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Abstract: The aim of this research note is to discuss the characteristics of a 3-dimensional
quasi-Sasakian manifold in terms of η-Einstein Solitons. We prove that an η-Einstein soliton
on 3-dimensional quasi-Sasakian manifold is an η-Einstien manifold. Moreover, we consider η-
Einstein solitons in a 3-dimensional quasi-Sasakian manifold with a Ricci tensor of Codazzi type
and cyclic parallel Ricci tensor. Besides these, we discuss, conformally flat and ϕ-Ricci symmet-
ric η-Einstein soliton in a 3-dimensional quasi-Sasakian manifold. Also, η-Einstein soliton on
a 3-dimensional quasi-Sasakian manifold with the curvature condition Q.R = 0 and Q.W2 = 0
have been discussed. Moreover, we furnish an example of η-Einstein solitons in a 3-dimensional
quasi-Sasakian-manifold. Finally, we explore an application of η-Einstein solitons in a complete
and compact 3-dimensional quasi-Sasakian-manifold to Number theory in terms of homotopy
group.

1 Introduction

Geometric flows are important tools for understanding the topological and geometric structures
in Riemannian geometry. In 1982, Hamilton [16] introduced that the Ricci solitons move under
the Ricci flow simply by diffeomorphisms of the initial metric that is they are stationary points
of the Ricci flow given by

∂g

∂t
= −2Ric(g). (1.1)

A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0, (1.2)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M and λ is a
real scalar. Ricci soliton is said to be shrinking, steady, or expanding according to λ < 0, λ = 0
and λ > 0, respectively.

If the vector field V is the gradient of a potential function -ψ , where ψ is some smooth
function ψ : M → R, then g is called a gradient Ricci soliton and equation (1.2) assumes the
form

∇∇ψ = S + λg. (1.3)

It is well known that the quantity

a(g, ψ) := R+
∣∣∇ψ2∣∣− ψ

must be constant on M and it is often called the auxiliary constant. When ψ is constant the
gradient Ricci soliton is simply an Einstein manifold.Thus Ricci solitons are natural extensions
of Einstein metrics, an Einstein manifold with a constant potential function is called a trivial
gradient Ricci soliton. Gradient Ricci solitons play an important role in Hamiltonian Ricci flow
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as they correspond to self-similar solutions, and often arise as singularity models. They are also
related to smooth metric measure spaces, since equation (1.3) is equivalent to∞-Bakry-Emery
Ricci tensor Ricψ = 0. In physics, a smooth metric space (M, g, eψ, dvol) with Ricψ = λg is
called quasi-Einstein manifold. Therefore it is important to study the geometry and topology of
gradient Ricci solitons and their classifications.

In general, one cannot expect potential function ψ to grow or decay linearly along all direc-
tions at infinity, because of the product property: the product of any two gradient steady Ricci
solitons is also a gradient steady Ricci soliton. Consider for example (R, g, ψ), where g is the
standard Euclidean metric, ψ(x1, x2) = x1. ψ is constant along x2 direction, so without addi-
tional conditions, ψ may not have linear growth at infinity.

In 2016, Catino and Mazzieri introduced the notion of Einstein solitons [8], which generate
self-similar solutions to Einstein flow

∂g

∂t
= −2

(
S − scal

2
g

)
. (1.4)

Our interest in studying this equation from different points of view arises from concrete physical
problems. On the other hand, gradient vector fields play a central role in Morse-Smale theory.
In what follows, after characterizing the manifold of constant scalar curvature via the existence
of η-Einstein solitons. The existence of an η-Einstein soliton implies that the manifold is quasi-
Einstein. Remark that quasi-Einstein manifolds arose during the study of exact solutions of
Einstein field equations.

Sharma [25] initiated the study of Ricci solitons in contact Riemannian geometry. After
that, many geometers extensively studied Ricci soliton in almost contact metric manifolds (see
[13, 32]). In 2009, Cho and Kimura [9] introduced the notion of η-Ricci solitons and gave a
classification of real hypersurfaces in non-flat complex space forms admitting η-Ricci solitons.
In [4], Blaga studied the notion of η-Einstein solitons. Siddiqi also studied some properties of
η-Einstein solitons in [26, 27, 28, 29, 30, 31] which is closely related to this study.

On the other side, in 1967, Blair [5] introduced the study of quasi-Sasakian structures to
unify Sasakian and cosymplectic structures. Quasi-Sasakian manifold can be viewed as an odd
dimensional counter part of Kahler structure. In [33] Tanno also studied some facts about the
quasi-Sasakian structurs. The properties of quasi-Sasakian manifolds have been studied by sev-
eral authors, viz., Gonzalez and Chinea [15], Kanemaki [17] and Oubina [19]. In 1990, Kim
[18] studied quasi-Sasakian manifolds and proved that fibred Riemannian spaces with invariant
fibers normal to the structure vector field do not admit nearly Sasakian or contact structure but a
quasi-Sasakian or cosymplectic structure.

Recently, quasi-Sasakian manifolds have been the subject of growing interest in view of find-
ing significant applications to physics, in particular to supergravity and magnetic theory (see [1],
[2]). Quasi-Sasakian structures have wide applications in the mathematical analysis of string the-
ory (see[3], [14]). Motivated by the roles of curvature tensor and Ricci tensor of quasi-Sasakian
manifolds in string theory [3]. On a 3-dimensional quasi-Sasakian manifold, the structure func-
tion β was defined by Olszak [20] and with the help of this function. He has obtained the
necessary and sufficient conditions for the manifold to be conformally flat [21]. Next, he has
proved that if the manifold is additionally conformally flat with β = constant, then
(a) the manifold is locally a product of R and a two-dimensional Käehlerian space of constant
Gauss curvature (the cosymplectic case), or,
(b) the manifold is of constant positive curvature (the non-cosymplectic case, here the quasi-
Sasakian structure is homothetic to a Sasakian structure)[33].

Therefore inspired by the above research literature in the present framework authors exten-
sively studies the η-Einstein solitons on 3-dimensional quasi-Sasakian manifold and a Number
theoretic approach to the same setting.

2 Preliminaries

Let M be a (2n + 1)-dimensional connected differentiable manifold endowed with an almost
contact metric structure (ϕ, ξ, η, g), where ϕ, ξ, η are tensor field on M of types (1, 1), (1, 0),
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(0, 1) respectively, such that (see [6], [7])

ϕ2X = −X + η(X)ξ, (2.1)

η(ξ) = 1, (2.2)

η(X) = g(X, ξ), ϕξ = 0, η ◦ ϕ = 0, (2.3)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ T (M), (2.4)

where T (M) is the Lie algebra of the vector fields of manifold M .
Let Φ be the fundamental 2-form of M defined by

Φ(X,Y ) = g(X,ϕY ), X, Y ∈ T (M). (2.5)

Then Φ(X, ξ) = 0, X ∈ T (M). M is said to be quasi-Sasakian if the almost contact structure
(ϕ, ξ, η) is normal and the fundamental 2-form Φ is closed, that is, for every X,Y ∈ Γ(M)2n+1,
where Γ(M)2n+1 denotes the module of vector fields on M ,

[ϕ,ϕ](X,Y ) + dη(X,Y )ξ = 0, (2.6)

dΦ = 0, Φ(X,Y ) = g(X,ϕY ). (2.7)

This was first introduced by Blair [5]. There are many types of quasi-Sasakian structures ranging
from the cosymplectic case, dη = 0(rankη = 1), to the Sasakian case, η(dη)n 6= 0(rankη =
2n + 1, ϕ = dη). The 1 form η has rank r = 2p if (dη)p 6= 0 and η(dη)p = 0, and has rank
r = 2p + 1 if (dη)p = 0 and η(dη)p 6= 0. We also say that r is the rank of the quasi-Sasakian
structure. Blair [5] also proved that there are no quasi-Sasakian structure of even rank. In order
to study the properties of quasi-Sasakian manifolds Blair [5] proved some theorems regarding
Kählerian manifolds and existence of quasi-Sasakian manifolds.

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian manifold, if and
only if its satisfies the following relations [6]

∇Xξ = −βϕX, (2.8)

for a certain function β on M , such that ξβ = 0,∇ being the operator of the covariant differenti-
ation with respect to the Levi-Civita connection of M . Clearly, such a quasi-Sasakian manifold
is cosymplectic if and only if β = 0.

As a consequence of (2.8), we have [20]

(∇Xϕ)Y = β[g(X,Y )ξ − η(Y )X] (2.9)

(∇Xη)Y = −βg(ϕX, Y ) (2.10)

for all X,Y ∈ T (M).
In a 3-dimensional Riemannian manifold, the curvature tensor is given by:

R(X,Y )Z = [S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ] (2.11)

− r
2
[g(Y,Z)X − g(X,Z)Y ], (2.12)

where r is the scalar curvature of M .
Throughout this paper, we consider β as a constant. Let 3-dimensional quasi-Sasakian man-

ifold. Since β is constant The Ricci tensor S and the Ricci operator Q is given by [20]

S(X,Y ) =
( r

2
− β2

)
g(X,Y ) +

(
3β2 − r

2

)
η(X)η(Y ), (2.13)
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QX =
( r

2
− β2

)
X +

(
3β2 − r

2

)
η(X)ξ (2.14)

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a 3-dimensional
quasi-Sasakian manifold M also satisfy the following relations [20]

R(X,Y )ξ = β2[η(Y )X − η(X)Y ] (2.15)

R(ξ,X)Y = β2[g(X,Y )− η(X)Y ] (2.16)

S(X, ξ) = 2β2η(X) (2.17)

Qξ = 2β2ξ, (2.18)

where g(QX,Y ) = S(X,Y ). Also, from (2.13) we have

S(ϕX,ϕY ) = S(X,Y )− 2β2η(X)η(Y ). (2.19)

3 η-Einstein solitons on (M,ϕ, ξ, η, g)

Let (M,ϕ, ξ, η, g, β) be an almost contact metric manifold. Consider the equation

Lξg + 2S + (2λ− scal) + 2µη ⊗ η = 0, (3.1)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor
field of the metric g, scal is the scalar curvature of the Riemannian metric g and λ and µ are real
constants. For µ 6= 0, the data (g, ξ, λ, µ) will be called η-Einstein soliton [4].

Remark that if the scalar curvature scal of the manifold is constant, then the η-Einstein soliton
(g, ξ, λ − scal

2 , µ) reduces to an η-Ricci soliton [9] and, moreover, if µ = 0, to a Ricci soliton
[25] (g, ξ, λ− scal

2 ). Therefore, the two concepts of η-Einstein soliton [4] and η-Ricci soliton are
distinct on manifolds of non constant scalar curvature.

Writing Lξg in terms of the Levi-Civita connection ∇, we obtain [4]:

2S(X,Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− (2λ− scal)g(X,Y )− 2µη(X)η(Y ), (3.2)

for any X,Y ∈ χ(M).
The data (g, ξ, λ, µ) which satisfy the equation (3.1) is said to be an η-Einstein soliton on M

[10]. In particular if µ = 0 then (g, ξ, λ) is called Ricci soliton [32] and it is called shrinking,
steady or expanding, according as λ is negative, zero or positive respectively [9].

Here is an example of η-Einstein soliton on 3-dimensional quasi-Sasakian manifold.

Example 3.1. Let M =
{
(x, y, z) ∈ R3 : z 6= 0

}
where (x, y, z) are the standard coordinates of

R3.

The vector fields are

e1 =
∂

∂z
− y ∂

∂x
, e2 =

∂

∂y
, e3 = 2

∂

∂x

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0

that is, the form of the metric becomes Let η be the 1-form defiend by η(Z) = g(Z, e3) for any
Z ∈ χ(M).

Also, let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0.
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Thus using the linearity of ϕ and g, we have

η(e3) = 0, , η(e1) = 0, η(e2) = 0,

[e1, e2] =
1
2
e3, [e2, e3] = 0, [e1, e3] = 0,

ϕ2Z = −Z + η(Z)e3

,
g(ϕZ,ϕW ) = g(Z,W )− η(Z)η(W )

for any Z,W ∈ χ(M).
Then for e3 = ξ, the structure ϕ, ξ, η, g) defines an almost contact metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula.
Using Koszul’s formula we have

∇e1e1 = 0, ∇e1e2 = −
1
4
e3, ∇e1e3 =

1
4
e3,

∇e2e1 =
1
4
e3, ∇e2e2 = 0, ∇e2e3 = −

1
4
e1,

∇e3e1 =
1
4
e2, ∇e3e2 = −

1
4
e1, ∇e3e0 = 0. (3.3)

From (3.3) we find that the structure (ϕ, ξ, η, g) satisfies the formula (2.8) for β = 1
4 and ξ =

e3. Hence the manifold is a 3-dimensional quasi-Sasakian manifold with the constant structure
function β = 1

4 [13].
Then the Riemannian and Ricci curvature tensor fields are given by:

R(e1, e2)e3 = 0, R(e2, e3)e3 =
1
16
e2, R(e1, e3)e3 =

1
16
e1,

R(e1, e2)e2 = −
3
16
e1, R(e2, e3)e2 = −

1
16
e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 =
3
16
e2, R(e2, e3)e1 = 0, R(e1, e3)e = −

1
16
e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1) = −
1
8

similarly we have

S(e1, e1) = S(e2, e2) = −
1
8
, and S(e3, e3) =

1
8

. In case of η-Einstein soliton, from the relation (3.9) it is sufficient to verify that

S(ei, ei) = −
(
λ− scal

2

)
g(ei, ei)− µη(ei)η(ei) (3.4)

for all i = 1, 2, 3, and scal = − 1
8 , we get

S(e1, e1) = −
(
λ− scal

2

)
g(e1, e1)
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which implies

S(e1, e1) = −
(
λ− scal

2

)
⇒ λ =

1
16
.

Also,

S(e3, e3) = −
(
λ− scal

2

)
g(e3, e3)− µη(e3)η(e3) (3.5)

By using λ = 1
16 and scal = − 1

8 in (3.5) we obtain µ = − 1
4 .

Therefore, the data (g, ξ, λ − scal
2 , µ) is an η-Einstein soliton in 3-dimensional quasi-Sasakian

manifold.
For this example we have λ = 1

16 , i.e. λ > 0 so that the η-Einstein soliton in 3-dimensional
quasi-Sasakian manifold is expanding.

Proposition 3.2. An η-Einstein soliton on a 3-dimensional quasi-Sasakian manifold is an η-
Einstien manifold.

Proof. Let us consider that a 3-dimensional quasi-Sasakian manifold admits a proper η-Einstein
soliton (g, ξ, λ− scal

2 , µ). Then from the relation (3.1) yields

(Lξg)(X,Y ) + 2S(X,Y ) + (2λ− scal)g(X,Y ) + 2µη(X)η(Y ) = 0. (3.6)

It follows that

2S(X,Y ) = −(Lξg)(X,Y )− (2λ− scal)g(X,Y )− 2µη(X)η(Y ) (3.7)

for all smooth vector fileds X,Y (M). Since ξ is Killing and its integral curves are geodesics in
3-dimensional quasi-Sasakian manifold [20], that is

(Lξg)(X,Y ) = 0. (3.8)

Now, using (3.8), we obtain

S(X,Y ) = −
(
λ− scal

2

)
g(X,Y )− µη(X)η(Y ). (3.9)

Therefore, we conclude that η-Einstein soliton (g, ξ, λ − scal
2 , µ) on a 3-dimensional quasi-

Sasakian manifold is an η-Einstein manifold. This complete the proof.

Proposition 3.3. In a 3-dimensional quasi-Sasakian manifold for an η-Einstein soliton we have
λ+ µ = 2β2 − r

2 .

Proof. The Ricci tensor of a 3-dimensional quasi-Sasakian manifold is given by

S(X,Y ) =
( r

2
− β2

)
g(X,Y ) +

(
3β2 − r

2

)
η(X)η(Y ), (3.10)

where r is the scalr curvature. Comparing the equation (3.10) with equation (3.9), we obtain
−
(
λ− scal

2

)
= 1

2(r−2β2) and µ = −3β2+ r
2 . Since here scal = r is the scalar curvature. From

which it follows that λ+ µ = 2β2 − r
2 . This complete the proof.

4 η-Einstein Soliton on 3-dimensional quasi-Sasakian manifolds with Ricci

tensor of Coddazi type

In this section, we consider proper η-Einstein soliton on 3-dimensional quasi-Sasakian man-
ifolds with Ricci tensor of Coddazi type. Therefore taking the covariant differentiation of (3.8)
with respect to Z we obtain

(∇ZS)(X,Y ) = −µ[(∇Xη)(X)η(Y ) + η(X)(∇Zη)(Y )]. (4.1)
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Using (2.10), we get

(∇ZS)(X,Y ) = βµ[g(ϕZ,X)η(Y ) + η(X)g(ϕZ, Y )]. (4.2)

Now, using the fact that the Ricci tensor S of Coddazi type. Then

(∇ZS)(X,Y ) = (∇Y S)(Z,X). (4.3)

Using equations (4.2) and (4.3), we have

βµ[g(ϕZ,X)η(Y ) + g(ϕZ, Y )η(X)] = βµ[g(ϕY,Z)η(X) + g(ϕY,X)η(Z)]. (4.4)

Putting Z = ξ in (4.4), we get βµ = 0, which is a contradiction. Hence a 3-dimensional quasi-
Sasakian manifold with Ricci tensor of Coddazi type does not admit proper η-Einstein soliton.
Thus we conclude the following:
Theorem 4.1. A 3-dimensional quasi-Sasakian manifold with Ricci tensor of Coddazi type does
not admit a proper η-Einstein soliton.

5 η-Einstein soliton on 3-dimensional quasi-Sasakian manifold with cyclic
parallel Ricci tensor

This section deals with a proper η-Einstein soliton on a 3-dimensional quasi-Sasakian manifold
with cyclic parallel Ricci tensor. Therefore, we have

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0, (5.1)

for all smooth vector fields X,Y, Z ∈ Γ(TM). Using (3.9) in (5.1), we have

βµ[g(Y, ϕX)η(Z) + g(Z,ϕX)η(Y ) + g(Z,ϕY )η(X) (5.2)

+g(X,ϕY )η(Z) + g(X,ϕZ)η(Y ) + g(Y, ϕZ)η(X)] = 0.

Putting X = ξ in (refs6), we get

βµg(ϕY,Z) = 0. (5.3)

It follow that βµ = 0, since (β 6= 0) or µ = 0, which is a contradiction. Thus we can state the
following theorem:

Theorem 5.1. A 3-dimensional quasi-Sasakian manifold with cyclic parallel Ricci tensor does
not admit a proper η-Eisntein soliton.

6 ϕ-Ricci Symmetric η-Einstein soliton on 3-dimensional quasi-Sasakian
manifold

In this section, we study ϕ-Ricci symmetric proper η-Einstein soliton on a 3-dimensional quasi-
Sasakian manifold. A quasi-Sasakian manifold is said to be ϕ-Ricci symmetric [13] if

ϕ2(∇XQ)Y = 0 (6.1)

for all smooth vector fields X,Y on M .
The Ricci tensor for an η-Einstein soliton on a 3-dimensional quasi-Sasakian manifold is given
by

S(X,Y ) = −
(
λ− scal

2

)
g(X,Y )− µη(X)η(Y ). (6.2)

Then it follows that

QX = −
(
λ− scal

2

)
X − µη(X)ξ (6.3)
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for all smooth vector filed x on M . Now, taking covariant derivative of (s10), we obtain

(∇XQ)Y = βµg(ϕX, Y ) + βµη(Y )ϕX. (6.4)

Applying ϕ2 on both side of the equation (6.4), we get

ϕ2(∇XQ)Y = βµη(Y )ϕ2X. (6.5)

From (6.1) and (6.5) we have

βµ = 0. (6.6)

Since β 6= 0. Therefore µ = 0, which is a contradiction. Therefore a ϕ-Ricci symmetric 3-
dimensional quasi-Sasakian manifold does not admit a proper η-Einstein soliton. Thus we can
state the following theorem:

Theorem 6.1. A ϕ-Ricci symmetric 3-dimensional quasi-Sasakian manifold does not admit a
proper η-Einstein soliton.

7 Conformally flat η-Einstein soliton on 3-dimensional quasi-Sasakian
manifold

In this section we study conformally flat proper η-Einstein soliton in a 3-dimensional quasi-
Sasakian manifold. Therefore [?]

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1
4
[g(Y,Z)dr(X)− g(X,Z)dr(Y )]. (7.1)

Using (3.9) in (7.1)

βµ[g(Y, ϕX)η(Z) + g(Z,ϕX)η(Y )?g(X,ϕY )η(Z)?g(Z,ϕY )η(X)] (7.2)

=
1
4
[g(Y,Z)dr(X)− g(X,Z)dr(Y )].

Putting X = ξ in (7.2), we get

4βµg(ϕY,Z) = −η(Z)dr. (7.3)

It follow that 4βµϕY = −dr(Y )ξ. This implies that βµϕ2Y = 0. Hence βµ = 0. Since β 6= 0
or µ = 0, which is a contradiction. Therefore a conformally flat 3-dimensional quasi-Sasakian
manifold does not admit a proper η-Einstein soliton. Thus we can state the following theorem:

Theorem 7.1. A conformally flat 3-dimensional quasi-Sasakian manifold does not admit a proper
η-Einstein soliton.

8 η-Einstein soliton on 3-dimensional quasi-Sasakian manifold satisfying the
curvature conditionQ.R = 0

In this section, we study the proper η-Einstein soliton in a 3-dimensional quasi-Sasakian mani-
fold satisfying the curvature condition Q.R = 0. Therefore

(Q.R)(X,Y )Z = 0 (8.1)

for all smooth vector fileds X,Y, Z on M . The explicit form of the above equation is

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0. (8.2)

Using (3.9) in (8.2) we have

−λ1R(X,Y )Z − µη(R(X,Y )Z)ξ + λ1R(X,Y )Z + µη(X)R(ξ, Y )Z (8.3)
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+λ1R(X,Y )Z + µη(Y )R(X, ξ)Z + λ1R(X,Y )Z + µη(Z)R(X,Y )ξ = 0,

where λ1 =
(
λ− scal

2

)
. Using (2.11) in (8.3) we have

−µg(Y, Z)η(QX)ξ + µg(X,Z)η(QY )ξ − µη(X)η(QZ)Y (8.4)

+muη(X)g(Y,Z)Qξ − 2µη(X)η(Z)QY + rµη(X)η(Z)Y

+µη(Y )η(QZ)X + 2µη(Y )η(Z)QX − µη(Y )g(X,Z)Qξ

−rµη(Y )η(Z)X + µη(Z)η(QY )X − µη(Z)η(QX)Y

+2λ1[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r
2
[g(Y,Z)X − g(X,Z)Y ] = 0.

Again using (3.9) in (8.4) we obtain

λ1µg(Y,Z)η(X)ξ + µ2g(Y, Z)η(X)ξ − µg(Y,Z)η(−λ1X − µη(X)ξ)ξ (8.5)

+µg(X,Z)η(−λ1X − µη(Y )ξ)ξ − η(X)η(−λ1Z − µη(Z)ξ)Y

+µη(X)g(Y, Z)(−λ1ξ − µξ)− 2µη(X)η(Z)(λ1Y − µη(Y )ξ + rµη(X)η(Z)Y

+µη(Y )η(−λ1ξ − µξ)− rµη(Y )η(Z)X + µη(Z)η(−λ1Y − µη(Y )ξ)X

−µη(Z)η(−λ1X − µη(X)ξ)Y + 2λ1[(−λ1g(Y, Z)− µη(Y )η(Z))X − (−λ1g(X,Z)

−µη(X)η(Z))Y + g(Y, Z)(−λ1X − µη(X)ξ)− g(X,Z)(−λ1Y − µη(Y )ξ)

− r
2
(g(Y,Z)X − g(X,Z)Y )] = 0.

from which it follows that

4λ1µη(X)η(Z)Y + 2µ2η(X)η(Z)Y − 4λ1µη(Y )η(Z)X + rµη(X)η(Z)Y (8.6)

−rµη(Y )η(Z)X + 2λ1[(−λ1g(Y,Z)− µη(X)η(Z))X − (−λ1g(X,Z)− µη(X)η(Z))Y

+g(Y, Z)(−λ1X − µη(X)ξ)− g(X,Z)(−λ1Y − µη(Y )ξ)−
r

2
(g(Y,Z)X − g(X, z)Y )]

−2µ2η(Y )η(Z)X + λ1µg(Y,Z)η(X)ξ + µ2g(Y, Z)η(X)ξ = 0.

Putting X = Z = ξ in (8.6) we get

4λ1µY − 4λ1µη(Y )ξ + rµY − rµη(Y )ξ (8.7)

+2λ1[−λ1η(Y )ξ − µη(Y )ξ + λ1Y + µY − λ1η(Y )ξ
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−µη(Y )ξ + λ1Y + µη(Y )ξ − 1
2
η(Y )ξ +

1
2
Y

−2µ2η(Y )ξ + λ1µη(Y )ξ + µ2η(Y )ξ = 0.

Taking inner product of (8.7) with ξ we get

µ(λ1 + µ)η(Y ) = 0. (8.8)

By hypothesis µ 6= 0, therefore from the above equation we get

λ1 + µ = 0, ie. λ− scal

2
+ µ = 0

Moreover, for an η-Einstein soliton on a 3-dimensional quasi-Sasakian manifold, we have

λ+ µ = 2β2 − r

2

Thus in this case λ = β2 − r
4 and µ = β2 − r

4 . Therefore we have the following:

Theorem 8.1. An proper η-Einstein soliton on 3-dimensional quasi-Sasakain manifold Sasakian
satisfying the curvature condition Q.R = 0 is of the type (g, V, β

2

2 ,
β2

2 ).

9 η-Einstein soliton on 3-dimensional quasi-Sasakian manifold satisfying the
curvature conditionQ.W2 = 0.

W2-curvature tensor filed is the curvature tensor introduced by Pokhariyal and Mishra [24].

W2(X,Y )Z = R(X,Y )Z +
1

dimM − 1
[g(X,Z)QY − g(Y,Z)QX]. (9.1)

In this section, we study proper η-Einstein soliton on a 3-dimensional quasi-Sasakian manifold
satisfying the curvature condition Q.W2 = 0. Therefore

(Q.W2)(X,Y )Z = 0. (9.2)

for all smooth vector filed X,Y, Z on M . The explicit form of the equation (9.2) is

Q(W2(X,Y )Z)−W2(QX,Y )Z −W2(X,QY )Z −W2(X,Y )QZ = 0. (9.3)

Using (3.9) in (9.3) we have

−λ1W2(X,Y )Z − µη(W2(X,Y )Z)ξ + λ1W2(X,Y )Z + µη(X)W2(ξ, Y )Z (9.4)

+λ1W2(X,Y )Z + µη(Y )W2(X, ξ)Z + λ1W2(X,Y )Z + µη(Z)W2(X,Y )ξ = 0,

where λ1 =
(
λ− scal

2

)
. Using (9.1) in (9.4) we have

−µg(Y, Z)η(QX)ξ + µg(X,Z)η(QY )ξ − µη(X)η(QZ)Y (9.5)

−µ
2
g(X,Z)η(QY )ξ +

µ

2
g(Y, Z)η(QX)ξ

+µη(X)g(Y,Z)Qξ − 2µη(X)η(Z)QY + rµη(X)η(Z)Y

1
2
µη(X)η(Z)QY − 1

2
µη(X)g(Y, Z)Qξ



240 Mohd Danish Siddiqi and Ali H. Hakami

+µη(Y )η(QZ)X + 2µη(Y )η(Z)QX − µη(Y )g(X,Z)Qξ

µ

2
η(Y )g(X,Z)Qξ − µ

2
η(Y )η(Z)QX

−rµη(Y )η(Z)X + µη(Z)η(QY )X − µη(Z)η(QX)Y

+
µ

2
η(Z)η(Y )QY − µ

2
η(Z)η(Y )QX

+2λ1[S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r
2
[g(Y,Z)X − g(X,Z)Y ] + 1

2
[g(X,Z)QY − g(Y,Z)QX] = 0.

Again using (3.9) in (9.5) we obtain

λ1µ

2
g(Y, Z)η(X)ξ +

µ2

2
g(Y,Z)η(X)ξ − µ

2
g(Y,Z)η(−λ1X − µη(X)ξ)ξ (9.6)

+
µ

2
g(X,Z)η(−λ1X − µη(Y )ξ)ξ − η(X)η(−λ1Z − µη(Z)ξ)Y

+µη(X)g(Y,Z)(−λ1ξ − µξ)−
5
2
µη(X)η(Z)(λ1Y − µη(Y )ξ + rµη(X)η(Z)Y

+µη(Y )η(−λ1ξ − µξ)− rµη(Y )η(Z)X + µη(Z)η(−λ1Y − µη(Y )ξ)X

−µη(Z)η(−λ1X − µη(X)ξ)Y + 2λ1[(−λ1g(Y,Z)− µη(Y )η(Z))X − (−λ1g(X,Z)

−µη(X)η(Z))Y + g(Y,Z)(−λ1X − µη(X)ξ)− g(X,Z)(−λ1Y − µη(Y )ξ)

− r
2
(g(Y, Z)X − g(X,Z)Y )] + 1

2
[[g(X,Z)(−λ1Y − µη(Y )ξ − g(Y, Z)(−λ1X − µη(X)ξ] = 0.

from which it follows that

9
2
λ1µη(X)η(Z)Y + 2µ2η(X)η(Z)Y − 3λ1µη(Y )η(Z)X + rµη(X)η(Z)Y (9.7)

−rµη(Y )η(Z)X + 2λ1[(−λ1g(Y,Z)− µη(X)η(Z))X − (−λ1g(X,Z)− µη(X)η(Z))Y

+g(Y, Z)(−λ1X − µη(X)ξ)− g(X,Z)(−λ1Y − µη(Y )ξ)−
r

2
(g(Y,Z)X − g(X, z)Y )]

−λ2
1g(X,Z)Y + λ1µη(Y )g(X,Z)ξ + λ2

1g(Y,Z)X + λ1µη(X)g(Y, Z)ξ

−2µ2η(Y )η(Z)X +
3
2
µ2η(X)η(Y )η(Z)ξ = 0.

Putting X = Z = ξ in (9.7) we get

9
2
λ1µY + 2µ2Y − 3λ− 1µη(Y )ξ + rµY − rµη(Y )ξ (9.8)
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+2λ1[−λ1η(Y )ξ − µη(Y )ξ + λ1Y + µY − λ1η(Y )ξ

−µη(Y )ξ + λ1Y + µη(Y )ξ − 1
2
η(Y )ξ +

1
2
Y − λ2

1η(Y )ξ + λ2
1Y

−2µ2η(Y )ξ +
3
2
µ2η(Y )ξ = 0.

Taking inner product of (9.8) with ξ we get

µ

(
5
2
λ1 +

3
2
µ

)
η(Y ) = 0. (9.9)

By hypothesis µ 6= 0, therefore from the above equation we get

5
2
λ1 +

3
2
µ = 0, ie.

1
2
(5λ− scal) +

3
2
µ = 0

Moreover for an η-Einstein soliton on 3-dimensional quasi-Sasakian manifold we have

λ+ µ = 2β2 − r

2

Thus in this case λ = 2β2 and µ = −2β2. Therefore we have the following:

Theorem 9.1. An proper η-Einstein soliton on 3-dimensional quasi-Sasakain manifold Sasakian
satisfying the curvature condition Q.W2 = 0 is of the type (g, V, 2β2,−2β2).

10 Application of η-Einstein soliton on quasi-Sasakain manifold to
Algebraical Number Theory

.
In 2008, Wylie [34] proved that if (M, g) is a complete Riemannian manifold satisfying (1.2),

then M has a finite fundamental group (for more information see Theorem 1.1 [34]).

Remark 10.1. According to Theorem 1 and Theorem 2, proved by Rustanov ( see [23]), he has
shown that with a non-zero scalar curvature a quasi-Sasakian manifold is complete, it is compact
and has a finite fundamental group.

Remark 10.2. [22] A finite fundamental group is the first and simplest homotopy group. The
fundamental group is homotopy invariant, topological spaces are homotopy equivalent and have
isomorphic fundamental groups. The fundamental group or a homotopy group of a topological
space X is denoted by π1(X).

In view of (3.1), non-zero scalar curvature scal, implies the existence η-Einstein soliton on
3-dimensional quasi-Sasakain manifold. Therefore, in light of (3.1), Remark 10.1, and Remark
10.2 we gain the following outcomes:

Theorem 10.3. If a 3-dimensional quasi-Sasakain manifold (M3, g) admits an η-Einstein soliton
with non-zero scalar curvature scal, then, it is complete, compact and has a finite fundamental
group.

Theorem 10.4. If a 3-dimensional quasi-Sasakain manifold (M3, g) admits an η-Einstein soliton
with non-zero scalar curvature scal, then, it is complete, compact and has a homotopy group
π1(M3).

Next, we have the following discussion, which is based on the Number theoretic approach
with the homotopy group of a space.
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Remark 10.5. For a prime number p, the homotopy p-exponent of a topological space T , denoted
by Expp(U), is defined to be a largest e ∈ N = {0, 1, 2, · · · } such that some homotopy group
Φj(T ) has an element of order pe. Cohen et al. [10] proved that the

Expp(S2n+1) = n if p 6= 2.

For a prime number p and a integer z, the p-adic order of z is given byOrdp(z) = sup {z ∈ N : pz |z} .

In 2007, Davis and Sun derived an interesting inequality in terms of a homotopy group (The-
orem 1.1 Page 2 [12]). According to them, for any prime p and z = 2, 3, · · · some homotopy
group πi(T ) contains an element of order pn−1+Ordp(bn/pc!), i.e., then the strong and elegant
lower bound for homotopy p-exponent of homotopy group is

Expp(πi(T )) ≥ n− 1 +Ordp

(⌊
n

p

⌋
!
)
, (10.1)

where πi(T ) is a homotopy group of degree n.
Therefore, using Davis and Sun result (Theorem 1.1 [12]) with Theorem 10.4, we gain an inter-
esting inequality

Theorem 10.6. For any prime number p and s = 2, 3, · · · , a homotopy group π1(M3) of a com-
plete 3-dimensional quasi-Sasakain manifold (M3, g) admits an η-Einstein soliton with non-zero
scalar curvature scal, contains an element of order ps−1+Ordp(bs/pc!), we obtain the inequality

Expp(π1(M
3)) ≥ n− 1 +Ordp

(⌊
s

p

⌋
!
)
. (10.2)
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