LIE BRACKET INVERTIBILITY

Toussaint SOHOU
Communicated by Harikrishnan Panackal

MSC 2010 Classifications : Primary 37C10, 34D23 ; Secondary 34M45.
Keywords and phrases : Compex Manifolds. Vector fields. Lie bracket. Equations.
Abstract In this paper, we investigate the resolution of the equation $[X, Y]=Z$ in the Lie algebra of vector fields on a manifold M, for X and Z both given. We give a local solution on a complex manifold M when X is a diagonal λ-resonant vector field, when X is a monomial λ-resonant vector field, and when X is a λ-resonant vector field.

1 Introduction

The problem we are interested in is the following : if X and Z are given vector fields on a manifold M, is it possible to find a vector field Y on M such that the Lie bracket $[X, Y]=Z$?

If X is a C^{∞} vector field on a differential manifold M and x_{0} a point of M with $X\left(x_{0}\right) \neq 0$, then there is a coordinate system $\left(x^{1}, \ldots, x^{N}\right)$ of M (where $N=\operatorname{dim} M$) on an open neighborhood U of x_{0} such that $X=\frac{\partial}{\partial x^{1}}$ on U ([9] p.205). So if Z is a C^{∞} vector field on M, there exists on U a vector field $Y=\sum_{k=1}^{N} Y^{k} \frac{\partial}{\partial x^{k}}$ defined by (using locally the same notation),

$$
Y^{k}\left(x_{1}, \ldots, x_{N}\right)=\int_{\alpha}^{x_{1}} Z^{k}\left(t, x_{2}, \ldots, x_{N}\right) d t
$$

$\forall k=1, \ldots, N$, where $Z=\sum_{k=1}^{N} Z^{k} \frac{\partial}{\partial x^{k}}$ on U, such that $[X, Y]=Z$.
Therefore if x_{0} is a regular point of X, then equation $[X, Y]=Z$ has a solution on a neighborhood of x_{0}.

Let $\left(\phi_{t}\right)$ be the flow generated by X on a neighborhood of a singular point and $\left(\phi_{t}\right)_{*} Y$ the transportation of Y along the flow $\left(\phi_{t}\right)$. Then locally

$$
[X, Y]=\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-\left(\phi_{t}\right)_{*} Y\right)
$$

If we set $\gamma(t)=-\left(\phi_{t}\right)_{*} Y$, then

$$
\left.\frac{d}{d t}\right|_{t=0} \gamma(t)=\gamma^{\prime}(0)=\lim _{t \rightarrow 0} \frac{\gamma(t)-\gamma(0)}{t}=[X, Y]
$$

So we are looking for a vector field Y whose transportation $\left(\phi_{t}\right)_{*} Y$ along the flow $\left(\phi_{t}\right)$ generated by X fulfills

$$
\frac{d}{d t}_{\mid t=0}\left(-\left(\phi_{t}\right)_{*} Y\right)=Z
$$

Among the works done to solve this equation, we have [11], [2].
In this note, we give a local solution of this equation on a complex manifold M when X is a diagonal λ-resonant vector field, when X is a monomial λ-resonant vector field and finally when X is a λ-resonant vector field.

Let M be a complex manifold of complex dimension N. A holomorphic vector field on M is a section $X: M \rightarrow(T M)^{1,0}$ of the holomorphic tangent bundle over M such that for any point $p \in M$, if $\left(z^{1}, \ldots, z^{N}\right)$ is a local holomorphic coordinate system of M on an open neighborhood U of p,

$$
X_{p}=\sum_{k=1}^{N} X^{k}(p) \frac{\partial}{\partial z_{\mid p}^{k}}
$$

where $X^{1}, \ldots, X^{N}: U \rightarrow \mathbb{C}$ are holomorphic functions.

The following definitions are in [1], [6], [8].
A vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ such that $\lambda_{k} \neq 0, \forall k=1, \ldots, N$ is said to be resonant if there exits $s \in\{1, \ldots, N\}$ and $p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N} \backslash\{0\}$ satisfying the relation

$$
\lambda_{s}=\langle p, \lambda\rangle=\sum_{k=1}^{N} p_{k} \lambda_{k}
$$

with $\sum_{k=1}^{N} p_{k} \geq 2$.
This relation is called an additive resonance relation of order $|p|=\sum_{k=1}^{N} p_{k}$.

Remark 1.1. For example the relation $\lambda_{1}+\lambda_{2}+2 \lambda_{3}=0$ gives $\lambda_{2}=\lambda_{1}+2 \lambda_{2}+2 \lambda_{3}$ so is an additive resonance relation of order 5 .
But the relation $2 \lambda_{1}+7 \lambda_{2}=5 \lambda_{3}$ is not an additive resonance relation.

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ such that $\lambda_{k} \neq 0, \forall k=1, \ldots, N$.
An additive monomial λ-resonant vector field on \mathbb{C}^{N} is a holomorphic vector field of the form

$$
a . z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}
$$

where z_{1}, \ldots, z_{N} are coordinates in $\mathbb{C}^{N}, a \in \mathbb{C}$ and $p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N} \backslash\{0\}$ satisfying the additive resonance relation

$$
\lambda_{s}=\langle p, \lambda\rangle=\sum_{k=1}^{N} p_{k} \lambda_{k}
$$

Notice that a multiplicative monomial λ-resonant vector field may be defined, but we will only deal with the additive case.

A monomial λ-resonant vector field is said diagonal if it is of the form

$$
a z_{s} \frac{\partial}{\partial z_{s}}
$$

i.e. is associated to the trivial resonance relation $\lambda_{s}=\langle p, \lambda\rangle$ where $p=\left(p_{1}, \ldots, p_{N}\right)$ with $p_{k}=$ $\delta_{k s}$ (Kronecker symbol), $\forall k=1, \ldots, N$.

A λ-resonant vector field on \mathbb{C}^{N} is a sum of monomial λ-resonant vector fields.
For instance the diagonal vector field

$$
X_{0}=\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}
$$

is λ-resonant.

2 Case of a diagonal $\boldsymbol{\lambda}$-resonant vector field

Definition 2.1. [1] A vector $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is said to be of type (A, δ) if there exists real constants $A>0$ and $\delta \geq 0$ such that for any $j=1, \ldots, N$,

$$
\left|\lambda_{j}-\langle m, \lambda\rangle\right| \geq \frac{A}{|m|^{\delta}}
$$

for all $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}^{N}$ with $|m| \geq 2$ where $|m|=\sum_{k=1}^{N} m_{k}$.

We then get the following result :

Theorem 2.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic vector field on M.

Suppose there is a point $x \in M$, a chart (U, ϕ) of M at x such that $X_{\mid U}$ is biholomorphically conjugated by ϕ, to a diagonal λ - resonant vector field

$$
X_{U}=\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}
$$

with $\lambda_{k} \neq 0$ for all $k=1, \ldots, N$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is of type (A, δ).
Then for any holomorphic vector field Z on M such that $\phi_{*}\left(Z_{\mid U}\right)$ is without linear part, there exists a holomorphic vector field Yon U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

Proof. Using the conjugation the equation $\left[X_{\mid U}, Y\right]=Z_{\mid U}$ is equivalent to $\left[X_{U}, \phi_{*}(Y)\right]=$ $\phi_{*}\left(Z_{\mid U}\right)$.

$$
\text { Set } \begin{aligned}
& \phi_{*}(Y)=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}} \text { and } \phi_{*}\left(Z_{\mid U}\right)=\sum_{j=1}^{N} Z^{j} \frac{\partial}{\partial z_{j}} . \text { Then } \\
& {\left[X_{U}, \phi_{*}(Y)\right] }=\sum_{k=1}^{N} \lambda_{k}\left[z_{k} \frac{\partial}{\partial z_{k}}, \phi_{*}\left(Y_{\mid U}\right)\right] \\
&=\sum_{k=1}^{N} \lambda_{k} z_{k}\left[\frac{\partial}{\partial z_{k}}, \phi_{*}\left(Y_{\mid U}\right)\right]-\sum_{k=1}^{N} \lambda_{k}\left(\phi_{*}\left(Y_{\mid U}\right) \cdot z_{k}\right) \frac{\partial}{\partial z_{k}} \\
&=\sum_{k=1}^{N} \lambda_{k} z_{k} \sum_{j=1}^{N}\left[\frac{\partial}{\partial z_{k}}, Y^{j} \frac{\partial}{\partial z_{j}}\right]-\sum_{k=1}^{N} \lambda_{k} Y^{k} \frac{\partial}{\partial z_{k}} \\
&=\sum_{k=1}^{N} \lambda_{k} z_{k} \sum_{j=1}^{N} \frac{\partial Y^{j}}{\partial z_{k}} \frac{\partial}{\partial z_{j}}-\sum_{k=1}^{N} \lambda_{k} Y^{k} \frac{\partial}{\partial z_{k}} .
\end{aligned}
$$

So

$$
\left[X_{U}, \phi_{*}(Y)\right]=\sum_{j=1}^{N}\left(\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial Y^{j}}{\partial z_{k}}-\lambda_{j} Y^{j}\right) \frac{\partial}{\partial z_{j}}
$$

Then equation $\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)$ is equivalent to the system

$$
\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial Y^{j}}{\partial z_{k}}-\lambda_{j} Y^{j}=Z^{j}, \forall j=1, \ldots, N
$$

and therefore to the system $L_{X_{U}}\left(Y^{j}\right)-\lambda_{j} Y^{j}=Z^{j}, \forall j=1, \ldots, N$, where $L_{X_{U}}$ is the Lie derivative along the vector field X_{U}.

Let's use the power series expansion of Y^{j} and Z^{j} on some neighbourhood of 0 :

$$
Y^{j}=\sum_{|m|=0}^{+\infty} a_{m}^{j} z^{m} \text { and } Z^{j}=\sum_{|m|=0}^{+\infty} b_{m}^{j} z^{m}
$$

with $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}^{N}, z^{m}=z_{1}^{m_{1}} \ldots z_{N}^{m_{N}}$, and $a_{m}^{j}, b_{m}^{j} \in \mathbb{C}$.
Then

$$
L_{X_{U}}\left(Y^{j}\right)=\sum_{|m|=0}^{+\infty}\left(\sum_{k=1}^{N} m_{k} \lambda_{k}\right) a_{m}^{j} z^{m}=\sum_{|m|=0}^{+\infty}\langle m, \lambda\rangle a_{m}^{j} z^{m}
$$

Therefore equation $L_{X_{U}}\left(Y^{j}\right)-\lambda_{j} Y^{j}=Z^{j}$ is equivalent to

$$
\left(\lambda_{j}-\langle m, \lambda\rangle\right) a_{m}^{j}=-b_{m}^{j}
$$

If $m=0$, then

$$
a_{0}^{j}=\frac{-b_{0}^{j}}{\lambda_{j}}
$$

So

$$
\left|a_{0}^{j}\right| \leq \frac{\left|b_{0}^{j}\right|}{\min _{1 \leq k \leq N}\left|\lambda_{k}\right|}
$$

If $|m|=1$, then $b_{m}^{j}=0$ so we can take $a_{m}^{j}=0$.
If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is of type (A, δ), then for all $j=1, \ldots, N$,

$$
\left|\lambda_{j}-\langle m, \lambda\rangle\right| \geq \frac{A}{|m|^{\delta}}
$$

for any $m \in \mathbb{N}^{N}$ with $|m| \geq 2$, where $A>0$ and $\delta \geq 0$. Then

$$
\left|a_{m}^{j}\right|=\frac{\left|b_{m}^{j}\right|}{\left|\lambda_{j}-\langle m, \lambda\rangle\right|} \leq \frac{|m|^{\delta}\left|b_{m}^{j}\right|}{A}
$$

Since the function Z^{j} is holomorphic, the power series $\sum_{|m|=0}^{+\infty} b_{m}^{j} z^{m}$ is absolutely convergent on an open polydisk with center 0 . So the power series $\sum_{|m|=0}^{+\infty} a_{m}^{j} z^{m}$ is absolutely convergent on this open polydisk where it defines a unique holomorphic function Y^{j}.

Finally we can conclude that there exists a unique holomorphic vector field $Y^{U}=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ on $\phi(U)$ such that $\left[X_{U}, Y^{U}\right]=\phi_{*}\left(Z_{\mid U}\right)$. So there exists a unique holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

The following theorem gives a sufficient condition for a holomorphic vector field to be conjugated to a diagonal vector field.

Theorem 2.3. (Siegel's theorem [1] p.187) : Let $X=\sum a_{m}^{s} z^{m} \frac{\partial}{\partial z_{s}}$ be a holomorphic vector field on a neighbourhood of 0 in \mathbb{C}^{N}, an isolated singular point.

Let $\lambda_{1}, \ldots, \lambda_{N}$ be the eighenvalues of the matrix $\left(a_{i}^{s}\right)$ of the linear part of X.
If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is of type (A, δ), then there exists a biholomorphism h on a neighborhood of 0 in \mathbb{C}^{N} such that

$$
h_{*} X=\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}
$$

i.e. X is biholomorphically conjugated to the diagonal λ - resonant vector field

$$
\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}
$$

Using Siegel's theorem, we get on a complex manifold :

Proposition 2.4. Let M be a complex manifold of complex dimension N. Let X be a holomorphic vector field on M.

Suppose there is a point $x \in M$, a chart (U, ϕ) of M centered at x such that $X_{\mid U}$ is biholomorphically conjugated by ϕ, to a holomorphic vector field

$$
X_{U}=\sum a_{m}^{s} z^{m} \frac{\partial}{\partial z_{s}}
$$

on $\phi(U)$ a neighborhood of $0 \in \mathbb{C}^{N}$, an isolated singular point.
Let $\lambda_{1}, \ldots, \lambda_{N}$ be the eighenvalues of the matrix $\left(a_{i}^{s}\right)$ of the linear part of X_{U}.
Suppose $\lambda_{k} \neq 0$ for all $k=1, \ldots, N$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is of type (A, δ).
Then for any holomorphic vector field Z on M such that $\phi_{*}\left(Z_{\mid U}\right)$ is without linear part, there exists a holomorphic vector field Yon U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

Proof. By Siegel's theorem, if $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is of type (A, δ), then a biholomorphism h on a neighbourhood of 0 in \mathbb{C}^{N} such that $h_{*}\left(X_{U}\right)=\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}$ exists.

Set $\psi=h \circ \phi$. Then $X_{\mid U}$ is biholomorphically conjugated by ψ to the diagonal λ-resonant vector field $X^{U}=\sum_{k=1}^{N} \lambda_{k} z_{k} \frac{\partial}{\partial z_{k}}$ with $\lambda_{k} \neq 0$ for all $k=1, \ldots, N$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ is of type (A, δ).

Therefore, since $\psi_{*}\left[X_{\mid U}, Y\right]=\left[\psi_{*}\left(X_{\mid U}\right), \psi_{*}(Y)\right]$, by theorem 2.2, for any holomorphic vector field Z on M with $\psi_{*}\left(Z_{\mid U}\right)$ without linear part, we can find a holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

3 Case of a monomial $\boldsymbol{\lambda}$-resonant vector field

On \mathbb{C}^{N}, we consider the monomial λ-resonant vector field

$$
X=a . z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}=a z^{p} \frac{\partial}{\partial z_{s}}
$$

where $a \in \mathbb{C}^{*}, p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N} \backslash\{0\}$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ with $\lambda_{k} \neq 0, \forall k=$ $1, \ldots, N$ fulfilling the additive resonance relation

$$
\lambda_{s}=\langle p, \lambda\rangle=\sum_{k=1}^{N} p_{k} \lambda_{k}
$$

In [10] the following result has been established :

Theorem 3.1. [10] Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ such that $\lambda_{k} \neq 0, \forall k=1, \ldots, N$. Let $X=$ a. $z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}$ be a monomial λ - resonant vector field on \mathbb{C}^{N}, where $a \in \mathbb{C}^{*}, p=\left(p_{1}, \ldots, p_{N}\right) \in$ $\mathbb{N}^{N} \backslash\{0\}$ fulfilling the additive resonance relation

$$
\lambda_{s}=\langle p, \lambda\rangle=\sum_{k=1}^{N} p_{k} \lambda_{k}
$$

If g is a holomorphic function on \mathbb{C}^{N} satisfying the condition

$$
\frac{1}{k_{1}!\ldots k_{N}!} \frac{\partial^{k_{1}+\ldots+k_{N}} g}{\partial z_{1}^{k_{1}} \ldots \partial z_{N}^{k_{N}}}(0, \ldots, 0)=0
$$

for any $\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ with $k_{i}<p_{i}$ for some i, then there exists a holomorphic function f on \mathbb{C}^{N}, (unique up to the consequence of the necessary condition), such that $L_{X} f=g$.

From this we deduce :

Theorem 3.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic vector field on M.

Suppose there is a point $x \in M$, a chart (U, ϕ) of M at x such that $X_{\mid U}$ is biholomorphically conjugated by ϕ, to a monomial λ - resonant vector field

$$
X_{U}=a . z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}=a z^{p} \frac{\partial}{\partial z_{s}}
$$

where $a \in \mathbb{C}^{*}, p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N}$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ with $\lambda_{k} \neq 0, \forall k=1, \ldots, N$ such that $\lambda_{s}=\langle p, \lambda\rangle$.

If Z is a holomorphic vector field on M such that $\phi_{*}\left(Z_{\mid U}\right)=Z_{U}=\sum_{j=1}^{N} Z_{U}^{j} \frac{\partial}{\partial z_{j}}$ satisfies the condition : $\forall j=1, \ldots, N$

$$
\frac{1}{k_{1}!\ldots k_{N}!} \frac{\partial^{k_{1}+\ldots+k_{N}} Z_{U}^{j}}{\partial z_{1}^{k_{1}} \ldots \partial z_{N}^{k_{N}}}(0, \ldots, 0)=0
$$

for any $\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ with $k_{i}<p_{i}$ for some i, then, in the sub-Lie algebra of holomorphic vector fields Y on U such that $L_{\phi_{*}(Y)}\left(z^{p}\right)=0$, there exists a holomorphic vector field Y such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

Proof. Using the conjugation the equation $\left[X_{\mid U}, Y\right]=Z_{\mid U}$ is equivalent to

$$
\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)
$$

Set $\phi_{*}(Y)=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ and $\phi_{*}\left(Z_{\mid U}\right)=\sum_{j=1}^{N} Z^{j} \frac{\partial}{\partial z_{j}}$.
Then

$$
\begin{aligned}
{\left[X_{U}, \phi_{*}(Y)\right] } & =\left[a z^{p} \frac{\partial}{\partial z_{s}}, \phi_{*}(Y)\right] \\
& =a z^{p}\left[\frac{\partial}{\partial z_{s}}, \phi_{*}(Y)\right]-a\left(\left(\phi_{*}(Y)\right) \cdot z^{p}\right) \frac{\partial}{\partial z_{s}} \\
& =a z^{p} \sum_{j=1}^{N}\left[\frac{\partial}{\partial z_{s}}, Y^{j} \frac{\partial}{\partial z_{j}}\right]-a\left(\left(\phi_{*}\left(Y_{\mid U_{i}}\right)\right) \cdot z^{p}\right) \frac{\partial}{\partial z_{s}} \\
& =\sum_{j=1}^{N} a z^{p} \frac{\partial Y^{j}}{\partial z_{s}} \frac{\partial}{\partial z_{j}}-a\left(\left(\phi_{*}(Y)\right) \cdot z^{p}\right) \frac{\partial}{\partial z_{s}}
\end{aligned}
$$

So equation $\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)$ is equivalent to the system

$$
\begin{cases}a z^{p} \frac{\partial Y^{j}}{\partial z_{s}} & =Z^{j}, \forall j \neq s \\ a z^{p} \frac{\partial Y^{s}}{\partial z_{s}}-a\left(\left(\phi_{i *}\left(Y_{\mid U_{i}}\right)\right) \cdot z^{p}\right) & =Z^{s}\end{cases}
$$

i.e. to the system
$(S 4) \begin{cases}L_{X_{U_{i}}}\left(Y^{j}\right) & =Z^{j}, \forall j \neq s \\ \left.L_{X_{U_{i}}}\left(Y^{s}\right)-a L_{\phi_{i *}\left(Y_{\mid U_{i}}\right)}\right)\left(z^{p}\right) & =Z^{s}\end{cases}$
If $L_{\phi_{i *}(Y)}\left(z^{p}\right)=0$, then system $(S 4)$ becomes the system of continuous cohomological equations $L_{X_{U}}\left(Y^{j}\right)=Z^{j}, \forall j=1, \ldots, N$.

By theorem 3.1, there exists a holomorphic function Y^{j} on $\phi(U)$ such that $L_{X_{U}}\left(Y^{j}\right)=Z^{j}$.
Finally we can conclude that there exists a holomorphic vector field $Y^{U}=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ on $\phi(U)$ such that $\left[X_{U}, Y^{U}\right]=\phi_{*}\left(Z_{\mid U}\right)$. So there exists a holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

More generally, we have :

Theorem 3.3. Let M be a complex manifold of complex dimension N. Let X be a holomorphic vector field on M.

Suppose there is a point $x \in M$, a chart (U, ϕ) of M at x such that $X_{\mid U}$ is biholomorphically conjugated by ϕ, to a monomial λ-resonant vector field

$$
X_{U}=a . z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}=a z^{p} \frac{\partial}{\partial z_{s}}
$$

where $a \in \mathbb{C}^{*}, p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N}$ with $p_{s} \geq 1$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ with $\lambda_{k} \neq 0$, $\forall k=1, \ldots, N$ such that $\lambda_{s}=\langle p, \lambda\rangle$.

If Z is a holomorphic vector field on M such that, $\phi_{*}\left(Z_{\mid U}\right)=Z_{U}=\sum_{j=1}^{N} Z_{U}^{j} \frac{\partial}{\partial z_{j}}$ satisfies the condition : $\forall j=1, \ldots, N$

$$
\frac{1}{k_{1}!\ldots k_{N}!} \frac{\partial^{k_{1}+\ldots+k_{N}} Z_{U}^{j}}{\partial z_{1}^{k_{1}} \ldots \partial z_{N}^{k_{N}}}(0, \ldots, 0)=0
$$

for any $\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ with $k_{i}<p_{i}$ for some i, and $k_{s}<p_{s}+1$, then, there exists a holomorphic vector field Y such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

Proof. Using the conjugation the equation $\left[X_{\mid U}, Y\right]=Z_{\mid U}$ is equivalent to

$$
\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)
$$

As in the proof of theorem 3.2, if we set
$\phi_{*}(Y)=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ and $\phi_{*}\left(Z_{\mid U}\right)=\sum_{j=1}^{N} Z^{j} \frac{\partial}{\partial z_{j}}$, then we get the system

$$
(S 4) \begin{cases}L_{X_{U_{i}}}\left(Y^{j}\right) & =Z^{j}, \forall j \neq s \\ L_{X_{U_{i}}}\left(Y^{s}\right)-a L_{\phi_{i *}\left(Y_{\mid U_{i}}\right)}\left(z^{p}\right)=Z^{s}\end{cases}
$$

By theorem 3.1, for any $j \neq s$ we can find a holomorphic function Y^{j} on $\phi(U)$ such that $L_{X_{U}}\left(Y^{j}\right)=Z^{j}$.

If $j=s$, we have the equation $L_{X_{U}}\left(Y^{s}\right)-a L_{\phi_{i *}(Y)}\left(z^{p}\right)=Z^{s}$. Wich is equivalent to

$$
a z^{p} \frac{\partial Y^{s}}{\partial z_{s}}-a \sum_{j=1}^{N} Y^{j} \frac{\partial z^{p}}{\partial z_{j}}=Z^{s}
$$

So

$$
\begin{equation*}
z^{p} \frac{\partial Y^{s}}{\partial z_{s}}-\frac{\partial z^{p}}{\partial z_{s}} Y^{s}=\sum_{j=1, j \neq s}^{N} Y^{j} \frac{\partial z^{p}}{\partial z_{j}}+\frac{Z^{s}}{a} \tag{S5}
\end{equation*}
$$

As $j \neq s$, if we set Γ^{s} the right side of this equation, it is a holomophic function already known.

Let's use the power series expansion of Y^{s} and Γ^{s} on some neighbourhood of 0 :

$$
Y^{s}=\sum_{|m|=0}^{+\infty} a_{m}^{s} z^{m} \text { and } \Gamma^{s}=\sum_{|m|=0}^{+\infty} \gamma_{m}^{s} z^{m}
$$

with $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}^{N}, z^{m}=z_{1}^{m_{1}} \ldots z_{N}^{m_{N}}$, and $a_{m}^{s}, \gamma_{m}^{s} \in \mathbb{C}$.
Then the product of equation $(S 5)$ by z_{s} gives :

$$
z^{p} \sum_{m_{s} \geq 1,|m| \geq 1} m_{s} a_{m}^{s} z^{m}-p_{s} z^{p} \sum_{|m|=0}^{+\infty} a_{m}^{s} z^{m}=z_{s} \sum_{|m|=0}^{+\infty} \gamma_{m}^{s} z^{m}
$$

So

$$
\sum_{m_{s} \geq 1,|m| \geq 1} m_{s} a_{m}^{s} z^{m+p}-p_{s} \sum_{|m|=0}^{+\infty} a_{m}^{s} z^{m+p}=\sum_{|m|=0}^{+\infty} \gamma_{m}^{s} z_{1}^{m_{1}} \ldots z_{s-1}^{m_{s-1}} z_{s}^{m_{s}+1} z_{s+1}^{m_{s+1}} \ldots z_{N}^{m_{N}}
$$

Therefore

$$
\begin{gathered}
\sum_{m_{s} \geq p_{s}+1, m_{i} \geq p_{i}, i \neq s}\left(m_{s}-p_{s}\right) a_{m-p}^{s} z^{m}-p_{s} \sum_{m_{i} \geq p_{i}}^{+\infty} a_{m-p}^{s} z^{m} \\
=\sum_{m_{s} \geq 1, m_{i} \geq 0, i \neq s}^{+\infty} \gamma_{m_{s}-1, m_{i}}^{s} z^{m}
\end{gathered}
$$

So we have the necessary condition $\gamma_{m_{s}-1, m_{i}}^{s}=0$ if $m_{s}<p_{s}+1$ and $m_{i}<p_{i}$, for $i \neq s$. When $m_{s} \geq p_{s}+1$ and $m_{i} \geq p_{i}, i \neq s$

$$
\left(m_{s}-2 p_{s}\right) a_{m-p}^{s}=\gamma_{m_{s}-1, m_{i}}^{s} .
$$

Which gives for $m_{s} \geq 1$ and $m_{i} \geq 0, i \neq s$

$$
\left(m_{s}-p_{s}\right) a_{m}^{s}=\gamma_{m_{s}+p_{s}+1, m_{i}+p_{i}}^{s} .
$$

Therefore, if $m_{s}>p_{s}$ then

$$
a_{m}^{s}=\frac{1}{m_{s}-p_{s}} \gamma_{m_{s}+p_{s}+1, m_{i}+p_{i}}^{s} .
$$

So

$$
\left|a_{m}^{s}\right| \leq\left|\gamma_{m_{s}+p_{s}+1, m_{i}+p_{i}}^{s}\right| .
$$

Since the function Γ^{s} is holomorphic, the power series $\sum_{|m|=0}^{+\infty} \gamma_{m}^{s} z^{m}$ is absolutely convergent on an open polydisk with center 0 . So the power series $\sum_{|m|=0}^{+\infty} a_{m}^{s} z^{m}$ is absolutely convergent on this open polydisk where it defines a unique holomorphic function Y^{s}.

Therefore there exists a holomorphic function Y^{s} on $\phi(U)$ solution of the equation $L_{X_{U}}\left(Y^{s}\right)-$ $a L_{\phi_{*}\left(Y_{\mid U}\right)}\left(z^{p}\right)=Z^{s}$.

Finally we can conclude that there exists a holomorphic vector field $Y^{U}=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ on $\phi(U)$ such that $\left[X_{U}, Y^{U}\right]=\phi_{*}\left(Z_{\mid U}\right)$. So there exists a holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

4 Case of a $\boldsymbol{\lambda}$-resonant vector field

Definition 4.1. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{C}^{N}$ such that $\lambda_{k} \neq 0, \forall k=1, \ldots, N$. A λ-resonant vector field on \mathbb{C}^{N} is a vector field of the form

$$
X=\sum a_{p}^{s} \cdot z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}=\sum a_{p}^{s} \cdot z^{p} \frac{\partial}{\partial z_{s}}
$$

where $a_{p}^{s} \in \mathbb{C}$ and $\lambda_{s}=\langle p, \lambda\rangle$ with $p=\left(p_{1}, \ldots, p_{N}\right) \in \mathbb{N}^{N}$. The sum runs over the sequences (s, p) such that $\lambda_{s}=\langle p, \lambda\rangle$.

For a λ-resonant vector field we get :

Theorem 4.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic vector field on M.

Suppose there is a centered chart (U, ϕ) of M such that $X_{\mid U}$ is biholomorphically conjugated by ϕ, to a λ-resonant vector field

$$
X_{U}=\sum a_{p}^{s} \cdot z_{1}^{p_{1}} \ldots z_{N}^{p_{N}} \frac{\partial}{\partial z_{s}}=\sum a_{p}^{s} . z^{p} \frac{\partial}{\partial z_{s}}
$$

where $p_{i} \geq 1, \forall i=1, \ldots N$ and $\left|m_{j} a_{p}^{j}-\left(m_{s}-p_{s}\right) a_{p}^{s}\right| \leq 1$ for $j \neq s,\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}^{N}$.
If Z is a holomorphic vector field on M such that $\phi_{*}\left(Z_{\mid U}\right)=Z_{U}=\sum_{j=1}^{N} Z_{U}^{j} \frac{\partial}{\partial z_{j}}$ satisfies the condition : $\forall j=1, \ldots, N$

$$
\frac{1}{k_{1}!\ldots k_{N}!} \frac{\partial^{k_{1}+\ldots+k_{N}} Z_{U}^{j}}{\partial z_{1}^{k_{1}} \ldots \partial z_{N}^{k_{N}}}(0, \ldots, 0)=0
$$

for any $\left(k_{1}, \ldots, k_{N}\right) \in \mathbb{N}^{N}$ with $k_{i}<p_{i}-1$ for some i, then there exists a holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

Proof. Equation $\left[X_{\mid U}, Y\right]=Z_{\mid U}$ is equivalent to $\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)$.
Set $\phi_{*}(Y)=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$.
As $s \in\{1, \ldots, N\}$, we can assume that $a_{p}^{s}=0$ when there is no p such that $\lambda_{s}=\langle p, \lambda\rangle$.
Then

$$
\begin{aligned}
{\left[X_{U}, \phi_{*}(Y)\right] } & =\sum_{s=1}^{N} a_{p}^{s}\left[z^{p} \frac{\partial}{\partial z_{s}}, Y\right] \\
& =\sum_{s=1}^{N} a_{p}^{s} z^{p}\left[\frac{\partial}{\partial z_{s}}, Y\right]-\sum_{s=1}^{N} a_{p}^{s}\left(Y . z^{p}\right) \frac{\partial}{\partial z_{s}} \\
& =\sum_{s=1}^{N} a_{p}^{s} z^{p} \sum_{j=1}^{N}\left[\frac{\partial}{\partial z_{s}}, Y^{j} \frac{\partial}{\partial z_{j}}\right]-\sum_{s=1}^{N} a_{p}^{s}\left(Y . z^{p}\right) \frac{\partial}{\partial z_{s}} \\
& =\sum_{s=1}^{N} a_{p}^{s} z^{p} \sum_{j=1}^{N} \frac{\partial Y^{j}}{\partial z_{s}} \frac{\partial}{\partial z_{j}}-\sum_{s=1}^{N} a_{p}^{s}\left(L_{Y}\left(z^{p}\right)\right) \frac{\partial}{\partial z_{s}} \\
& =\sum_{s=1}^{N}\left(\sum_{j=1}^{N} a_{p}^{j} z^{p} \frac{\partial Y^{s}}{\partial z_{j}}\right) \frac{\partial}{\partial z_{s}}-\sum_{s=1}^{N} a_{p}^{s}\left(L_{Y}\left(z^{p}\right)\right) \frac{\partial}{\partial z_{s}}
\end{aligned}
$$

$\operatorname{Set} \phi_{*}\left(Z_{\mid U}\right)=\sum_{s=1}^{N} Z^{s} \frac{\partial}{\partial z_{s}}$. Then equation $\left[X_{U}, \phi_{*}(Y)\right]=\phi_{*}\left(Z_{\mid U}\right)$ is equivalent to

$$
\sum_{j=1}^{N} a_{p}^{j} z^{p} \frac{\partial Y^{s}}{\partial z_{j}}-a_{p}^{s} \sum_{j=1}^{N} Y^{j} \frac{\partial\left(z^{p}\right)}{\partial z_{j}}=Z^{s}
$$

Let's use the power series expansion of Y^{s} and Z^{s} on some neighbourhood of 0 :

$$
Y^{s}=\sum_{|m|=0}^{+\infty} b_{m}^{s} z^{m} \text { and } Z^{s}=\sum_{|m|=0}^{+\infty} c_{m}^{s} z^{m}
$$

with $m=\left(m_{1}, \ldots, m_{N}\right) \in \mathbb{N}^{N}, z^{m}=z_{1}^{m_{1}} \ldots z_{N}^{m_{N}}$, and $b_{m}^{s}, c_{m}^{s} \in \mathbb{C}$.
Then

$$
\begin{aligned}
& \sum_{j=1}^{N} a_{p}^{j} z^{p} \sum_{|m|=0}^{+\infty} m_{j} b_{m}^{s} z_{1}^{m_{1}} \ldots z_{j-1}^{m_{j-1}} z_{j}^{m_{j}-1} z_{j+1}^{m_{j+1}} \ldots z_{N}^{m_{N}} \\
& -a_{p}^{s} \sum_{j=1}^{N} p_{j} z_{1}^{p_{1}} \ldots z_{j-1}^{p_{j-1}} z_{j}^{p_{j}-1} z_{j+1}^{p_{j+1}} \ldots z_{N}^{p_{N}} \sum_{|m|=0}^{+\infty} b_{m}^{j} z^{m} \\
& =\sum_{|m|=0}^{+\infty} c_{m}^{s} z^{m}
\end{aligned}
$$

So

$$
\sum_{|m|=0}^{+\infty} z^{m} \sum_{j=1}^{N}\left(m_{j} a_{p}^{j} b_{m}^{s}-p_{j} a_{p}^{s} b_{m}^{j}\right) z_{1}^{p_{1}} \ldots z_{j-1}^{p_{j-1}} z_{j}^{p_{j}-1} z_{j+1}^{p_{j+1}} \ldots z_{N}^{p_{N}}=\sum_{|m|=0}^{+\infty} c_{m}^{s} z^{m}
$$

Therefore

$$
\begin{aligned}
& \sum_{|m|=0}^{+\infty} \sum_{j=1}^{N}\left(m_{j} a_{p}^{j} b_{m}^{s}-p_{j} a_{p}^{s} b_{m}^{j}\right) z_{1}^{p_{1}+m_{1}} \ldots z_{j-1}^{p_{j-1}+m_{j-1}} z_{j}^{p_{j}+m_{j}-1} z_{j+1}^{p_{j+1}+m_{j+1}} \ldots z_{N}^{p_{N}+m_{N}} \\
& =\sum_{|k|=0}^{+\infty} c_{k}^{s} z^{k}
\end{aligned}
$$

If $k \neq\left(p_{1}+m_{1}, \ldots, p_{j-1}+m_{j-1}, p_{j}+m_{j}-1, p_{j+1}+m_{j+1}, \ldots, p_{N}+m_{N}\right)$, then $c_{k}^{s}=0$.
If $k=\left(p_{1}+m_{1}, \ldots, p_{j-1}+m_{j-1}, p_{j}+m_{j}-1, p_{j+1}+m_{j+1}, \ldots, p_{N}+m_{N}\right)$, then

$$
m_{j} a_{p}^{j} b_{m}^{s}-p_{j} a_{p}^{s} b_{m}^{j}=c_{k}^{s}
$$

When $j=s$, then $\left(m_{s}-p_{s}\right) a_{p}^{s} b_{m}^{s}=c_{k}^{s}$.
As $a_{p}^{s} \neq 0$, if $m_{s}=p_{s}$, then $c_{k}^{s}=0$, and we may take $b_{m}^{s}=0$.
If $m_{s} \neq p_{s}$, then

$$
b_{m}^{s}=\frac{c_{k}^{s}}{\left(m_{s}-p_{s}\right) a_{p}^{s}}
$$

So $\left|b_{m}^{s}\right| \leq \frac{\left|c_{k}^{s}\right|}{A}$ with $A=\min \left|a_{p}^{s}\right|$.
When $j \neq s$, then $p_{j} a_{p}^{s} b_{m}^{j}=m_{j} a_{p}^{j} b_{m}^{s}-c_{k}^{s}$.
As $p_{j} \geq 1$ and $a_{p}^{s} \neq 0$, then

$$
b_{m}^{j}=\frac{m_{j} a_{p}^{j} b_{m}^{s}-c_{k}^{s}}{p_{j} a_{p}^{s}}=\frac{\left(m_{j} a_{p}^{j}-\left(m_{s}-p_{s}\right) a_{p}^{s}\right) c_{k}^{s}}{\left(m_{s}-p_{s}\right) p_{j}\left(a_{p}^{s}\right)^{2}}
$$

So if $\left|m_{j} a_{p}^{j}-\left(m_{s}-p_{s}\right) a_{p}^{s}\right| \leq 1$, then $\left|b_{m}^{j}\right| \leq \frac{\left|c_{k}^{s}\right|}{A^{2}}$.
Since the function Z^{s} is holomorphic, the power series $\sum_{|m|=0}^{+\infty} c_{m}^{s} z^{m}$ is absolutely convergent on an open polydisk with center 0 . So the power series $\sum_{|m|=0}^{+\infty} b_{m}^{s} z^{m}$ is absolutely convergent on this open polydisk where it defines a unique holomorphic function Y^{s}.

Finally we can conclude that there exists a holomorphic vector field $Y^{U}=\sum_{j=1}^{N} Y^{j} \frac{\partial}{\partial z_{j}}$ on $\phi(U)$ such that $\left[X_{U}, Y^{U}\right]=\phi_{*}\left(Z_{\mid U}\right)$. So there exists a holomorphic vector field Y on U such that $\left[X_{\mid U}, Y\right]=Z_{\mid U}$.

References

[1] V.I. ARNOLD. Geometrical Methods in the Theory of Ordinary Differential Equations. Springer-Verlag New York. 1983.
[2] M. BENALILI, A. LANSARI. Global Stability of Dynamic Systems of High Order. SIGMA, 2007, Vol 3, 077.
[3] A. EL KACIMI and T. SOHOU. Sur le problème additif de Cousin basique. Proyecciones Revista de Matematica, Vol. 22 N3 (2003) pp. 243-271. Antofagasta Chile.
[4] L. FLAMINIO, G. FORNI. On the cohomological equation for nilflows. Journal of Modern Dynamics 1 (1) 2007, 37-60.
[5] G. FORNI. The cohomological equation for area-preserving flows on compacts surfaces. Electronic Research Announcements of the AMS. Vol 1. Issue 3, (1995), 114-123.
[6] A. HAEFLIGER. Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds. Compositio Math. 55 (1985), 241-251.
[7] A. KOCSARD. Cohomologically rigid vector fields : the Katok conjecture in dimension 3. Ann. I. H. Poincaré (C) Non linear Analysis. Vol 26 Issue 4 (2009), 1165-1182.
[8] J. J. LOEB, M. NICOLAU. Holomorphics flows and complex structures on products of odd dimensional spheres. Math. Ann. 306 (1996), 781-817.
[9] M. SPIVAK. A comprehensive introduction to Differential Geometry. Vol 1. Second Edition. Publish or Perish, Inc. Berkeley 1979.
[10] T. SOHOU, G. MAMADOU. Equation cohomologique pour un champ de vecteurs λ-résonant. Africa Mathematics Annals (AFMA). Vol 4 (2014), pp 65-80.
[11] A. ZAJTZ. Some division theorems for vector fields. Ann. Polon. Math. 58 (1993), 19-28.

Author information

Toussaint SOHOU, UFR Mathematics and informatic, University Félix HOUPHOUËT-BOIGNY - Abidjan Cocody, 22 BP 582 ABIDJAN 22, CÔTE D'IVOIRE..
E-mail: sohoutous@yahoo.fr

```
Received: 2021-12-03
Accepted: 2023-08-23
```

