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Abstract In this paper, we investigate the resolution of the equation [X,Y] = Z in the Lie
algebra of vector fields on a manifold M, for X and Z both given. We give a local solution on
a complex manifold M when X is a diagonal A—resonant vector field, when X is a monomial
A—resonant vector field, and when X is a A—resonant vector field.

1 Introduction

The problem we are interested in is the following : if X and Z are given vector fields on a
manifold M, is it possible to find a vector field Y on M such that the Lie bracket [X,Y] = Z ?

If X is a C'™ vector field on a differential manifold M and x( a point of M with X (z) # 0,
then there is a coordinate system (2!, ...,2N) of M (where N = dim M) on an open neighbor-
hood U of z( such that X = -%; on U ([ ] p-205). So if Z is a C'*° vector field on M, there exists

on U a vector field Y = Z Y’“ + defined by (using locally the same notation),

Z1

Yk(xl,...,xN) :/ Zk(t,xz,...,l’]v)dt

[e3

Vk=1,...,N, where Z = Z Z* 52 on U, such that [X,Y] = Z.

Therefore if z is a regular pomt of X, then equation [X,Y] = Z has a solution on a neigh-
borhood of x.

Let (¢;) be the flow generated by X on a neighborhood of a singular point and (¢;).Y the
transportation of Y along the flow (¢;). Then locally

(X, Y] = Jim - (¥ — (60).7).

t—0 ¢
If we set v(t) = —(¢¢)«Y, then

L) =/(0) = tim O

el = |X,Y]|.
dt |t=0 t—0 [X, Y]

So we are looking for a vector field Y whose transportation (¢;).Y along the flow (¢;)
generated by X fulfills
d

e = 2.

Among the works done to solve this equation, we have [11], [2].

In this note, we give a local solution of this equation on a complex manifold M when X is a
diagonal A-resonant vector field, when X is a monomial A-resonant vector field and finally when
X is a A-resonant vector field.
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Let M be a complex manifold of complex dimension N. A holomorphic vector field on M is
a section X : M — (T'M)"0 of the holomorphic tangent bundle over M such that for any point
p € M,if (2!, ..., 2V) is a local holomorphic coordinate system of M on an open neighborhood
U of p,

ol B
Xp = ZXk(p)ik
k=1 ale

where X!,..., X~ : U — C are holomorphic functions.

The following definitions are in [1], [6], [8].
A vector A = (Af,...,Ax) € C¥ such that A\, # 0, Vk = 1,..., N is said to be resonant if
there exits s € {1,..., N} and p = (pi, ..., pn) € NV \ {0} satisfying the relation

N
Ao = (P, A) =Y i
k=1

N
with Z pi > 2.
k=1

N
This relation is called an additive resonance relation of order |p| = >_ py.
k=1

Remark 1.1. For example the relation A\; + Ay 4+ 2A3 = 0 gives Ay = A\ + 2\, + 2)A3 sois an
additive resonance relation of order 5.
But the relation 2\; + 7\, = 5)\5 is not an additive resonance relation.

Let A = (A1, ..., A\y) € CV such that \, # 0,Vk =1,..., N.
An additive monomial \—resonant vector field on C" is a holomorphic vector field of the
form

0
Pi PN
a.zy ...2
1 N 825

where z1, ..., zy are coordinates in CV, a € C and p = (py, ..., pn) € NV \ {0} satisfying the
additive resonance relation

N
Ao = (0, X) =D pee.
e

Notice that a multiplicative monomial A—resonant vector field may be defined, but we will
only deal with the additive case.
A monomial A—resonant vector field is said diagonal if it is of the form

0
azg—

0z,

i.e. is associated to the trivial resonance relation Ay = (p, A\) where p = (p1,...,py) With p;, =
0rs (Kronecker symbol), Vk =1, ..., N.

A A—resonant vector field on CV is a sum of monomial A—resonant vector fields.

For instance the diagonal vector field

N B
Xo = N2l ——
0 kz:;kkazk

is A—resonant.
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2 Case of a diagonal A\—resonant vector field

Definition 2.1. [1] A vector A = (), ..., A\x) € C¥ is said to be of type (4, §) if there exists real
constants A > 0 and 6 > O such that forany j = 1,..., N,

A
A= (m, N =2 —5
m|

N
for allm = (my,...,my) € NV with |m| > 2 where |m| = 3 my.
k=1

We then get the following result :

Theorem 2.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic
vector field on M.

Suppose there is a point x € M, a chart (U, ¢) of M at x such that Xy is biholomorphically
conjugated by ¢, to a diagonal A\— resonant vector field

ad 9
XU = Z AkaT%
k=1

with A\, # 0 forallk =1,...,N, and A = (A1, ..., \y) € CV is of type (A, 6).
Then for any holomorphic vector field Z on M such that ¢..(Z|) is without linear part, there
exists a holomorphic vector field Y on U such that [X |y, Y] = Zy.

Proof. Using the conjugation the equation [X|;;,Y] = Z|y is equivalent to [Xy, ¢.(Y)] =
o+(Zyyr)-

N N
Set ¢.(Y) = > Y752 and ¢.(Zy) = 3 Z7 52 Then
j=1 ! j=1 !

M=

(X, 6.(N)] = 3 Melangzy (Vo))

=
I
—_

N
Nenlgi 0« (V)] = 32 M@ (Yio)-2) 525

I
M=z

Sl
Il
-

N N e} e X k_0
= Z )\ka Z[%7Y777] — Z )\kY RN
k=1 j=1 k=1
N N . N
= Y ez > 20 )\ vRO
k<k 0z, 0z; k Ozp
k=1 j=1 k=1

So
N N ;
oY’ 0
[(Xu, ¢:(Y)] = Z(Z /\kzkaizk - )\jyj)ajj-

Then equation [ X/, ¢.(Y)] = ¢« (Z)y) is equivalent to the system

N .
Y ‘ 4
> Mms——NY =2/, Yj=1,.,N
el 8zk

and therefore to the system Lx, (Y?) — \;Y7 = ZJ, Vj = 1,..,N, where Lx, is the Lie
derivative along the vector field Xy .
Let’s use the power series expansion of Y7 and Z7 on some neighbourhood of 0 :

+o00o +o0o
Y7 = Z al 2™ and Z7 = Z bl 2"

|m|=0 |m|=0
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withm = (my,...,my) € NV, 2™ = 2" 20" and @/, , bJ, € C.
Then
+o00
Lx, (Y7) Z ka)\k al, 2™ = Z (m, Ay al 2™,
|m|=0 k=1 |m|=0

Therefore equation Lx,, (Y7) — \;Y7 = Z7 is equivalent to

(/\j — (m, )‘>)a£n = _b]m

If m = 0, then
R
ay = —)\jo.
So
bj
Jl e T
= Tmin_ |\
1<k<N

If |[m| = 1, then b, = 0 so we can take a?, = 0.
If A= (A, ..., An) is of type (4, 9), then forall j = 1,..., N

Ay — fm )| = A
il

for any m € N¥ with |m| > 2, where A > 0 and 6 > 0. Then

B Uy L A
YRV R S

|a?

) too
Since the function Z7 is holomorphic, the power series > b/ 2™ is absolutely convergent on
|m|=0

+oo .

an open polydisk with center 0. So the power series > aZ, 2™ is absolutely convergent on this
|m|=0

open polydisk where it defines a unique holomorphic function Y.

Finally we can conclude that there exists a unique holomorphic vector field YV = Z yi 2 P2
7=1
on ¢(U ) such that [Xy, YY] = ¢.(Zy). So there exists a unique holomorphic vector field Y on
U such that [X |/, Y] = Zjy. O

The following theorem gives a sufficient condition for a holomorphic vector field to be con-
jugated to a diagonal vector field.

Theorem 2.3. (Siegel’s theorem [1] p.187) : Let X = " afnzma%s be a holomorphic vector field

on a neighbourhood of 0 in CV, an isolated singular point.
Let My, ..., \n be the eighenvalues of the matrix (af) of the linear part of X.
IfX= (A1,..., \n) € CV is of type (A, ), then there exists a biholomorphism h on a neigh-
borhood of 0 in CV such that
N
0
X = AkZl=—
kz::l k2K 97

i.e. X is biholomorphically conjugated to the diagonal \— resonant vector field
N
0
k=1 k

Using Siegel’s theorem, we get on a complex manifold :
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Proposition 2.4. Let M be a complex manifold of complex dimension N. Let X be a holomorphic
vector field on M.

Suppose there is a point x € M, a chart (U, $) of M centered at x such that X,y is biholo-
morphically conjugated by ¢, to a holomorphic vector field

Xy = Zafnzm 325

on ¢(U) a neighborhood of 0 € CV, an isolated singular point.

Let My, ..., \n be the eighenvalues of the matrix (af) of the linear part of Xy.

Suppose A\ # 0 forallk =1,..,N, and A\ = (A, ..., A\y) € CV is of type (4, 9).

Then for any holomorphic vector field Z on M such that ¢, (Z|U) is without linear part,
there exists a holomorphic vector field Y on U such that [X U Y] =Zy.

Proof. By Siegel’s theorem, if A = (A, ..., \y) € CV is of type (A, ), then a biholomorphism
h on a neighbourhood of 0 in CV such that h, (Xy) = % /\kzk%k exists.

Set 1) = h o ¢. Then X|i; is biholomorphically conjﬁjglated by % to the diagonal A—resonant
vector field XV = ]ﬁl )\kzk% with A\ # O forall k = 1,..., N,and A = (\f,...,Ax) € CV is

of type (A, d).

Therefore, since 1, [X7,Y] = [« (X|v) .9« (Y)], by theorem 2.2, for any holomorphic
vector field Z on M with v, (Z | U) without linear part, we can find a holomorphic vector field Y
on U such that [X|;,Y] = Z;y. O

3 Case of a monomial A\—resonant vector field

On C¥, we consider the monomial A—resonant vector field

0
= azP

0zs 0z,

— P1 PN
X =a.2]"..zy

where a € C*, p = (p1,...,pn) € NV \ {0} and X = (\,..., \y) € CN with A\, # 0, Vk =
1,..., N fulfilling the additive resonance relation

N
Ao =0 N) =) pr.
k=1

In [10] the following result has been established :

Theorem 3.1. [ 10] Let A\ = (\1,...,A\y) € CNsuch that N\, # 0,Vk = 1,...N. Let X =

a.z 2R aizs be a monomial \— resonant vector field on CN, where a € C*,p = (py,...,pn) €

NN\ {0} fulfilling the additive resonance relation

N
Ae = (0, A) = e
k=1

If g is a holomorphic function on CN satisfying the condition

1 8k1+...+kNg
ki!.. . kn! 5Zf‘8z]’i,N (07 70) =0

forany (ky,....kx) € NN with k; < p; for some i, then there exists a holomorphic function f on
CN, (unique up to the consequence of the necessary condition), such that Lx f = g.
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From this we deduce :

Theorem 3.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic
vector field on M.

Suppose there is a point x € M, a chart (U, ¢) of M at x such that Xy is biholomorphically
conjugated by ¢, to a monomial A— resonant vector field

0 0
Xy =a.zl' .. AN — = qazP
1 N 9z, 0z,

where a € C*, p = (p1,...,pn) € NV and X\ = (A1, .., A\y) € CN with A\, # 0, Vk = 1,..., N
such that Ay = (p, \).

N
If Z is a holomorphic vector field on M such that ¢.(Zy) = Zy = 3 ZIJJ% satisfies the
J=1 ’
condition : Vj=1,...N

1 8k1+...+k’NZ[j]

| | ki kn
kil byt 92002y

(0,..,0) =0

for any (ky,....,kn) € NN with k; < p; for some i, then, in the sub-Lie algebra of holomorphic
vector fields Y on U such that Ly (y) (2P) = 0, there exists a holomorphic vector field Y such
that [ Xy, Y| = Zyp.
Proof. Using the conjugation the equation [X U5 Y] = Z)y is equivalent to
[(Xv, 04 (V)] = ¢ (Z1) -
N N
Set ¢, (V) = Y. Y72 and 6. (Ziy) = 3 27 2.
Then

I
Q
I

=

—
N
<
Yo
—_

I

Q
—~
—

<

*
—~
=
S
~—
~—

I\

bS]
~—
Vo
B

So equation (X, ¢, (Y)] = ¢. (Z)iy) is equivalent to the system

azp%—z = 7, Vj#s
a5 —a((¢ie (Yiv)) 2") = 2°
i.e. to the system
L Y’ = ZI,V¥j#s
(54) Xu, ( 5) ) . j#
Lx,, (Y?®) - aLd)i*(Y\U,.) (:!) = Z

If Ly, (v)(2P) = 0, then system (S4) becomes the system of continuous cohomological
equations Ly, (Y7)=Z7,Vj=1,...N.
By theorem 3.1, there exists a holomorphic function Y7 on ¢ (U) such that Lx,, (Y7) = Z7.

N . Pa
Finally we can conclude that there exists a holomorphic vector field YV = Y7 % on
=1 J

j=

¢ (U) such that [Xy,YY] = ¢, (Z)7). So there exists a holomorphic vector field Y on U such
that [X;,Y] = Zy. O

More generally, we have :
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Theorem 3.3. Let M be a complex manifold of complex dimension N. Let X be a holomorphic
vector field on M.

Suppose there is a point x € M, a chart (U, ¢) of M at x such that Xy is biholomorphically
conjugated by ¢, to a monomial A\—resonant vector field

0
= azP

0zs 0z,

where a € C*, p = (p1,...,pn) € NY withp, > Land X = (\1,..., \n) € CN with A\, # 0,
Vk =1,...,N such that \s = (p, \).

N
If Z is a holomorphic vector field on M such that, $,(Z ;) = Zy = Y Z}, 5> satisfies the
_]:1 J

J— P1 PN
Xy =a.2) .25

condition : Vj=1,...N

1 6k1+“'+kNZé
Fil k! 921025y

0,..,0) =0

for any (ki,....kn) € NY with k; < p; for some i, and ks < p, + 1, then, there exists a
holomorphic vector field Y such that [ X\,Y| = Zyp.

Proof. Using the conjugation the equation [X U Y] = Z)y is equivalent to

[Xv, 6. (Y)] = ¢4 (Zv) -
As in the proof of theorem 3.2, if we set

N N
i 9 i 9
0. (V) = ]2:1: Y 92; and ¢, (Z|U) = j§:1 Z7 9z then we get the system

LXU,i (YJ) = 7 Vi Fs
(54) { LXUi (YS) _ an&i* (Y‘Ul) (Zp) = 75

By theorem 3.1, for any j # s we can find a holomorphic function Y7 on ¢ (U) such that
Lx, (Y?) = 74,
If j = s, we have the equation Lx,, (Y*) —aLg, (v (2") = Z°. Wich is equivalent to

) - 0zP
p _ i9% _ s
az o CLZY azj VA
7=1
So
oYs  9zp N 0wz
p _ Vs — yitc 2
(55) = 0z, 0z, ]=lzj:7£s 0z * a

As j # s, if we set I'® the right side of this equation, it is a holomophic function already
known.
Let’s use the power series expansion of Y* and I'* on some neighbourhood of O :

+o0 —+o0
Ye= E a,,z"and I = E o,z

|m|=0 |m|=0
withm = (my,...,my) € NV, 2™ = 2™ 20", and a3, , 73, € C.
Then the product of equation (S5) by z, gives :

+oo +o0o
D s . m D s . m __ s . m
Z g Mgy, 2 — PsZ g a,, 2 = Zs E Y 2

mo>1[m|>1 m|=0 m|=0
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So
+oo +o00o
s .m+p s ,m+p __ s _my Ms—1 _ms+1 _Mst1 mn
E msQa,, 2 — Ps E a,,Z = E Tm?1 %s_1 s Zs+1 2N
ms>1,Im|>1 |m[=0 |m[=0
Therefore
+00
Z (msfps)afn_pzm—ps Z avsn—pzm
ms>ps+1,m;>p;,i#s ™mi>p;

+oo

m

s
’Yms —1,m; z
ms>1,m;>0,i#s

So we have the necessary condition v, .= 0if my <ps + 1 and m; < p;, fori # s.
When mg > ps + 1 and m; > p;,i # s

(ms - 2p6) afn—p = ’Y’rsns—lﬂni'
Which gives for mg; > 1 and m; > 0,7 # s

s __ .8
(mS - pS) Ay, = ’7m3+p5+1,7n7:+pi .

Therefore, if ms > p, then

as _ 1 s
m Mms — Ps Tmstpstlmitpi:
So
S S
‘am‘ < ”Yms+ps+l,mi+p7; :
+oo
Since the function I'* is holomorphic, the power series Y. 3, 2™ is absolutely convergent
|m|=0
+oo
on an open polydisk with center 0. So the power series »_ a? 2™ is absolutely convergent on
|m|=0

this open polydisk where it defines a unique holomorphic function Y*.
Therefore there exists a holomorphic function Y* on ¢ (U) solution of the equation Lx,, (Y*)—

aLd’*(Y\U) (Zp) = Z°.
N
Finally we can conclude that there exists a holomorphic vector field YV = > Y7 % on
j=1 !
¢ (U) such that [ Xy, YY] = ¢, (Z)7). So there exists a holomorphic vector field Y on U such
that [X‘U,Y] = Z|U O

4 Case of a A\—resonant vector field

Definition 4.1. Let A = (\1,...,Ax) € C¥ such that \;, # 0,Vk = 1,.... N. A \—resonant
vector field on CV is a vector field of the form

, 0 0
X = ZG;Z{)]Z%NTZS = Za;.zpafzs

where a5 € C and A\ = (p, \) with p = (p1,...,pn) € N¥. The sum runs over the sequences
(s,p) such that A\; = (p, ).

For a A—resonant vector field we get :
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Theorem 4.2. Let M be a complex manifold of complex dimension N. Let X be a holomorphic
vector field on M.

Suppose there is a centered chart (U, $) of M such that X ; is biholomorphically conjugated
by ¢, to a \— resonant vector field

s 0 s 0
XU - Zap.zf' Z%Naizg = Zap.zpa—zs
where p; > 1, Vi = 1,...N and |mjal — (m, —ps)a;] < lforj#s, (m,..,my) €NV,
N .
If Z is a holomorphic vector field on M such that ¢.(Zy) = Zy = 3 ZJU@% satisfies the
j=1
condition : Vj=1,...N

1 8k1+...+kNZJU

Lokn! 925 9.k
kil byt 920" .0z

0,..,0) =0

for any (ki,....kn) € N with k; < p; — 1 for some i, then there exists a holomorphic vector
field Y on U such that [X|U, Y} =Zu-
Proof. Equation [ X7, Y] = Z;y is equivalent to [ Xy, ¢ (V)] = ¢, (Z)1).
N
Setp, (V)= > VI 2.
j:1 J

As s € {1,..., N}, we can assume that a;, = 0 when there is no p such that Ay = (p, \) .
Then

N
Xv6. (V)] = Ya EEd
SN N
= Z:la;zp [a‘;’va] - ;a; (Ye2) 2
X T o ‘378 X P
N X oyl o _ < . P
= T R - gy (1)
s= j= s=
N N
- 5 (Sar) 2 - Lot
N
Set ¢. (Ziy) = . Z* 52 Then equation [Xy, ¢. (Y)] = ¢. (Z)v) is equivalent to
s=1
N » N
;i ,0Y® ‘ 20 (2P) .
al 2P —al ) YI =73
jzl P 82:]' p; aZj

Let’s use the power series expansion of Y* and Z* on some neighbourhood of O :

+o00 +o00
Ye= Z by 2™ and Z° = Z c 2

[m|=0 |m|=0
withm = (my,...,my) € NV, 2™ = 2" 20V, and b, , 5, € C.
Then
L w m my_1 _mj—1_mj m
J P hS 1 = J J N
leapz ‘Z‘:Omjbmzl w20z a2y
= m|=
N P pict pi—l_pi N &N 4
_ S A 1 j— i i+ N J M
a, ijzl S SRS O DN
J=1 |m|=0
+o00
— Z S m
= ez
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So
+o0 N +o00
m LIRS o S p1 Pj—1 pi—1_Pjn PN __ s . m
E z g (mjaybr, — pjaphy, )2y .z’ 2y 2l Y = cz
[m|=0  j=I |m|=0
Therefore
+o0o0 N
GBS oSBT S P1TT pj—1tm 1 _pj+tmi—1_pj1+m;ii pN+mMN
\%:ozl(mjapbm pjasbl,)z w25 2; £ 2R
m|=0j=
400
= 5 ek
k=0

If k # (pl + mi, o Pji—1 + ms—1,Pj + mj; — 17pj+1 +mj+l7 s DN + mN)» then CZ =0.

If k= (p1+mi,...,pj1 +mj_1,p; + mj — 1,pj1 +mjy1,...,pn + my), then
mjaf,bfn - pja;b’;n =cj.

When j = s, then (ms — ps) apb;, = cf.

As a‘; # 0, if ms = p,, then ¢f, = 0, and we may take b], = 0.
If mg # ps, then

<

b, = —F——.
(ms _ps) ap

m
So [b3,| < %! with A = mina] .
When j # s, then pjaybl, = mjalby, — cj.
Asp; > 1and a, = 0, then

o mja%bfn - (mja% — (ms — ps) a;) c
= —

pja; (ms — ps) pj (CLZ)Z

Soif |mjad — (ms — ps) ag| < 1, then [bJ, | < ‘f;‘.
+oo
Since the function Z*° is holomorphic, the power series Y ¢35 2™ is absolutely convergent
|m|=0
+oo
on an open polydisk with center 0. So the power series »_ b 2™ is absolutely convergent on
|m|=0
this open polydisk where it defines a unique holomorphic function Y*.
N
Finally we can conclude that there exists a holomorphic vector field YV = > Y7 % on
jzl J
¢ (U) such that [Xy,YY] = ¢, (Z;7). So there exists a holomorphic vector field Y on U such
that [X‘U,Y] = ZlU O
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