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Abstract In this paper, we investigate the resolution of the equation [X,Y ] = Z in the Lie
algebra of vector fields on a manifold M , for X and Z both given. We give a local solution on
a complex manifold M when X is a diagonal λ−resonant vector field, when X is a monomial
λ−resonant vector field, and when X is a λ−resonant vector field.

1 Introduction

The problem we are interested in is the following : if X and Z are given vector fields on a
manifold M , is it possible to find a vector field Y on M such that the Lie bracket [X,Y ] = Z ?

If X is a C∞ vector field on a differential manifold M and x0 a point of M with X(x0) 6= 0,
then there is a coordinate system (x1, ..., xN ) of M (where N = dimM) on an open neighbor-
hood U of x0 such that X = ∂

∂x1 on U ([9] p.205). So if Z is a C∞ vector field on M , there exists

on U a vector field Y =
N∑
k=1

Y k ∂
∂xk defined by (using locally the same notation),

Y k(x1, ..., xN ) =

∫ x1

α

Zk(t, x2, ..., xN )dt

∀k = 1, ..., N , where Z =
N∑
k=1

Zk ∂
∂xk on U , such that [X,Y ] = Z.

Therefore if x0 is a regular point of X , then equation [X,Y ] = Z has a solution on a neigh-
borhood of x0.

Let (φt) be the flow generated by X on a neighborhood of a singular point and (φt)∗Y the
transportation of Y along the flow (φt). Then locally

[X,Y ] = lim
t→0

1
t
(Y − (φt)∗Y ).

If we set γ(t) = −(φt)∗Y , then

d

dt |t=0
γ(t) = γ′(0) = lim

t→0

γ(t)− γ(0)
t

= [X,Y ].

So we are looking for a vector field Y whose transportation (φt)∗Y along the flow (φt)
generated by X fulfills

d

dt |t=0
(−(φt)∗Y ) = Z.

Among the works done to solve this equation, we have [11], [2].

In this note, we give a local solution of this equation on a complex manifold M when X is a
diagonal λ-resonant vector field, when X is a monomial λ-resonant vector field and finally when
X is a λ-resonant vector field.
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Let M be a complex manifold of complex dimension N . A holomorphic vector field on M is
a section X : M → (TM)1,0 of the holomorphic tangent bundle over M such that for any point
p ∈ M , if (z1, ..., zN ) is a local holomorphic coordinate system of M on an open neighborhood
U of p,

Xp =
N∑
k=1

Xk(p)
∂

∂zk|p

where X1, ..., XN : U → C are holomorphic functions.

The following definitions are in [1], [6], [8].
A vector λ = (λ1, ..., λN ) ∈ CN such that λk 6= 0, ∀k = 1, ..., N is said to be resonant if

there exits s ∈ {1, ..., N} and p = (p1, ..., pN ) ∈ NN \ {0} satisfying the relation

λs = 〈p, λ〉 =
N∑
k=1

pkλk

with
N∑
k=1

pk ≥ 2.

This relation is called an additive resonance relation of order |p| =
N∑
k=1

pk.

Remark 1.1. For example the relation λ1 + λ2 + 2λ3 = 0 gives λ2 = λ1 + 2λ2 + 2λ3 so is an
additive resonance relation of order 5.
But the relation 2λ1 + 7λ2 = 5λ3 is not an additive resonance relation.

Let λ = (λ1, ..., λN ) ∈ CN such that λk 6= 0, ∀k = 1, ..., N.
An additive monomial λ−resonant vector field on CN is a holomorphic vector field of the

form

a.zp1
1 ...z

pN
N

∂

∂zs

where z1, ..., zN are coordinates in CN , a ∈ C and p = (p1, ..., pN ) ∈ NN \ {0} satisfying the
additive resonance relation

λs = 〈p, λ〉 =
N∑
k=1

pkλk.

Notice that a multiplicative monomial λ−resonant vector field may be defined, but we will
only deal with the additive case.

A monomial λ−resonant vector field is said diagonal if it is of the form

azs
∂

∂zs

i.e. is associated to the trivial resonance relation λs = 〈p, λ〉 where p = (p1, ..., pN ) with pk =
δks (Kronecker symbol), ∀k = 1, ..., N.

A λ−resonant vector field on CN is a sum of monomial λ−resonant vector fields.
For instance the diagonal vector field

X0 =
N∑
k=1

λkzk
∂

∂zk

is λ−resonant.
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2 Case of a diagonal λ−resonant vector field

Definition 2.1. [1] A vector λ = (λ1, ..., λN ) ∈ CN is said to be of type (A, δ) if there exists real
constants A > 0 and δ ≥ 0 such that for any j = 1, ..., N ,

|λj − 〈m,λ〉| ≥
A

|m|δ

for all m = (m1, ...,mN ) ∈ NN with |m| ≥ 2 where |m| =
N∑
k=1

mk.

We then get the following result :

Theorem 2.2. Let M be a complex manifold of complex dimension N . Let X be a holomorphic
vector field on M .

Suppose there is a point x ∈M , a chart (U, φ) of M at x such that X|U is biholomorphically
conjugated by φ, to a diagonal λ− resonant vector field

XU =
N∑
k=1

λkzk
∂

∂zk

with λk 6= 0 for all k = 1, ..., N , and λ = (λ1, ..., λN ) ∈ CN is of type (A, δ).
Then for any holomorphic vector field Z on M such that φ∗(Z|U ) is without linear part, there

exists a holomorphic vector field Y on U such that [X|U , Y ] = Z|U .

Proof. Using the conjugation the equation [X|U , Y ] = Z|U is equivalent to [XU , φ∗(Y )] =
φ∗(Z|U ).

Set φ∗(Y ) =
N∑
j=1

Y j ∂
∂zj

and φ∗(Z|U ) =
N∑
j=1

Zj ∂
∂zj

. Then

[XU , φ∗(Y )] =
N∑
k=1

λk[zk
∂
∂zk

, φ∗(Y|U )]

=
N∑
k=1

λkzk[
∂
∂zk

, φ∗(Y|U )]−
N∑
k=1

λk(φ∗(Y|U ).zk)
∂
∂zk

=
N∑
k=1

λkzk
N∑
j=1

[ ∂
∂zk

, Y j ∂
∂zj

]−
N∑
k=1

λkY
k ∂
∂zk

=
N∑
k=1

λkzk
N∑
j=1

∂Y j

∂zk
∂
∂zj
−

N∑
k=1

λkY
k ∂
∂zk

.

So

[XU , φ∗(Y )] =
N∑
j=1

(
N∑
k=1

λkzk
∂Y j

∂zk
− λjY j)

∂

∂zj
.

Then equation [XU , φ∗(Y )] = φ∗(Z|U ) is equivalent to the system

N∑
k=1

λkzk
∂Y j

∂zk
− λjY j = Zj , ∀j = 1, ..., N

and therefore to the system LXU
(Y j) − λjY

j = Zj , ∀j = 1, ..., N , where LXU
is the Lie

derivative along the vector field XU .
Let’s use the power series expansion of Y j and Zj on some neighbourhood of 0 :

Y j =
+∞∑
|m|=0

ajmz
m and Zj =

+∞∑
|m|=0

bjmz
m
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with m = (m1, ...,mN ) ∈ NN , zm = zm1
1 ...zmN

N , and ajm , bjm ∈ C.
Then

LXU
(Y j) =

+∞∑
|m|=0

(
N∑
k=1

mkλk)a
j
mz

m =
+∞∑
|m|=0

〈m,λ〉 ajmzm.

Therefore equation LXU
(Y j)− λjY j = Zj is equivalent to

(λj − 〈m,λ〉)ajm = −bjm.

If m = 0, then

aj0 =
−bj0
λj

.

So ∣∣∣aj0∣∣∣ ≤
∣∣∣bj0∣∣∣

min
1≤k≤N

|λk|
.

If |m| = 1, then bjm = 0 so we can take ajm = 0.
If λ = (λ1, ..., λN ) is of type (A, δ), then for all j = 1, ..., N ,

|λj − 〈m,λ〉| ≥
A

|m|δ

for any m ∈ NN with |m| ≥ 2, where A > 0 and δ ≥ 0. Then

∣∣ajm∣∣ = ∣∣bjm∣∣
|λj − 〈m,λ〉|

≤
|m|δ

∣∣bjm∣∣
A

.

Since the function Zj is holomorphic, the power series
+∞∑
|m|=0

bjmz
m is absolutely convergent on

an open polydisk with center 0. So the power series
+∞∑
|m|=0

ajmz
m is absolutely convergent on this

open polydisk where it defines a unique holomorphic function Y j .

Finally we can conclude that there exists a unique holomorphic vector field Y U =
N∑
j=1

Y j ∂
∂zj

on φ(U ) such that [XU , Y
U ] = φ∗(Z|U ). So there exists a unique holomorphic vector field Y on

U such that [X|U , Y ] = Z|U . 2

The following theorem gives a sufficient condition for a holomorphic vector field to be con-
jugated to a diagonal vector field.

Theorem 2.3. (Siegel’s theorem [1] p.187) : Let X =
∑
asmz

m ∂
∂zs

be a holomorphic vector field
on a neighbourhood of 0 in CN , an isolated singular point.

Let λ1, ..., λN be the eighenvalues of the matrix (asi ) of the linear part of X .
If λ = (λ1, ..., λN ) ∈ CN is of type (A, δ), then there exists a biholomorphism h on a neigh-

borhood of 0 in CN such that

h∗X =
N∑
k=1

λkzk
∂

∂zk

i.e. X is biholomorphically conjugated to the diagonal λ− resonant vector field

N∑
k=1

λkzk
∂

∂zk
.

Using Siegel’s theorem, we get on a complex manifold :
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Proposition 2.4. LetM be a complex manifold of complex dimensionN . LetX be a holomorphic
vector field on M .

Suppose there is a point x ∈ M , a chart (U, φ) of M centered at x such that X|U is biholo-
morphically conjugated by φ, to a holomorphic vector field

XU =
∑

asmz
m ∂

∂zs

on φ(U) a neighborhood of 0 ∈ CN , an isolated singular point.
Let λ1, ..., λN be the eighenvalues of the matrix (asi ) of the linear part of XU .
Suppose λk 6= 0 for all k = 1, ..., N , and λ = (λ1, ..., λN ) ∈ CN is of type (A, δ).
Then for any holomorphic vector field Z on M such that φ∗

(
Z|U

)
is without linear part,

there exists a holomorphic vector field Y on U such that
[
X|U , Y

]
= Z|U .

Proof. By Siegel’s theorem, if λ = (λ1, ..., λN ) ∈ CN is of type (A, δ), then a biholomorphism

h on a neighbourhood of 0 in CN such that h∗ (XU ) =
N∑
k=1

λkzk
∂
∂zk

exists.

Set ψ = h ◦ φ. Then X|U is biholomorphically conjugated by ψ to the diagonal λ−resonant

vector field XU =
N∑
k=1

λkzk
∂
∂zk

with λk 6= 0 for all k = 1, ..., N , and λ = (λ1, ..., λN ) ∈ CN is

of type (A, δ).
Therefore, since ψ∗

[
X|U , Y

]
=
[
ψ∗
(
X|U

)
, ψ∗ (Y )

]
, by theorem 2.2, for any holomorphic

vector field Z on M with ψ∗
(
Z|U

)
without linear part, we can find a holomorphic vector field Y

on U such that
[
X|U , Y

]
= Z|U . 2

3 Case of a monomial λ−resonant vector field

On CN , we consider the monomial λ−resonant vector field

X = a.zp1
1 ...z

pN
N

∂

∂zs
= azp

∂

∂zs

where a ∈ C∗, p = (p1, ..., pN ) ∈ NN \ {0} and λ = (λ1, ..., λN ) ∈ CN with λk 6= 0, ∀k =
1, ..., N fulfilling the additive resonance relation

λs = 〈p, λ〉 =
N∑
k=1

pkλk.

In [10] the following result has been established :

Theorem 3.1. [ 10] Let λ = (λ1, ..., λN ) ∈ CN such that λk 6= 0,∀k = 1, ..., N . Let X =
a.zp1

1 ...z
pN
N

∂
∂zs

be a monomial λ− resonant vector field on CN , where a ∈ C∗, p = (p1, ..., pN ) ∈
NN \ {0} fulfilling the additive resonance relation

λs = 〈p, λ〉 =
N∑
k=1

pkλk.

If g is a holomorphic function on CN satisfying the condition

1
k1!...kN !

∂k1+...+kN g

∂zk1
1 ...∂z

kN
N

(0, ..., 0) = 0

for any (k1, ..., kN ) ∈ NN with ki < pi for some i, then there exists a holomorphic function f on
CN , (unique up to the consequence of the necessary condition), such that LXf = g.
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From this we deduce :

Theorem 3.2. Let M be a complex manifold of complex dimension N . Let X be a holomorphic
vector field on M .

Suppose there is a point x ∈M , a chart (U, φ) of M at x such that X|U is biholomorphically
conjugated by φ, to a monomial λ− resonant vector field

XU = a.zp1
1 ...z

pN
N

∂

∂zs
= azp

∂

∂zs

where a ∈ C∗, p = (p1, ..., pN ) ∈ NN and λ = (λ1, ..., λN ) ∈ CN with λk 6= 0, ∀k = 1, ..., N
such that λs = 〈p, λ〉.

If Z is a holomorphic vector field on M such that φ∗(Z|U ) = ZU =
N∑
j=1

ZjU
∂
∂zj

satisfies the

condition : ∀j = 1, ..., N

1
k1!...kN !

∂k1+...+kNZjU
∂zk1

1 ...∂z
kN
N

(0, ..., 0) = 0

for any (k1, ..., kN ) ∈ NN with ki < pi for some i, then, in the sub-Lie algebra of holomorphic
vector fields Y on U such that Lφ∗(Y ) (z

p) = 0, there exists a holomorphic vector field Y such
that

[
X|U , Y

]
= Z|U .

Proof. Using the conjugation the equation
[
X|U , Y

]
= Z|U is equivalent to

[XU , φ∗ (Y )] = φ∗
(
Z|U

)
.

Set φ∗ (Y ) =
N∑
j=1

Y j ∂
∂zj

and φ∗
(
Z|U

)
=

N∑
j=1

Zj ∂
∂zj

.

Then

[XU , φ∗ (Y )] =
[
azp ∂

∂zs
, φ∗ (Y )

]
= azp

[
∂
∂zs

, φ∗ (Y )
]
− a ((φ∗ (Y )) .zp) ∂

∂zs

= azp
N∑
j=1

[
∂
∂zs

, Y j ∂
∂zj

]
− a

((
φ∗
(
Y|Ui

))
.zp
)

∂
∂zs

=
N∑
j=1

azp ∂Y
j

∂zs
∂
∂zj
− a ((φ∗ (Y )) .zp) ∂

∂zs

So equation [XU , φ∗ (Y )] = φ∗
(
Z|U

)
is equivalent to the system{

azp ∂Y
j

∂zs
= Zj , ∀j 6= s

azp ∂Y
s

∂zs
− a

((
φi∗
(
Y|Ui

))
.zp
)

= Zs

i.e. to the system

(S4)

{
LXUi

(Y j) = Zj , ∀j 6= s

LXUi
(Y s)− aLφi∗(Y|Ui)

(zp) = Zs

If Lφi∗(Y ) (z
p) = 0, then system (S4) becomes the system of continuous cohomological

equations LXU (Y j) = Zj , ∀j = 1, ..., N .
By theorem 3.1, there exists a holomorphic function Y j on φ (U) such that LXU (Y j) = Zj .

Finally we can conclude that there exists a holomorphic vector field Y U =
N∑
j=1

Y j ∂
∂zj

on

φ (U) such that
[
XU , Y

U
]
= φ∗

(
Z|U

)
. So there exists a holomorphic vector field Y on U such

that
[
X|U , Y

]
= Z|U . 2

More generally, we have :
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Theorem 3.3. Let M be a complex manifold of complex dimension N . Let X be a holomorphic
vector field on M .

Suppose there is a point x ∈M , a chart (U, φ) of M at x such that X|U is biholomorphically
conjugated by φ, to a monomial λ−resonant vector field

XU = a.zp1
1 ...z

pN
N

∂

∂zs
= azp

∂

∂zs

where a ∈ C∗, p = (p1, ..., pN ) ∈ NN with ps ≥ 1 and λ = (λ1, ..., λN ) ∈ CN with λk 6= 0,
∀k = 1, ..., N such that λs = 〈p, λ〉.

If Z is a holomorphic vector field on M such that, φ∗(Z|U ) = ZU =
N∑
j=1

ZjU
∂
∂zj

satisfies the

condition : ∀j = 1, ..., N

1
k1!...kN !

∂k1+...+kNZjU
∂zk1

1 ...∂z
kN
N

(0, ..., 0) = 0

for any (k1, ..., kN ) ∈ NN with ki < pi for some i, and ks < ps + 1, then, there exists a
holomorphic vector field Y such that

[
X|U , Y

]
= Z|U .

Proof. Using the conjugation the equation
[
X|U , Y

]
= Z|U is equivalent to

[XU , φ∗ (Y )] = φ∗
(
Z|U

)
.

As in the proof of theorem 3.2, if we set

φ∗ (Y ) =
N∑
j=1

Y j ∂
∂zj

and φ∗
(
Z|U

)
=

N∑
j=1

Zj ∂
∂zj

, then we get the system

(S4)

{
LXUi

(Y j) = Zj , ∀j 6= s

LXUi
(Y s)− aLφi∗(Y|Ui)

(zp) = Zs

By theorem 3.1, for any j 6= s we can find a holomorphic function Y j on φ (U) such that
LXU (Y j) = Zj .

If j = s, we have the equation LXU (Y s)− aLφi∗(Y ) (z
p) = Zs. Wich is equivalent to

azp
∂Y s

∂zs
− a

N∑
j=1

Y j
∂zp

∂zj
= Zs

So

(S5) zp
∂Y s

∂zs
− ∂zp

∂zs
Y s =

N∑
j=1,j 6=s

Y j
∂zp

∂zj
+
Zs

a

As j 6= s, if we set Γs the right side of this equation, it is a holomophic function already
known.

Let’s use the power series expansion of Y s and Γs on some neighbourhood of 0 :

Y s =
+∞∑
|m|=0

asmz
m and Γ

s =
+∞∑
|m|=0

γsmz
m

with m = (m1, ...,mN ) ∈ NN , zm = zm1
1 ...zmN

N , and asm , γsm ∈ C.
Then the product of equation (S5) by zs gives :

zp
∑

ms≥1,|m|≥1

msa
s
mz

m − pszp
+∞∑
|m|=0

asmz
m = zs

+∞∑
|m|=0

γsmz
m
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So

∑
ms≥1,|m|≥1

msa
s
mz

m+p − ps
+∞∑
|m|=0

asmz
m+p =

+∞∑
|m|=0

γsmz
m1
1 ...z

ms−1
s−1 zms+1

s z
ms+1
s+1 ...zmN

N

Therefore

∑
ms≥ps+1,mi≥pi,i6=s

(ms − ps) asm−pzm − ps
+∞∑
mi≥pi

asm−pz
m

=
+∞∑

ms≥1,mi≥0,i6=s
γsms−1,mi

zm

So we have the necessary condition γsms−1,mi
= 0 if ms < ps + 1 and mi < pi, for i 6= s.

When ms ≥ ps + 1 and mi ≥ pi, i 6= s

(ms − 2ps) asm−p = γsms−1,mi
.

Which gives for ms ≥ 1 and mi ≥ 0, i 6= s

(ms − ps) asm = γsms+ps+1,mi+pi .

Therefore, if ms > ps then

asm =
1

ms − ps
γsms+ps+1,mi+pi .

So
|asm| ≤

∣∣γsms+ps+1,mi+pi

∣∣ .
Since the function Γs is holomorphic, the power series

+∞∑
|m|=0

γsmz
m is absolutely convergent

on an open polydisk with center 0. So the power series
+∞∑
|m|=0

asmz
m is absolutely convergent on

this open polydisk where it defines a unique holomorphic function Y s.
Therefore there exists a holomorphic function Y s on φ (U) solution of the equationLXU (Y s)−

aL
φ∗(Y|U) (z

p) = Zs.

Finally we can conclude that there exists a holomorphic vector field Y U =
N∑
j=1

Y j ∂
∂zj

on

φ (U) such that
[
XU , Y

U
]
= φ∗

(
Z|U

)
. So there exists a holomorphic vector field Y on U such

that
[
X|U , Y

]
= Z|U . 2

4 Case of a λ−resonant vector field

Definition 4.1. Let λ = (λ1, ..., λN ) ∈ CN such that λk 6= 0,∀k = 1, ..., N . A λ−resonant
vector field on CN is a vector field of the form

X =
∑

asp.z
p1
1 ...z

pN
N

∂

∂zs
=
∑

asp.z
p ∂

∂zs

where asp ∈ C and λs = 〈p, λ〉 with p = (p1, ..., pN ) ∈ NN . The sum runs over the sequences
(s, p) such that λs = 〈p, λ〉.

For a λ−resonant vector field we get :
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Theorem 4.2. Let M be a complex manifold of complex dimension N . Let X be a holomorphic
vector field on M .

Suppose there is a centered chart (U, φ) of M such that X|U is biholomorphically conjugated
by φ, to a λ− resonant vector field

XU =
∑

asp.z
p1
1 ...z

pN
N

∂

∂zs
=
∑

asp.z
p ∂

∂zs

where pi ≥ 1, ∀i = 1, ...N and
∣∣mja

j
p − (ms − ps)asp

∣∣ ≤ 1 for j 6= s, (m1, ...,mN ) ∈ NN .

If Z is a holomorphic vector field on M such that φ∗(Z|U ) = ZU =
N∑
j=1

ZjU
∂
∂zj

satisfies the

condition : ∀j = 1, ..., N

1
k1!...kN !

∂k1+...+kNZjU
∂zk1

1 ...∂z
kN
N

(0, ..., 0) = 0

for any (k1, ..., kN ) ∈ NN with ki < pi − 1 for some i, then there exists a holomorphic vector
field Y on U such that

[
X|U , Y

]
= Z|U .

Proof. Equation
[
X|U , Y

]
= Z|U is equivalent to [XU , φ∗ (Y )] = φ∗

(
Z|U

)
.

Set φ∗ (Y ) =
N∑
j=1

Y j ∂
∂zj

.

As s ∈ {1, ..., N}, we can assume that asp = 0 when there is no p such that λs = 〈p, λ〉 .
Then

[XU , φ∗ (Y )] =
N∑
s=1

asp

[
zp ∂

∂zs
, Y
]

=
N∑
s=1

aspz
p
[
∂
∂zs

, Y
]
−

N∑
s=1

asp (Y.z
p) ∂

∂zs

=
N∑
s=1

aspz
p
N∑
j=1

[
∂
∂zs

, Y j ∂
∂zj

]
−

N∑
s=1

asp (Y.z
p) ∂

∂zs

=
N∑
s=1

aspz
p
N∑
j=1

∂Y j

∂zs
∂
∂zj
−

N∑
s=1

asp (LY (zp)) ∂
∂zs

=
N∑
s=1

(
N∑
j=1

ajpz
p ∂Y s

∂zj

)
∂
∂zs
−

N∑
s=1

asp (LY (zp)) ∂
∂zs

Set φ∗
(
Z|U

)
=

N∑
s=1

Zs ∂
∂zs

. Then equation [XU , φ∗ (Y )] = φ∗
(
Z|U

)
is equivalent to

N∑
j=1

ajpz
p ∂Y

s

∂zj
− asp

N∑
j=1

Y j
∂ (zp)

∂zj
= Zs

Let’s use the power series expansion of Y s and Zs on some neighbourhood of 0 :

Y s =
+∞∑
|m|=0

bsmz
m and Zs =

+∞∑
|m|=0

csmz
m

with m = (m1, ...,mN ) ∈ NN , zm = zm1
1 ...zmN

N , and bsm , csm ∈ C.
Then

N∑
j=1

ajpz
p

+∞∑
|m|=0

mjb
s
mz

m1
1 ...z

mj−1
j−1 z

mj−1
j z

mj+1
j+1 ...zmN

N

−asp
N∑
j=1

pjz
p1
1 ...z

pj−1
j−1 z

pj−1
j z

pj+1
j+1 ...z

pN
N

+∞∑
|m|=0

bjmz
m

=
+∞∑
|m|=0

csmz
m
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So

+∞∑
|m|=0

zm
N∑
j=1

(mja
j
pb
s
m − pjaspbjm)z

p1
1 ...z

pj−1
j−1 z

pj−1
j z

pj+1
j+1 ...z

pN
N =

+∞∑
|m|=0

csmz
m

Therefore

+∞∑
|m|=0

N∑
j=1

(mja
j
pb
s
m − pjaspbjm)z

p1+m1
1 ...z

pj−1+mj−1
j−1 z

pj+mj−1
j z

pj+1+mj+1
j+1 ...zpN+mN

N

=
+∞∑
|k|=0

cskz
k

If k 6= (p1 +m1, ..., pj−1 +mj−1, pj +mj − 1, pj+1 +mj+1, ..., pN +mN ), then csk = 0.

If k = (p1 +m1, ..., pj−1 +mj−1, pj +mj − 1, pj+1 +mj+1, ..., pN +mN ), then

mja
j
pb
s
m − pjaspbjm = csk.

When j = s, then (ms − ps) aspbsm = csk.
As asp 6= 0, if ms = ps, then csk = 0, and we may take bsm = 0.
If ms 6= ps, then

bsm =
csk

(ms − ps) asp
.

So |bsm| ≤
|csk|
A with A = min

∣∣asp∣∣ .
When j 6= s, then pjaspbjm = mja

j
pb
s
m − csk.

As pj ≥ 1 and asp 6= 0, then

bjm =
mja

j
pb
s
m − csk

pjasp
=

(
mja

j
p − (ms − ps) asp

)
csk

(ms − ps) pj
(
asp
)2 .

So if
∣∣mja

j
p − (ms − ps) asp

∣∣ ≤ 1, then
∣∣bjm∣∣ ≤ |csk|A2 .

Since the function Zs is holomorphic, the power series
+∞∑
|m|=0

csmz
m is absolutely convergent

on an open polydisk with center 0. So the power series
+∞∑
|m|=0

bsmz
m is absolutely convergent on

this open polydisk where it defines a unique holomorphic function Y s.

Finally we can conclude that there exists a holomorphic vector field Y U =
N∑
j=1

Y j ∂
∂zj

on

φ (U) such that
[
XU , Y

U
]
= φ∗

(
Z|U

)
. So there exists a holomorphic vector field Y on U such

that
[
X|U , Y

]
= Z|U . 2
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