 0. (3.6)
It follows that
25(X,Y) = =(Leg)(X,Y) = (24 = scal)g(X,Y) = 2pun(X)n(Y) 3.7

for all smooth vector fileds X, Y (M). Since £ is Killing and its integral curves are geodesics in
3-dimensional quasi-Sasakian manifold [20], that is

(Leg)(X,Y) =0. (3.8)
Now, using (3.8), we obtain
scal
S06Y) = = (A= 250 ) oY) - (Y, (3.9)
Therefore, we conclude that n-Einstein soliton (g,&, A — Sczal, 1) on a 3-dimensional quasi-
Sasakian manifold is an n-Einstein manifold. This complete the proof. O

Proposition 3.3. In a 3-dimensional quasi-Sasakian manifold for an n-Einstein soliton we have
A p=28*-1%.

Proof. The Ricci tensor of a 3-dimensional quasi-Sasakian manifold is given by
_(r_ 2 T
S(X,Y) = (5= 8) g(X,Y) + (38 = 2) n(X)n(¥), (3.10)

where r is the scalr curvature. Comparing the equation (3.10) with equation (3.9), we obtain

— (A —2¢%) = 1(r—28%) and p = =352+ 5. Since here scal = r is the scalar curvature. From

which it follows that A + p = 25% — 5. This complete the proof. O

4 n-Einstein Soliton on 3-dimensional quasi-Sasakian manifolds with Ricci
tensor of Coddazi type

In this section, we consider proper 7-Einstein soliton on 3-dimensional quasi-Sasakian man-
ifolds with Ricci tensor of Coddazi type. Therefore taking the covariant differentiation of (3.8)
with respect to Z we obtain

(Vz8)(X,Y) = =pl(Vxn)(X)n(Y) + n(X)(Vzn)(Y)]. (4.1)
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Using (2.10), we get
(VzS)(X,Y) = Bulg(Z, X)n(Y) + n(X)g(0Z,Y)]. 4.2)
Now, using the fact that the Ricci tensor .S of Coddazi type. Then
(Vz9)(X,Y) = (VyS)(Z, X). (4.3)
Using equations (4.2) and (4.3), we have

Bulg(eZ, X)n(Y) + g(¢Z,Y )n(X)] = Bulg(eY, Z)n(X) + g(¢Y, X)n(Z)]. (4.4)

Putting Z = £ in (4.4), we get S = 0, which is a contradiction. Hence a 3-dimensional quasi-
Sasakian manifold with Ricci tensor of Coddazi type does not admit proper n-Einstein soliton.
Thus we conclude the following:

Theorem 4.1. A 3-dimensional quasi-Sasakian manifold with Ricci tensor of Coddazi type does
not admit a proper n-Einstein soliton.

5 mn-Einstein soliton on 3-dimensional quasi-Sasakian manifold with cyclic
parallel Ricci tensor

This section deals with a proper n-Einstein soliton on a 3-dimensional quasi-Sasakian manifold
with cyclic parallel Ricci tensor. Therefore, we have

for all smooth vector fields X, Y, Z € T'(T'M). Using (3.9) in (5.1), we have

Bulg(Y,oX)n(Z) + g(Z,0XIn(Y) + 9(Z, Y )n(X) (5.2)

+9(X, oY )In(Z) + g(X, 0Z)n(Y) + g(Y, 9Z)n(X)] = 0.
Putting X = £ in (refs6), we get

Brg(pY, Z) = 0. (5.3)

It follow that Su = 0, since (5 # 0) or 4 = 0, which is a contradiction. Thus we can state the
following theorem:

Theorem 5.1. A 3-dimensional quasi-Sasakian manifold with cyclic parallel Ricci tensor does
not admit a proper n-Eisntein soliton.

6 -Ricci Symmetric n-Einstein soliton on 3-dimensional quasi-Sasakian
manifold

In this section, we study ¢-Ricci symmetric proper n-Einstein soliton on a 3-dimensional quasi-
Sasakian manifold. A quasi-Sasakian manifold is said to be ¢-Ricci symmetric [13] if

P (VxQ)Y =0 (6.1)

for all smooth vector fields X,Y on M.
The Ricci tensor for an 7-Einstein soliton on a 3-dimensional quasi-Sasakian manifold is given
by

scal

S(X.Y) = (A - 2) 9(X,Y) = m(X)n(Y). 6.2)

Then it follows that

scal

QX = - (A - 2) X — un(X)é (6.3)
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for all smooth vector filed  on M. Now, taking covariant derivative of (s10), we obtain

(VxQ)Y = Bug(pX,Y) + Bun(Y)eX. (6.4)
Applying ¢? on both side of the equation (6.4), we get
P*(VxQ)Y = pun(Y )¢ X. (6.5)

From (6.1) and (6.5) we have

Bu = 0. (6.6)

Since 5 # 0. Therefore p = 0, which is a contradiction. Therefore a (p-Ricci symmetric 3-
dimensional quasi-Sasakian manifold does not admit a proper 7-Einstein soliton. Thus we can
state the following theorem:

Theorem 6.1. A p-Ricci symmetric 3-dimensional quasi-Sasakian manifold does not admit a
proper n-Einstein soliton.

7 Conformally flat n-Einstein soliton on 3-dimensional quasi-Sasakian
manifold

In this section we study conformally flat proper n-Einstein soliton in a 3-dimensional quasi-
Sasakian manifold. Therefore [?]

(VxS)(¥, 2) ~ (V¥ S)(X, 2) = 7lo(Y, Z2)dr(X) — g(X, Z)dr(¥)]. (7.1)
Using (3.9) in (7.1)
Bulg(Y, oX)n(Z) + g(Z, p X )In(Y)?29(X, Y )n(Z)?9(Z, Y )n(X)] (7.2)

_ %[g(y, 2)dr(X) — g(X, Z)dr(Y)).

Putting X = £ in (7.2), we get

4Bug(pY, Z) = —n(Z)dr. (7.3)

It follow that 43upY = —dr(Y)¢. This implies that Bup?Y = 0. Hence i = 0. Since 3 # 0
or 4 = 0, which is a contradiction. Therefore a conformally flat 3-dimensional quasi-Sasakian
manifold does not admit a proper 7-Einstein soliton. Thus we can state the following theorem:

Theorem 7.1. A conformally flat 3-dimensional quasi-Sasakian manifold does not admit a proper
n-Einstein soliton.

8 n-Einstein soliton on 3-dimensional quasi-Sasakian manifold satisfying the
curvature condition Q.R = 0

In this section, we study the proper n-Einstein soliton in a 3-dimensional quasi-Sasakian mani-
fold satisfying the curvature condition @).R = 0. Therefore

(Q.R)(X,Y)Z=0 8.1)
for all smooth vector fileds X, Y, Z on M. The explicit form of the above equation is
Q(R(X,Y)Z) - R(QX,Y)Z — R(X,QY)Z — R(X,Y)QZ = 0. (8.2)
Using (3.9) in (8.2) we have

~MR(X,Y)Z — un(R(X,Y)Z)E + MR(X,Y)Z + un(X)R(¢,Y)Z (8.3)
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FMR(X,Y)Z + im(Y)R(X,§)Z + MR(X,Y)Z + pum(Z)R(X,Y)§ =0,
where \; = (A — #4). Using (2.11) in (8.3) we have

—ng(Y, Z)n(QX)E + pg(X, Z)n(QY )¢ — pn(X)n(Q2)Y (8.4)
+mun(X)g(Y, 2)Q§ = 2um(X)n(Z)QY + run(X)n(2)Y
Fun(Y)n(QZ)X + 2un(Y)n(Z2)QX — un(Y)g(X, Z)Q¢

—run(Y)n(Z)X + pn(Z)n(QY)X — un(Z)n(@X)Y

F2M[S(Y, 2)X = S(X, 2)Y +g(Y, Z2)QX — g(X, Z)QY]

r

Sl 2)X —g(X, 2)Y] =0.

Again using (3.9) in (8.4) we obtain

Mpg(Y, Z)n(X)6 + p2g(Y, Z)n(X)§ — pg(Y, Z)n(=MX — pn(X)€)é (8.5
+pg(X, Z)n(=MX — un(Y)E)§ —n(X)n(=MZ — un(2)§)Y
+un(X)g(Y, Z)(= & — p8) = 2um(X)n(Z) (MY — pun(Y)S + rpm(X)n(2)Y
+un(Y (=& = p&) = rum(YV)n(Z) X + pn(Z)n(=MY — pn(Y)§) X
—un(Z)n(=MX — im(X)Y + 2\ [(=Mg(Y, Z) — un(Y)n(Z2)) X — (=Mg(X, Z)
—un(X)n(2))Y + g(Y, Z)(=M X — un(X)§) — g(X, Z)(=MY — un(Y)¢)

r
—54(Y,2)X - g(X,2)Y)] = 0.
from which it follows that

(X )n(2)Y + 2P n(X)n(2)Y — 4hun(Y)n(Z)X +run(X)n(Z2)Y  (8.6)
—run(Y)n(Z2)X +2M[(=Mg(Y, Z) — pn(X)n(2)) X — (= \g(X, Z) — un(X)n(2))Y
+9(Y, Z) (=X — pn(X)€) — g(X, Z) (=Y — un(Y)§) — g(g(K Z)X —g9(X,2)Y)]

=200V )0(Z)X + Mg (Y, Z)n(X)é + pg(Y, Z)n(X)€ = 0.
Putting X = Z = £ in (8.6) we get

ApY —Apn(Y)E+ruY —run(Y)E (8.7

F2M[=An(YV)E = pn(Y)E+ MY +pY — in(Y)E
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(Y )€+ MY+ pm(¥)E — 3n(V)E + 3V

=2(2(Y)E+ A (Y )€ + pPn(Y)é = 0.
Taking inner product of (8.7) with £ we get
n(Ar+p)n(Y) =0. (8.8)
By hypothesis 1 # 0, therefore from the above equation we get

A+ =0, ie. A—%"l+u:0

Moreover, for an 7-Einstein soliton on a 3-dimensional quasi-Sasakian manifold, we have

A+u:252—%

Thus in this case A = 3> — zand p = B — 7+ Therefore we have the following:

Theorem 8.1. An proper n-Einstein soliton on 3-dimensional quasi-Sasakain manifold Sasakian

satisfying the curvature condition Q.R = 0 is of the type (g, V, %2, %2)

9 mn-Einstein soliton on 3-dimensional quasi-Sasakian manifold satisfying the

curvature condition Q. W, = 0.

W,-curvature tensor filed is the curvature tensor introduced by Pokhariyal and Mishra [24].

1

XY)Z=R(X,)Y)Z 4+ —F—

[g(X,Z)QY—g(Y,Z)QX]. 9.1

In this section, we study proper n-Einstein soliton on a 3-dimensional quasi-Sasakian manifold
satisfying the curvature condition ).W, = 0. Therefore

QW) (X,Y)Z =0. (9.2)
for all smooth vector filed X,Y, Z on M. The explicit form of the equation (9.2) is
QW (X,Y)Z) - Wa(QX,Y)Z — Wa(X,QY)Z — WL(X,Y)QZ = 0. 9.3)
Using (3.9) in (9.3) we have

“MWL(X,Y)Z — pun(Wa(X,Y)Z)E + MWa(X,Y) Z + pin(X)Wh(€,Y)Z 9.4)
+MWL(X,Y)Z + (Y )Wa (X, ) Z + MWa(X,Y)Z + un(Z)Wo(X,Y)E =0,

where A\; = (A — 2§%). Using (9.1) in (9.4) we have

—ug(Y, Z)n(QX )¢ + png(X, Z)n(QY )¢ — un(X)n(QZ2)Y 9.5)

~L9(X, 2@V ) + LoV, Z)n(@X )¢

+un(X)g(Y, Z)QE — 2un(X)n(Z)QY + run(X)n(2)Y

1

Fn(X)n(Z2)QY — %/m(X)g(Y, Z)Q¢
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Fun(Y)n(QZ)X + 2un(Y)n(Z2)QX — un(Y)g(X, 2)Q¢
En(¥)g(X, 2)Q¢ = §n(¥ n(2)QX
—run(Y)n(Z)X + pn(Z)n(QY)X — un(Z)n(Q@X)Y
+En(Zn(V)QY = En(Z2)n(Y)QX

F2M[S(Y, 2)X — S(X, 2)Y + g(Y, 2)QX — g(X, Z)QY]

LoV, 2)X ~ g(X, 2)Y] + 3[9(X, 2)QY ~ g(¥, 2)QX] = 0.

Again using (3.9) in (9.5) we obtain

AL :

S Zm(X)e + 59V, 2m(X)e = SV, Zm(-MX — mn(X)O)E  9.6)

+59(X. (=M X = un(Y))E — n(X)n(-MZ — un(Z)6)Y

Fan(X)g(¥ Z)(-N€ — ) — 3 pm(XIn(Z)NY — un(V)E + rn(X)n(2)Y

Fun(Y)n(=M& — p&) — rum(Y)n(Z)X + pn(Z)n(=\Y — un(Y)§) X
—un(Z)n(=MX — pn(X)E)Y 42X [(—Mig(Y, Z) — un(Y)n(Z)) X — (= g(X, Z)

(X )n(2))Y +g(Y, Z)(= M\ X — un(X)€) — 9(X, Z)(=MY — un(Y)E)

—%(Q(Yv Z2)X —g(X,2)Y)| + %HQ(X, Z)(=MY —un(Y)€ = g(Y, Z) (=M X — un(X)E] = 0.

from which it follows that

%Alun(X)n(Z)Y + 21X )n(2)Y =3 (Y )In(Z2)X +rum(X)m(Z2)Y — (9.7)

—run(Y)n(Z2)X 4+ 2M[(=Mg(Y, Z) — pun(X)n(2)) X — (= g(X, Z) — un(X)n(Z))Y

r

+9(V, Z2) (=M X — (X)) — 9(X, Z) (=AY = un(Y)E) = 5

(9(Y, 2)X - g(X,2)Y)]
~Mg(X, 2)Y + M (Y)g(X, 2)6 + Ng(Y, Z)X + Mpn(X)g(Y, Z)¢

“22(Y I Z)X + S (X (Y In(2) = 0.

Putting X = Z = £in (9.7) we get

9
EAWY +20°Y =3\ = 1un(Y)E +ruY — run(Y)E 9.8)
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F2M[=An(YV)E = pn(Y)E+ MY +pY = Ain(Y)E

1 1
—m(Y)E+ MY + pn(Y)E = 5n(Y)E+ 3V = An(Y)E+ AT

3
=202 n(Y)E + SpPn(Y)E = 0.

Taking inner product of (9.8) with £ we get
5 3
1 <2A1 + 2u> n(Y) =0. 9.9)
By hypothesis i # 0, therefore from the above equation we get

5 3 1 3
5/\1 +tap= 0, ze. 3 (5X — scal) + SH= 0

Moreover for an n-Einstein soliton on 3-dimensional quasi-Sasakian manifold we have
Afu=28 -3

Thus in this case A = 2% and p = —232. Therefore we have the following:

Theorem 9.1. An proper n-Einstein soliton on 3-dimensional quasi-Sasakain manifold Sasakian
satisfying the curvature condition Q.W, = 0 is of the type (g,V, 23>, —25%).

10 Application of n-Einstein soliton on quasi-Sasakain manifold to
Algebraical Number Theory

In 2008, Wylie [34] proved that if (M, g) is a complete Riemannian manifold satisfying (1.2),
then M has a finite fundamental group (for more information see Theorem 1.1 [34]).

Remark 10.1. According to Theorem 1 and Theorem 2, proved by Rustanov ( see [23]), he has
shown that with a non-zero scalar curvature a quasi-Sasakian manifold is complete, it is compact
and has a finite fundamental group.

Remark 10.2. [22] A finite fundamental group is the first and simplest homotopy group. The
fundamental group is homotopy invariant, topological spaces are homotopy equivalent and have
isomorphic fundamental groups. The fundamental group or a homotopy group of a topological
space X is denoted by 7 (X).

In view of (3.1), non-zero scalar curvature scal, implies the existence n-Einstein soliton on
3-dimensional quasi-Sasakain manifold. Therefore, in light of (3.1), Remark 10.1, and Remark
10.2 we gain the following outcomes:

Theorem 10.3. If a 3-dimensional quasi-Sasakain manifold (M3, g) admits an n-Einstein soliton
with non-zero scalar curvature scal, then, it is complete, compact and has a finite fundamental

group.

Theorem 10.4. If a 3-dimensional quasi-Sasakain manifold (M3, g) admits an n-Einstein soliton

with non-zero scalar curvature scal, then, it is complete, compact and has a homotopy group
3
7T1(M )

Next, we have the following discussion, which is based on the Number theoretic approach
with the homotopy group of a space.
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Remark 10.5. For a prime number p, the homotopy p-exponent of a topological space T, denoted
by Exp,(U), is defined to be a largest e € N = {0, 1,2, -} such that some homotopy group
®;(7) has an element of order p¢. Cohen et al. [10] proved that the

Eapy(8) =n if p#2.
For a prime number p and a integer z, the p-adic order of z is given by Ord,(z) = sup{z € N : p* |z}.

In 2007, Davis and Sun derived an interesting inequality in terms of a homotopy group (The-
orem 1.1 Page 2 [12]). According to them, for any prime p and z = 2,3,--- some homotopy
group 7;(7) contains an element of order p"~!*O7d(7/p])) je. then the strong and elegant
lower bound for homotopy p-exponent of homotopy group is

Eap,(7i(T)) > n— 14 Ord, QZJ !> : (10.1)

where 7;(7) is a homotopy group of degree n.
Therefore, using Davis and Sun result (Theorem 1.1 [12]) with Theorem 10.4, we gain an inter-
esting inequality

Theorem 10.6. For any prime number p and s = 2,3, - - -, a homotopy group m (M?) of a com-

plete 3-dimensional quasi-Sasakain manifold (M3, g) admits an n-Einstein soliton with non-zero
scalar curvature scal, contains an element of order p*~'+O7d(L5/P1) ywe obtain the inequality

Eap,(m (M) > n— 1+ Ord, Q;J !) . (10.2)
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