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Abstract In this paper, we obtain some new existence and uniqueness results for higher order
fractional differential equations and inclusions with multi-strip Hadamard type fractional integral
boundary conditions. In the case of inclusion problem, the existence results are established for
convex as well as nonconvex multivalued maps. Our results are based on some fixed point
theorems. Finally, an example is given to illustrate our results.

1 Introduction

The topic of fractional differential equations and inclusions has been of great interest for many
researchers in view of its theoretical development and widespread applications in various fields
of science and engineering, see the books [7, 20, 27, 28]. Many researchers have contributed
to the development of the existence, uniqueness and stability theory for fractional equations and
inclusions, see [1]-[9], [11]-[12], [17], [18], [20], [23]-[28], [31], [32] and the references cited
therein.

Recently, in [2], Ahmad and Nieto studied the existence of solutions of the following frac-
tional differential inclusion of order α with nonlocal boundary conditions

CDαx (t) ∈ F (t, x (t)) , t ∈ [0, 1] ,
x (0) = 0, x′ (0) = 0, x′′ (0) = 0, ..., x(m−2) (0) = 0, x (1) = βx (η) ,

0 < η < 1, βηm−1 6= 1, β ∈ R,

where CDα is the Caputo fractional derivative of order α ∈ (m− 1,m] , m ≥ 2, m ∈ N and
F : J ×R→ P (R) is a multivalued map.

In [23], the authors discussed the existence of solutions of the following nonlocal boundary
value problem of the Hadamard fractional derivatives of the form{

HDαx (t) = f (t, x) , t ∈ [1, T ] ,
x (1) = 0, x′ (1) = 0, HDβx (T ) = ωHIγx (ϕ) , 1 < ϕ < T,

where HDα and HDβ denote the Hadamard fractional derivatives of orders α ∈ (2, 3] and β ∈
(1, 2) respectively, HIγ denotes the Hadamard fractional integral of order γ, ω > 0 and f :
[1, T ]×R→ R is a given continuous function.

In [12], the following higher order fractional differential equation with multi-strip Riemann-
Liouville fractional integral boundary conditions was studied

CDαx (t) = f (t, x (t)) , 0 < t < 1, n− 1 < α < n, n ≥ 2, n ∈ N,
x (0) = 0, x′ (0) = 0, x′′ (0) = 0, ..., x(m−2) (0) = 0,

x (1) =
m∑
i=1

γi
[
Iβix (ηi)− Iβix (ζi)

]
,
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where CDα is the Caputo fractional derivative of order α, f : [0, 1] × R → R is a jointly con-
tinuous function, Iβi is the Riemann-Liouville fractional integral of order βi > 0, i = 1, ...,m,
0 < ζi < ηi < ... < ζm < ηm < 1 and γi ∈ R.

Inspired and motivated by the above works, we discuss some existence and uniqueness results
for higher order fractional differential equations and inclusions with multi-strip Hadamard type
fractional integral boundary conditions. Precisely, we consider the following problems

HDαx (t) = f (t, x) , t ∈ (1, T ) ,
x (1) = 0, x′ (1) = 0, x′′ (1) = 0, ..., x(n−2) (1) = 0,

HDβx (T ) =
k∑
i=1

θi
[
HIλix (ηi)−H Iλix (ρi)

]
, 1 < ηi, ρi < T, θi ∈ R,

(1.1)

where HDα and HDβ denote the Hadamard fractional derivatives of orders α and β respectively,
n − 1 < α ≤ n, n − 2 < β < n − 1, n ≥ 2, n ∈ N, HIλi denotes the Hadamard fractional
integral of order λi > 0, i = 1, ..., k, 1 < ρ1 < η1 < ... < ρk < ηk < T , f : [1, T ]×R→ R is a
given continuous function, and

HDαx (t) ∈ F (t, x (t)) , t ∈ (1, T ) ,
x (1) = 0, x′ (1) = 0, x′′ (1) = 0, ..., x(n−2) (1) = 0,

HDβx (T ) =
k∑
i=1

θi
[
HIλix (ηi)−H Iλix (ρi)

]
, 1 < ηi, ρi < T, θi ∈ R,

(1.2)

where F : J ×R→ P (R) is a multivalued map and P (R) is the family of all nonempty subsets
of R.

This paper is organized as follows. In section 2, we recall some basic concepts of fractional
calculus, multivalued analysis and fixed point theory. In section 3, we discuss the existence and
uniqueness of solutions for problem (1.1) by applying Banach and Schauder fixed point theo-
rems. In section 4, we deal with some existence results for the inclusion problem (1.2) involving
convex as well as nonconvex multivalued maps. These results are based on the nonlinear alter-
native of Leray-Schauder type and a fixed point theorem due to Covitz and Nadler. Finally, an
example is given in Section 5 to illustrate the usefulness of our main results.

2 Preliminaries

2.1 Fractional calculus

In this subsection, we recall some basic ideas of fractional calculus and present known results
needed in our forthcoming analysis.

Let J = [1, T ]. We denote by C (J,R) the Banach space of all continuous functions from J
into R with the norm

‖x‖ = sup {|x (t)| : t ∈ J} .
Let L1 (J,R) be the Banach space of measurable functions x : J → R that are Lebesgue inte-
grable with norm

‖x‖L1 =

∫
J

|x (t)| dt.

And AC(J,R) be the space of absolutely continuous valued functions on J , and set

ACn (J) =
{
x : J → E : x, x′, x′′, ..., xn−1 ∈ C(J,R) and xn−1 ∈ AC(J,R)

}
.

Definition 2.1 ([20]). The Hadamard fractional integral of order α > 0 for a function x ∈
L1 (J,R) is defined as

HIαx (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

x (s)
ds

s
, α > 0.

Set δ =
(
t ddt
)
, α > 0, n = [α] + 1, where [α] denotes the integer part of α. Define the space

ACnδ (J) =
{
x : J → R : δn−1x ∈ AC(J,R)

}
,
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Definition 2.2 ([20]). The Hadamard fractional derivative of order α > 0 for a function x ∈
ACnδ (J) is defined as

HDαx (t) = δn
(
HIn−αx

)
(t) =

1
Γ (n− α)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−α−1

x (s)
ds

s
.

Lemma 2.3 ([20]). Let n− 1 < α ≤ n, n ∈ N, the general solution of the fractional differential
equation HDαx (t) = 0 is given by

x (t) =
n∑
k=1

ck (log t)α−k ,

where ck ∈ R, k = 1, 2, ..., n are arbitrary constants.

From the above lemma, it follows that

HIα HDαx (t) = x (t) +
n∑
k=1

ck (log t)α−k ,

for some ck ∈ R, k = 1, 2, ..., n are arbitrary constants.

Lemma 2.4 ([20]). Let α, β, a > 0, then

HDα

(
log

t

a

)β−1

(x) =
Γ (α)

Γ (α+ β)

(
log

x

a

)β+α−1
,

and
HIα

(
log

t

a

)β−1

(x) =
Γ (α)

Γ (α− β)

(
log

x

a

)β−α−1
.

To study the nonlinear problem (1.1), we need the following lemma.

Lemma 2.5. Suppose that

Λ =
Γ (α)

Γ (α− β)
(logT )α−β−1

+
k∑
i=1

θiΓ (α)

Γ (α+ β)

[
(log ρi)

α+β−1 − (log ηi)
α+β−1

]
6= 0. (2.1)

Then, for any q ∈ C (J,R), the unique solution of the boundary value problem
HDαx (t) = q (t) , t ∈ (1, T ) , n− 1 < α ≤ n, n ≥ 2, n ∈ N,
x (1) = 0, x′ (1) = 0, x′′ (1) = 0, ..., x(n−2) (1) = 0,

HDβx (T ) =
k∑
i=1

θi
[
HIλix (ηi)−H Iλix (ρi)

]
,

(2.2)

is given by

x (t) =
(
HIαq

)
(t) +

(log t)α−1

Λ

×

(
k∑
i=1

θi
[(
HIα+λiq

)
(ηi)−

(
HIα+λiq

)
(ρi)

]
−
(
HIα−βq

)
(T )

)

=
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

q (s)
ds

s
+

(log t)α−1

Λ

×

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
q (s)

ds

s
−
∫ ρi

1

(
log

ρi
s

)α+λi−1
q (s)

ds

s

]

− 1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

q (s)
ds

s

)
. (2.3)
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Proof. Applying the Hadamard fractional integral of order α to both sides of the equation in
(2.2), and using Lemma 2.3, we get

x (t) =
(
HIαq

)
(t)−c1 (log t)α−1−c2 (log t)α−2−...−cn−1 (log t)α−n+1−cn (log t)α−n , (2.4)

then

x′ (t) =
1

Γ (α− 1)

∫ t

1

(
log t

s

)α−2

t
q (s)

ds

s

− c1 (α− 1)
(log t)α−2

t
− ...− cn (α− n)

(log t)α−n−1

t
,

and

x′′ (t) =
1

Γ (α− 2)

∫ t

1

(
log t

s

)α−3 −
(
log t

s

)α−2

t2
q (s)

ds

s

− c1 (α− 1) (α− 2)
(log t)α−3 − (log t)α−2

t2

− ...− cn (α− n) (α− n− 1)
(log t)α−n−2 − (log t)α−n−1

t2
, ....

Applying the boundary conditions, we have

c2 = ... = cn−1 = cn = 0. (2.5)

Using (2.5) in (2.4), we get

x (t) =
(
HIαq

)
(t)− c1 (log t)α−1

. (2.6)

Applying the Hadamard fractional derivative of order β to (2.6), we get

HDβx (t) =
(
HIα−βq

)
(t)− c1

Γ (α)

Γ (α− β)
(log t)α−β−1

.

Again applying the Hadamard fractional integral of order λi to (2.6), we obtain

HIλix (t) =
(
HIα+λiq

)
(t)− c1

Γ (α)

Γ (α+ β)
(log t)α+β−1

.

Using the condition

HDβx (T ) =
k∑
i=1

θi
[
HIλix (ηi)−H Iλix (ρi)

]
,

we have (
HIα−βq

)
(T )− c1

Γ (α)

Γ (α− β)
(logT )α−β−1

=
k∑
i=1

θi
[(
HIα+λiq

)
(ηi)−

(
HIα+λiq

)
(ρi)

−c1
Γ (α)

Γ (α+ β)
(log ηi)

α+β−1
+ c1

Γ (α)

Γ (α+ β)
(log ρi)

α+β−1
]
. (2.7)

By solving (2.7), we find that

c1 =
1
Λ

((
HIα−βq

)
(T )−

k∑
i=1

θi
[(
HIα+λiq

)
(ηi)−

(
HIα+λiq

)
(ρi)

])
,

where Λ is given by (2.1). Replacing the value of c1 into (2.6), we get the integral equation (2.3).
The converse follows by direct computation which completes the proof.
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2.2 Multivalued analysis

Here, we outline some basic definitions and results for multivalued maps.
Let (X, ‖.‖) be a Banach space. A mutlivalued map G : X → P (X)
(i) is convex (closed) valued if G (x) is convex (closed) for all x ∈ X ,
(ii) is bounded on bounded sets if G (B) = ∪x∈BG (x) is bounded in X for all bounded set

B of X , i.e., supx∈B {sup {|y| : y ∈ G (x)}} <∞,
(iii) is called upper semi-continuous (u.s.c for short) on X if for each x0 ∈ X the set G (x0)

is nonempty, closed subset of X , and for each open set U of X containing F (x0), there exists an
open neighborhood V of x0 such that G (V) ⊆ U ,

(iv) is said to be completely continuous if G (B) is relatively compact for every bounded
subset B of X ,

(v) is said to be measurable if for every y ∈ R, the function

t→ d (y,G (t)) = inf {|y − z| : z ∈ G (t)} ,

is measurable,
(vi) has a fixed point if there exists x ∈ X such that x ∈ G (x). The fixed point set of the

multivalued operator F will be denoted by FixG.
For each y ∈ C (J,R), the set of selections for the multivalued F is defined by

SF,y =
{
v ∈ L1 (J,R) : v (t) ∈ F (t, y (t)) for a.e. t ∈ J

}
.

In the following, we denote by Pp the set of all nonempty subsets of X which have the property
"p" where "p" will be bounded (b), closed (cl), convex (c), compact (cp) etc. Thus Pb (X) =
{Y ∈ P (X) :

Y is bounded}, Pcl (X) = {Y ∈ P (X) : Y is closed}, Pcp (X) = {Y ∈ P (X) : Y is compact},
and Pcp,c (X) = {Y ∈ P (X) : Y is compact and convex}.

Definition 2.6. A multivalued map F : J ×R→ P (R)is said to be Carathéodory if
(i) t→ F (t, x) is measurable for each x ∈ R,
(ii) x→ F (t, x) is upper semi-continuous for almost all t ∈ J .
Further a Carathéodory function F is called L1-Carathéodory if
(iii) for each ρ > 0, there exists ϕρ ∈ L1 (J,R+) such that

‖F (t, x)‖ = sup {|v| : v ∈ F (t, x)} ≤ ϕρ (t) ,

for all |x| ≤ ρ and for a.e. t ∈ J .

We define the graph of G to be the set Gr (G) = {(x, y) ∈ X × Y, y ∈ G (x)} and recall two
results for closed graphs and upper-semicontinuity.

Lemma 2.7 ([10] Proposition 1.2). If G : X → Pcl (X) is u.s.c., then Gr (G) is a closed subset
of X × Y ,i.e., for every sequence {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, xn → x∗,
yn → y∗ and yn ∈ G (xn), then y∗ ∈ G (x∗). Conversely, if G is completely continuous and has
a closed graph, then it is upper semi-continuous.

Lemma 2.8 ([22]). Let X be a separable Banach space. Let F : J × X → Pcp,c (X) be an
L1-Carathéodory multivalued map and let Θ be a linear continuous mapping from L1 (J,X) to
C (J,X). Then the operator

Θ ◦ SF : C (J,X)→ Pcp,c (C (J,X)) , x→ (Θ ◦ SF) (x) = Θ (SF,x) ,

is a closed graph operator in C (J,X)× C (J,X).

For more details on multivalued maps and the proof of the known results cited in this sec-
tion, we refer the interested reader to the books by Deimling [10], Gorniewicz [16] and Hu and
Papageorgiou [19].
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2.3 Fixed point theorems

In this part, we collect the fixed point theorems which are used in the proofs of our main results.

Theorem 2.9 (Banach fixed point theorem [29]). Let Ω be a non-empty closed subset of a Banach
space (S, ‖.‖), then any contraction mapping Φ of Ω into itself has a unique fixed point.

Theorem 2.10 (Schauder fixed point theorem [29]). Let Ω be a nonempty bounded closed convex
subset of a Banach space S and Φ : Ω→ Ω be a continuous compact operator. Then has a fixed
point in Ω.

Theorem 2.11 (Nonlinear alternative of Kakutani maps [15]). Let C be a closed convex subset
of a Banach space E and U be an open subset of C with 0 ∈ U . Suppose that N : U → Pcp,c (C)
is an upper semi-continuous compact map. Then either

(i) N has a fixed point in U , or
(ii) there is a x ∈ ∂U and µ ∈ (0, 1) with x ∈ µN (x).

Theorem 2.12 (Covitz and Nadler fixed point theorem [14]). Let (X, d) be complete metric
space. If N : X → Pcl (X) is a contraction, then FixN 6= ∅.

3 Existence results for single-valued problems

In what follows, we apply the fixed point theorems of Banach and Schauder to prove the exis-
tence and uniqueness results for problem (1.1).

By Lemma 2.5, we define an operator Φ : C (J,R)→ C (J,R) by

(Φx) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f (s, x (s))
ds

s

+
(log (t))α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
f (s, x (s))

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
f (s, x (s))

ds

s

]

− 1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

f (s, x (s))
ds

s

)
. (3.1)

Clearly, the fractional integral equation (2.3) can be written as the following operator equation

x = Φx. (3.2)

Thus, the existence of a solution for (1.1) is equivalent to the existence of a fixed point for the
operator Φ which satisfies the operator equation (3.2).

Our first result, dealing with the existence of a unique solution, is based on the Banach
contraction mapping principle.

Theorem 3.1. Let f : J ×R→ R be a continuous function and (2.1) holds. Assume that
(H1) There exists a constant Lf ∈ R+ such that

|f(t, x)− f(t, y)| ≤ Lf |x− y| , t ∈ J, x, y ∈ R.

(H2)

κ =
Lf (logT )α

Γ (α+ 1)
+
Lf (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
< 1.

Then the boundary value problem (1.1) has a unique solution on J .
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Proof. For x, y ∈ C (J,R) and for each t ∈ J , from the definition of Φ and assumption (H1), we
obtain

|(Φx) (t)− (Φy) (t)|

≤ 1
Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))− f (s, y (s))|
ds

s

+
(log t)α−1

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|f (s, x (s))− f (s, y (s))|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|f (s, x (s))− f (s, y (s))|

ds

s

]

+
1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|f (s, x (s))− f (s, y (s))|
ds

s

)

≤

(
Lf (logT )α

Γ (α+ 1)
+
Lf (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

))
‖x− y‖ .

Thus
‖Φx−Φy‖ ≤ κ ‖x− y‖ .

From (H2), Φ is a contraction. As a consequence of the Banach fixed point theorem, we get that
Φ has a unique fixed point which is a unique solution of the problem (1.1) on J .

Next, we prove an existence result for the problem (1.1) by using the Schauder fixed point
theorem.

Theorem 3.2. Let f : J ×R→ R be a continuous function and (2.1) holds. Assume that
(H3) |f (t, x(t))| ≤ Ψ(t), ∀(t, x) ∈ J × C (J,R) , Ψ ∈ L1 (J,R+).
Then the boundary value problem (1.1) has at least one solution on J .

Proof. We consider the non-empty closed bounded convex subset Ω = {x ∈ C (J,R) : ‖x‖ ≤M}
of C (J,R), where M is chosen such

M ≥ Λ1,

where

Λ1 =
Ψ∗ (logT )α

Γ (α+ 1)
+

Ψ∗ (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
,

with Ψ∗ = sup {Ψ(t) : t ∈ J}. The continuity of f implies the continuity of the operator Φ.
Now, we need to show that the operator Φ is compact by applying the well known Arzela-Ascoli
theorem. So we will show that Φ (Ω) ⊂ Ω and Φ (Ω) is uniformly bounded and equicontinuous
set. For x ∈ Ω, it follows that

|(Φx) (t)| ≤
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f (s, x (s))|
ds

s

+
(log (t))α−1

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|f (s, x (s))|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|f (s, x (s))|

ds

s

]

+
1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|f (s, x (s))|
ds

s

)

≤ Ψ∗ (logT )α

Γ (α+ 1)
+

Ψ∗ (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
,
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and consequently
‖Φx‖ ≤ Λ1 ≤M,

which implies that Φ (Ω) ⊂ Ω and the set Φ (Ω) is uniformly bounded. Next, we are going to
prove that Φ (Ω) is equicontinuous set. For t1, t2 ∈ J such that t1 < t2 and for u ∈ Ω, we obtain

|(Φx) (t2)− (Φy) (t1)|

≤ 1
Γ(α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
|f (s, x (s))|

ds

s

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1

|f (s, x (s))|
ds

s

+

(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|f (s, x (s))|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|f (s, x (s))|

ds

s

]
+

1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|f (s, x (s))|
ds

s

)

≤ Ψ∗

Γ(α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s
+

Ψ∗

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s

+
Ψ∗
(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
2

k∑
i=1

|θi|
Γ (α+ λi)

∫ T

1

(
log

T

s

)α+λi−1
ds

s

+
1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1
ds

s

)

≤ Ψ∗

Γ(α+ 1)
((log t2)

α − (log t1)
α
)

+
Ψ∗
(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
.

As t1 → t2, the right-hand side of the above inequality tends to zero and the convergence is
independent of x in Ω, which means Φ (Ω) is equicontinuous. The Arzela-Ascoli Theorem
implies that Φ is compact.

Hence, by the Schauder fixed point theorem, the operator Φ has at least one fixed point x ∈ Ω.
Therefore, the problem (1.1) has at least one solution on J .

4 Existence results for multivalued problems

In this part, we use the fixed point theorems for multivalued maps to demonstrate the existence
results for problem (1.2).

Definition 4.1. A function x ∈ ACn (J,R) is said to be a solution of the problem (1.2) if there
exists a function v ∈ L1 (J,R) with v (t) ∈ F (t, x (t)) a.e. on J such that

x (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.
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4.1 The upper semi-continuous case

Our first result, dealing with the convex valued F, is based on Leray-Schauder nonlinear alterna-
tive for multivalued maps.

Theorem 4.2. Let (2.1) holds. Set

Λ2 =
(logT )α

Γ (α+ 1)
+

(logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
, (4.1)

and assume that
(A1) F : J ×R→ Pcp,c (R) is a L1-Carathéodory multivalued map,
(A2) there exist a continuous nondecreasing function Q : [0,∞) → (0,∞) and a function

P ∈ C (J,R+) such that

‖F (t, x)‖P = sup {|y| : y ∈ F (t, x)} ≤ P (t)Q (|x|) ,

for each (t, x) ∈ J ×R,
(A3) there exists a constant M > 0 such that

M

Λ2 ‖P‖Q (M)
> 1. (4.2)

Then the boundary value problem (1.2) has at least one solution on J .

Proof. Firstly, we transform the problem (1.2) into a fixed point problem. Consider the multi-
valued map N : C (J,R)→ P (C (J,R)) defined by

N (x) =



h ∈ C (J,R) ,

h (t) =



1
Γ (α)

∫ t
1

(
log t

s

)α−1
v (s)

ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ(α+λi)

[∫ ηi
1

(
log ηi

s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log ρi

s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)
∫ T

1

(
log T

s

)α−β−1
v (s)

ds

s

)
,


, (4.3)

for v ∈ SF,x. Clearly the fixed points of N are solutions of the problem (1.2). Now we proceed
to show that the operator N satisfies all condition of Theorem 2.11. This is done in several steps.

Step 1. N (x) is convex for each x ∈ C (J,R).
Indeed, if h1 and h2 belong to N (x), then there exist v1, v2 ∈ SF,x such that for each t ∈ J ,

we have

hj (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

vj (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
vj (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
vj (s)

ds

s

]

− 1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

vj (s)
ds

s

)
, j = 1, 2.
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Let 0 ≤ σ ≤ 1. Then, for each t ∈ J , we have

[σh1 + (1− σ)h2] (t)

=
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

(σv1 (s) + (1− σ) v2 (s))
ds

s

+
(log (t))α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
(σv1 (s) + (1− σ) v2 (s))

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
(σv1 (s) + (1− σ) v2 (s))

ds

s

]

− 1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

(σv1 (s) + (1− σ) v2 (s))
ds

s

)
.

Since F has convex values, so SF,x is convex and σv1 (s) + (1− σ) v2 (s) ∈ SF,x. Thus, σh1 +
(1− σ)h2 ∈ N (x).

Step 2. N (x) maps bounded sets into bounded sets in C (J,R).
For a positive constant r, let Br = {x ∈ C (J,R) : ‖x‖ ≤ r} be a bounded set in C (J,R).

Then for each h ∈ N (x), x ∈ Br, there exists v ∈ SF,x such that

h (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.

In view of (A2), for each t ∈ J , we have

|h (t)|

≤ 1
Γ (α)

∫ t

1

(
log

t

s

)α−1

|v (s)|
ds

s

+
(log t)α−1

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|v (s)|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|v (s)|

ds

s

]
+

1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|v (s)|
ds

s

)

≤ ‖P‖Q (r) (logT )α

Γ (α+ 1)
+
‖P‖Q (r) (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
,

thus

‖h‖ ≤ Λ2 ‖P‖Q (r) .

Step 3. N (x) maps bounded sets into equicontinuous sets of C (J,R).
Let x be any element in Br and h ∈ N (x). Then there exists a function v ∈ SF,x such that
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for each t ∈ J , we have

h (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.

Let t1, t2 ∈ J, t1 < t2. Then

|h(t2)− h(t1)|

≤ 1
Γ(α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
|v (s)|

ds

s
+

1
Γ(α)

∫ t2

t1

(
log

t2
s

)α−1

|v (s)|
ds

s

+

(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|v (s)|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|v (s)|

ds

s

]
+

1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|v (s)|
ds

s

)

≤ ‖P‖Q (r)

Γ(α)

∫ t1

1

((
log

t2
s

)α−1

−
(

log
t1
s

)α−1
)
ds

s
+
‖P‖Q (r)

Γ(α)

∫ t2

t1

(
log

t2
s

)α−1
ds

s

+
‖P‖Q (r)

(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
2

k∑
i=1

|θi|
Γ (α+ λi)

∫ T

1

(
log

T

s

)α+λi−1
ds

s

+
1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1
ds

s

)

≤ ‖P‖Q (r)

Γ(α+ 1)
((log t2)

α − (log t1)
α
)

+
‖P‖Q (r)

(
(log t2)

α−1 − (log t1)
α−1
)

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
.

The right hand side of the above inequality tends to zero independently of x ∈ Br as t1 → t2.
As a consequence of Steps 1–3 together with Arzela-Ascoli theorem, we conclude that N :
C (J,R)→ P (C (J,R)) is completely continuous.

Since N is completely continuous, it is enough to show that it has a closed graph in view of
Lemma 2.7, which will imply that N is u.s.c. This is done in the following step.

Step 4. N has a closed graph.
Let xn → x∗, hn ∈ N (xn) and hn → h∗. Then we need to show that h∗ ∈ N (x∗). Observe

that hn ∈ N (xn) implies that there exists vn ∈ SF,xn
such that for each t ∈ J ,

hn (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

vn (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
vn (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
vn (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

vn (s)
ds

s

)
.
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Therefore, we must show that there exists v∗ ∈ SF,x∗ such that, for each t ∈ J ,

h∗ (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v∗ (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v∗ (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v∗ (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v∗ (s)
ds

s

)
.

Consider the continuous linear operator Θ : L1 (J,X)→ C (J,X) defined by

v → Θ (v) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.

Observe that

‖hn − h∗‖

=

∥∥∥∥∥ 1
Γ (α)

∫ t

1

(
log

t

s

)α−1

(vn (s)− v∗ (s))
ds

s

+
(log (t))α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
(vn (s)− v∗ (s))

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
(vn (s)− v∗ (s))

ds

s

]

− 1
Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

(vn (s)− v∗ (s))
ds

s

)∥∥∥∥∥ → 0,

as n → ∞. So it follows from Lemma 2.8, that Θ ◦ SF,x is a closed graph operator. Moreover,
we have

hn ∈ Θ (SF,xn) .

Since xn → x∗, Lemma 2.8 implies that

h∗ (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v∗ (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v∗ (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v∗ (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v∗ (s)
ds

s

)
.

for some v∗ ∈ SF,x∗ .
Thus, the operatorN satisfies assumptions of Theorem 2.11. So, it yields that either condition

(i) N has a fixed-point in U or (ii) there exists a x ∈ ∂U and µ ∈ (0, 1) with x ∈ µN (x). We
show that conclusion (ii) is not possible. If x ∈ µN (x) for µ ∈ (0, 1), then there is v ∈ L1 (J,R)
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with v ∈ SF,x such that, for t ∈ J , we have

x (t) =
µ

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
µ (log (t))α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.

Using the method of computation employed in Step 2, for each t ∈ J , we get

|x (t)| ≤ Λ2 ‖P‖Q (‖x‖) ,

which can alternatively be written as

‖x‖
Λ2 ‖P‖Q (‖x‖)

≤ 1. (4.4)

Now. In view of (A3), there exists M > 0 such that

M

Λ2 ‖P‖Q (M)
> 1. (4.5)

Let us set
U = {x ∈ C (J,R) : ‖x‖ < M} .

Suppose that condition (ii) of Theorem (2.11) is hold, then there is x ∈ ∂U and µ ∈ (0, 1) with
x ∈ µN (x). Then ‖x‖ = M , satisfies (4.4), which contradicts (4.5). So, the condition (ii) in
Theorem (2.11) does not hold, and consequently N has a fixed point x ∈ U which is a solution
of the boundary value problem (1.2). This completes the proof.

4.2 The Lipschitz case

Now we prove the existence of solutions for the boundary value problem (1.2) with nonconvex-
valued right hand side by applying a fixed point theorem for multivalued map due to Covitz and
Nadler [14].

Let (X, d) be a metric pace induced from the normed space (X, ‖.‖). Consider Hd : P (X)×
P (X)→ R+ ∪ {∞} given by

Hd (A,B) = max
{

sup
a∈A

d (a,B) , sup
b∈B

d (A, b)

}
,

where d (A, b) = infa∈A d (a, b) and d (a,B) = infb∈B d (a, b). Then (Pb,cl (X) , Hd) is a metric
space (see [21]).

Definition 4.3. A multivalued operator N : X → Pcl (X) is called
(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd (N (x) , N (y)) ≤ γd (x, y) for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Theorem 4.4. Let (2.1) holds. Assume that the following conditions hold
(A4) F : J ×R→ Pcp (R) is such that F (., x) : J → Pcp (R) is measurable for each x ∈ R,
(A5) Hd (F (t, x) ,F (t, x)) ≤ m (t) |x− x| for almost all t ∈ J and x, x ∈ R with m ∈

C (J,R+) and d (0,F (t, 0)) ≤ m (t) for almost all t ∈ J .
Then the boundary value problem (1.2) has at least one solution on J if

Λ2 ‖m‖ < 1,

where Λ2 is given by (4.1).
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Proof. Observe that the set SF,x is nonempty for each x ∈ C (J,R) by assumption (A4), so F has
a measurable selection (see [13], Theorem III.6). Now we show that the operatorN : C (J,R)→
P (C (J,R)) defined in (4.3) satisfies the assumptions of Theorem 2.12. To show that N (x) is
closed for each x ∈ C (J,R). Let {un}n≥0 ∈ N (x) be such that un → u (n→∞) in C (J,R).
Then u ∈ C (J,R) and there exists vn ∈ SF,xn

such that, for each t ∈ J ,

un (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

vn (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
vn (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
vn (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

vn (s)
ds

s

)
.

As F has compact values, we pass onto a subsequence to obtain that vn converges to v in
L1 (J,R). Thus v ∈ SF,x and for each t ∈ J , we have

un (t)→ u (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v (s)
ds

s

)
.

Hence u ∈ N (x).
Next we show that there exists 0 < τ < 1, (τ = Λ2 ‖m‖) such that

Hd (N (x) , N (x)) ≤ τ ‖x− x‖ for each x, x ∈ C (J,R) .

Let x, x ∈ C (J,R) and h1 ∈ N (x). Then there exists v1 (t) ∈ F (t, x (t)) such that, for each
t ∈ J ,

h1 (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v1 (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v1 (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v1 (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v1 (s)
ds

s

)
.

By (A5), we have
Hd (F (t, x) ,F (t, x)) ≤ m (t) |x (t)− x (t)| .

Therefore, there exists w ∈ F (t, x (t)) such that

|v1 (t)− w| ≤ m (t) |x (t)− x (t)| , t ∈ J.

Define U : J → P (R) by

U (t) = {w ∈ R : |v1 (t)− w| ≤ m (t) |x (t)− x (t)|} .

Since the multivalued operator U (t)∩F (t, x (t)) is measurable (see [13], Proposition III.4), there
exists a function v2 which is a measurable selection for U . So v2 (t) ∈ F (t, x (t)) and or each
t ∈ J , we have |v1 (t)− v2 (t)| ≤ m (t) |x (t)− x (t)|.
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For each t ∈ J , let us define

h2 (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

v2 (s)
ds

s

+
(log t)α−1

Λ

(
k∑
i=1

θi
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
v2 (s)

ds

s

−
∫ ρi

1

(
log

ρi
s

)α+λi−1
v2 (s)

ds

s

]
− 1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

v2 (s)
ds

s

)
.

In consequence, we get

|h1 (t)− h2 (t)|

≤ 1
Γ (α)

∫ t

1

(
log

t

s

)α−1

|v1 (s)− v2 (s)|
ds

s

+
(log t)α−1

|Λ|

(
k∑
i=1

|θi|
Γ (α+ λi)

[∫ ηi

1

(
log

ηi
s

)α+λi−1
|v1 (s)− v2 (s)|

ds

s

+

∫ ρi

1

(
log

ρi
s

)α+λi−1
|v1 (s)− v2 (s)|

ds

s

]

+
1

Γ (α− β)

∫ T

1

(
log

T

s

)α−β−1

|v1 (s)− v2 (s)|
ds

s

)

≤

(
‖m‖ (logT )α

Γ (α+ 1)
+
‖m‖ (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

))
‖x− x‖ ,

thus

|h1 (t)− h2 (t)|

≤

(
(logT )α

Γ (α+ 1)
+

(logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

))
‖m‖ ‖x− x‖ .

Hence
‖h1 − h2‖ ≤ Λ2 ‖m‖ ‖x− x‖ .

Analogously, interchanging the roles of x and x, we obtain

Hd (N (x) , N (x)) ≤ Λ2 ‖m‖ ‖x− x‖ .

Since N is a contraction, it follows by Theorem 2.12 that N has a fixed point x which is a
solution of (1.2). This completes the proof.

5 Example

As an application of our results, we consider the following boundary value problems of a frac-
tional differential equation or inclusion

HD
7
2x (t) = f (t, x (t)) or ∈ F (t, x (t)) , t ∈ [1, e] ,

x (1) = 0, x′ (1) = 0, x′′ (1) = 0, x′′′ (1) = 0,

HD
5
2x (e) =

2∑
i=1

θi
[
HIλix (ηi)− HIλix (ρi)

]
.

(5.1)

Here α = 7
2 , β = 5

2 , k = 2, λ1 = 1
2 , λ2 = 1

4 , θ1 = 1
6 , θ2 = 1

8 , η1 = 3
2 , ρ1 = 4

3 , η2 = 5
2 , ρ2 = 2,

n = 4 and T = e. With these data we find ∆ = 3.3216 6= 0.
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5.1 Single-valued case

(i) Let

f (t, x) =
sin (t)

exp (t2 − 1) + 5

(
|x|
|x|+ 1

)
. (5.2)

For x, y ∈ R, we have

|f(t, x)− f(t, y)| =
∣∣∣∣ sin (t)
exp (t2 − 1) + 5

(
|x|
|x|+ 1

− |y|
|y|+ 1

)∣∣∣∣
≤ |x− y|

(exp (t2 − 1) + 5) (1 + |x|) (1 + |y|)

≤ 1
6
|x− y| ,

thus, the assumption (H1) is satisfied with Lf = 1
6 and

κ =
Lf (logT )α

Γ (α+ 1)
+
Lf (logT )α−1

|Λ|

(
2

k∑
i=1

|θi| (logT )α+λi

Γ (α+ λi + 1)
+

(logT )α−β

Γ (α− β + 1)

)
' 0.07 < 1.

Hence, all conditions of Theorem 3.1 are satisfied. We deduce that the boundary value problem
(5.1), with f given by (5.2), has a unique solution on [1, e].

(ii) With the function f given by (5.2), we remark that

|f (t, x)| ≤
1

(exp (t2 − 1) + 5)
= Ψ (t) .

Hence, by Theorem 3.2, the boundary value problem (5.1) has at least one solution on [1, e].

5.2 Multivalued case

(i) Consider the multivalued map F : [1, e]×R→ P (R) given by

x→ F (t, x) =

[
1

(exp(t2) + 4)
x2

(x2 + 1)
,

1
2
√

log t+ 1)
|x|
|x|+ 1

]
.

Clearly the multivalued map F satisfies condition (A1) and that

‖F (t, x)‖P = sup {|y| : y ∈ F (t, x)} ≤
1

2
√

log t+ 1
= P (t)Q (|x|) ,

which yields ‖P‖ = 1
2 and Q (|x|) = 1. Therefore, the condition (A2) is fulfilled. By the

condition (A3), it found that M > 0.19788. Hence all assumptions of Theorem 4.2 hold. So
there exists at least one solution of the problem (5.1) on [1, e].

(ii) Let the multivalued map F : [1, e]×R→ P (R) defined by

x→ F (t, x) =

[
0,

2 sin (x)
(log t) + 6

+
1
10

]
.

Clearly Hd (F (t, x) ,F (t, x)) ≤ m (t) |x− x|, where m (t) = 2
(log t)+6 . Also d (0,F (t, 0)) =

1
10 ≤ m (t) for almost all t ∈ [1, e]. In addition, we get ‖m‖ = 1

3 which leads to Λ2 ‖m‖ ≈ 0.13 <
1. As the hypotheses of Theorem 4.4 are satisfied, therefore we conclude that the multivalued
problem (5.1) has at least one solution on [1, e].
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Conclusion

In this article, we have studied the existence and uniqueness of solutions for higher order frac-
tional differential equations and inclusions with multi-strip Hadamard type fractional integral
boundary conditions. We applied the fixed point theorems for single-valued and multivalued
maps to obtain the desired results for the given problems. The obtained outcomes are well ex-
plained through with relevant illustrative example.

In the future studies, we will try to extend the problems presented in this article to a general
structure with the Mittag-Leffler power law [6] and for ψ-Hilfer fractional operator [30].
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