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Abstract This article study the geometry of conformal semi-slant submersion from a locally
product Riemannian manifold onto a Riemannian manifold. We provide non-trivial examples to
make sure the existence of such submersions. We obtain the integrability conditions and study
the leaves of the geometry of the distributions. Product theorems for the total manifold as well
as for the fibres are also given. Moreover, we give the sufficient conditions for a conformal
semi-slant submersions to be totally geodesic map.

1 Introduction

Let M and B be two Riemannian manifolds. By a Riemannian submersion we mean a C∞-map
π : M → B from M onto B such that π is of maximal rank and π∗ preserves the length of
horizontal vectors i.e., vectors orthogonal to the fibre π−1(q) for any q ∈ B.

The notion of Riemannian submersions between Riemannian manifolds was introduced by
B. O’Neill [24]. In 1967, A. Gray also studied Riemannian submersions independently [15].
Riemannian submersions have many applications in Mathematics and Physics as well. (We
refer to [9],[8],[22]). B. Watson considered Riemannian submersions between almost complex
manifolds and called it almost Hermitian submersions [34]. He has shown that the horizontal
and vertical distributions are invariant under the behavior of the almost complex structure of the
total space.

B. Sahin studied Riemannian submersions from almost Hermitian manifolds to a Riemannian
manifold under the name anti-invariant Riemannian submersion. He assumed that the fibres of
these submersions are anti-invariant under the action of the almost complex structure of the total
space, which in turn implies that the horizontal distribution is not invariant under the action of
the almost complex struture.

It is noted that the geometry of anti-invariant Riemmanian submersions is quite different
from the geometry of almost Hermitian submersions. Almost Hermition submersions are useful
for describing the geometry of base manifolds, anti-invariant submersions are however serve
to determine the geometry of the total manifold. Afterwards, several new submersions from
almost Hermitian manifolds onto a Riemannian manifold are defined according to the conditions
imposed on fibres of such submersions. For the details readers can go through [28], [29], [30].

On the other hand, the horizontally conformal submersions, which are in fact a natural gen-
eralization of Riemannian submersions, were introduced by B.Fuglede [13] and T. Ishihara [21],
separately. The notion of conformal holomorphic submersions, a generalization of holomorphic
submersions were defined by S. Gudmundsson and J. C. Wood [16]. B. Sahin and M. A. Akyol
defined conformal anti-invariant submersions from almost Hermitian manifold onto a Rieman-
nian manifold [2]. In the continuation, M. A. Akyol [6] defined conformal semi-slant submersion
as a generalization of conformal anti-invariant, conformal semi-invariant and conformal slant
submersions. For conformal submersions, see [3], [4], [5].

We now consider semi-slant submersion from locally product Riemannian manifold onto
Riemannian manifold. Conformal semi-slant submersions are abbreviated as CSS submersion
as well as locally product Riemannian manifold as l.p.R. manifold. Section 2 is primarily de-
voted to the summary of known results which will be used in the remaining portion of the paper.
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Section 3 gives the integrability conditions of the distributions involved in the definition of CSS
submersion. Section 4 deals with the geometry of leaves of the distribution and we also men-
tion product theorems for the fibres of the submersion and for the total space as well. Finally
sufficient conditions are given for CSS submersions to be totally geodesic map.

2 Conformal submersions

This section recalls the fundamental prerequisites of the locally product Riemannian (l.p.R.)
manifold and summarizes known results of Riemannian submersions and horizontally confor-
mal submersions which will be used in sequel. Generally, we will be using the terminology of
B. O’Neill [24] which establishes a basic paper on the subject of submersion.

An m-dimensional manifold M equipped with a (1,1) tensor field F such that

F2 = I, (F 6= I)

is called an almost product manifold with almost product structure F . We set

P =
1
2
(I + F), Q =

1
2
(I −F).

Then
P +Q = I, P2 = P, Q2 = Q, PQ = QP = 0, F = P −Q.

Thus, P and Q define two complementary distributions. We can easily see that +1 or −1 are
the only eigenvalues of F . An eigenvector corresponding to the eigenvalue +1 is in P and
eigen vector corresponding to −1is in Q. Thus, if F has eigenvalue +1 of multiplicity p and
eigenvalue −1 of multiplicity q, then the dimension of P is p and that of Q is q. Conversely,
if there exists two complementary distribution P and Q of dimension p and q respectively, in
M where p + q = m and p, q ≥ 1. Then we define an almost product structure F on M by
F = P −Q. An almost product manifold M admitting a Riemannian metric g such that

g(FE,FF ) = g(E,F ), (2.1)

for any vector fields E and F on M, is called an almost product Riemannian manifold (M, g,F).
The manifold (M, g,F) is called a l.p.R. manifold if F is parallel with respect to ∇, i.e.,

∇EF = 0, E ∈ Γ(TM), (2.2)

where ∇ denotes the Levi-Civita connection on M with respect to g [35].

In the theory of submersion, S. Gudmundsson and J. C. Wood introduced horizontally con-
formal submersion which is defined as follows:

Consider a C∞−differential map π : (M, g) → (B, h), where (M, g) and (B, h) are two
Riemannian manifolds. Then, the map π is called horizontally conformal at a point p ∈ M if
(π∗)p maps horizontal space H(Tp(M)) conformally onto T(π∗)pB. That is, (π∗)p is surjective
and for any horizontal vector fields Z,W on M

λ2(p)g(Z,W ) = h((π∗)pZ, (π∗)pW ). (2.3)

In (2.3), λ(p) is called the dilation of the map π at p [15], [34]. Moreover, if (2.3) is satisfied
for all p ∈M , then the map π is called horizontally conformal on M .

Let π : M → B be a submersion. A vector field Z on M is basic if Z is π-related to Z ′ on B
and in this case Z ′ has a unique horizontal lift on M .

The B.O’Neill’s fundamental tensors of a Riemannian submersion, which are represented by
A and T play an important role in submersion theory to that of the second fundamental form of
an immersion. These tensors are defined by

AEF = V∇HEHF +H∇HEVF (2.4)
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TEF = H∇VEVF + V∇VEHF, (2.5)

for any E,F ∈ Γ(TM), where VE and HE represents the vertical and horizontal projections
of E. AE and TE are skew symmetric operators on TM reversing the horizontal and vertical
distributions. It is easily seen that T and A are vertical and horizontal, respectively and satisfy
the following:

Tηξ = Tξη (2.6)

AZW = −AWZ =
1
2
V[Z,W ] (2.7)

for any Z,W ∈ Γ(kerπ∗)⊥ and η, ξ ∈ Γ(kerπ∗). Since T is skew symmetric operator, we note
that π has totally geodesic fibres if and only if T vanishes identically i.e., T ≡ 0.
Thus, from (2.4) and (2.5), we have

∇ηξ = Tηξ + ∇̂ηξ (2.8)

∇ηZ = H(∇ηZ) + TηZ (2.9)

∇Zη = AZη + V∇Zη (2.10)

∇ZW = H(∇ZW ) +AZW, (2.11)

for any Z,W ∈ Γ(kerπ∗)⊥ and η, ξ ∈ Γ(kerπ∗), where ∇̂ηξ = V(∇ηξ). Moreover, if Z is basic,
then H(∇ηZ) = AZη.

For a smooth map π : (M, g) → (B, h) between two Riemannian manifolds (M, g) and
(B, h), the second fundamental form of π is defined by

(∇π∗)(E,F ) = ∇πEπ∗(F )− π∗(∇EF ) (2.12)

for any E,F ∈ Γ(TM), where ∇π is the pullback connection. It is well known that the second
fundamental form is symmetric. Here we mention the following lemma;

Lemma 2.1. [33] Let (M, g) and (B, h) be Riemannian manifolds and suppose that ϕ : M → B
is a smooth map between them.

∇ϕEϕ∗(F )−∇
ϕ
Fϕ∗(E)− ϕ∗([E,F ]) = 0 (2.13)

for any E,F ∈ Γ(TM).

We conclude this section by recalling the following lemma for horizontally conformal sub-
mersion;

Lemma 2.2. [7] Let π : M → B be a horizontally conformal submersion. Then,

(i) (∇π∗)(Z,W ) = Z(lnλ)π∗W +W (lnλ)π∗Z − g(Z,W )π∗(grad lnλ);

(ii) (∇π∗)(η, ξ) = −π∗(Tηξ);

(iii) (∇π∗)(Z, η) = −π∗(∇MZ η) = −π∗(AZη),

for any horizontal vector fields Z,W and vertical fields η, ξ on M .



292 Tanveer Fatima

3 Conformal semi-slant submersion

This section assesses the study of CSS submersions as the total space of the submersions are
l.p.R. manifold. We define the CSS submersions and provide a non-trivial example to assure the
existence of such submersion.

Definition 3.1. Let (M, g,F) be a l.p.R. manifold with the product structure F and (B, h) be a
Riemannian manifold. Consider a horizontally conformal submersion π : (M, g,F) → (B, h).
Then π is called CSS submersion if there is a distribution D ⊆ kerπ∗ such that

kerπ∗ = D ⊕Dθ, J(D) = D, (3.1)

where Dθ is the orthogonal complement of D in kerπ∗ and the angle θ = θ(ξ) between Fξ and
the space (Dθ)p is constant for non-zero ξ ∈ (Dθ)p, p ∈M . The angle θ is called the semi-slant
angle of the submersion.

It can be easily seen that fibers π−1(q), q ∈ B, of the submersion are semi-slant submanifold
of M . (Readers can go through [26] for semi- slant submersions).

Let π be a CSS submersion from a l.p.R. manifold (M, g,F) onto a Riemannian manifold
(B, h). We can easily decompose any η ∈ Γ(kerπ∗) in the following manner;

η = Pη +Qη, (3.2)

where Pη ∈ Γ(D) and Qη ∈ Γ(Dθ) and also

Fη = αη + βη, (3.3)

where αη ∈ Γ(kerπ∗) and βη ∈ Γ((kerπ∗)⊥). Similarly,

FZ = BZ + CZ, (3.4)

for any Z ∈ (kerπ∗)⊥, where BZ ∈ Γ(kerπ∗) and CZ ∈ Γ(kerπ∗)⊥. Then, (kerπ∗)⊥ is
decomposed as

(kerπ∗)⊥ = βDθ ⊕ ν, (3.5)

where ν is the orthogonal complement of βDθ in (kerπ∗)⊥ and invariant under the almost prod-
uct manifold F .

Example 3.2. [2] Every conformal semi-invariant submersion whose total space is l.p.R. mani-
fold is a CSS submersion with the semi-slant angle θ = π

2 .

Consider an Euclidean space R2m with coordinates (u1, u2, . . . , u2m). We can canonically
choose an almost product structure F on R2m as follows:

F
(
a1

∂

∂u1
+ a2

∂

∂u2
+ . . .+ a2m−1

∂

∂u2m−1
+ a2m

∂

∂u2m

)
= a2

∂

∂u1
+ a1

∂

∂u2
+ a4

∂

∂u3

+a3
∂

∂u4
+ . . .+ a2m

∂

∂u2m−1
+a2m−1

∂

∂u2m
, (3.6)

where a1, a2, . . . , a2m are real valued C∞−functions defined on R2m.

Example 3.3. Consider a map π : R8 → R2 such that

π(u1, u2, . . . , u8) = e17
(
u1 − u3√

2
, u4

)
.

Then it follows that

(kerπ∗) =

〈
V1 =

∂

∂u2
, V2 =

1√
2

(
∂

∂u1
+

∂

∂u3

)
, V3 =

∂

∂u5
, V4 =

∂

∂u6
, V5 =

∂

∂u7
, V6 =

∂

∂u8

〉
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and (kerπ∗)⊥ =

〈
H1 =

1√
2

(
∂

∂u1
− ∂

∂u3

)
, H2 =

∂

∂u4

〉
.

Thus, π is a CSS submerion from a l.p.R. manifold (R8, gR8 ,F) to a Riemannian manifold(
R2, gR2

)
with the slant angle θ =

π

4
and λ = e17, where the distribution D and Dθ are

D =

〈
V3 =

∂

∂u5
, V4 =

∂

∂u6
, V5 =

∂

∂u7
, V7 =

∂

∂u8

〉
andDθ =

〈
V1 =

∂

∂u2
, V2 =

∂

∂u1
+

∂

∂u3

〉
,

respectively.

Example 3.4. Consider a map π : R10 → R4 such that

π(u1, u2, . . . , u10) = e8
(
u4 − u6√

2
, u9,

u5 − u7√
2

, u10

)
.

Then the map π is a CSS submersion with the distributions,

D =

〈
V1 =

∂

∂u1
, V2 =

∂

∂u2

〉

Dθ =
〈
V3 =

∂

∂u3
, V4 =

1√
2

(
∂

∂u4
+

∂

∂u6

)
, V5 =

∂

∂u8
, V6 =

1√
2

(
∂

∂u5
− ∂

∂u7

)〉
and (kerπ∗)⊥ =

〈
H1 =

1√
2

(
∂

∂u4
− ∂

∂u6

)
H2 =

∂

∂u9
, H3 =

1√
2

(
∂

∂u5
− ∂

∂u7

)
, H4 =

∂

∂u10

〉
,

with the slant angle θ =
π

4
and λ = e8.

We start with the preliminary results of CSS submersions which will be of future use.

Proposition 3.5. Let π : (M, g,F) → (B, h) be a CSS submersion from a l.p.R. manifold
(M, g,F) onto a Riemannian manifold (B, h). Then

(i) αD = D, (ii) βD = 0, (iii) αDθ ⊂ Dθ, (iv) B(kerπ∗)⊥ = Dθ,

(v) α2 +Bβ = −id, (vi) C2 + βB = −id, (vii) βα+ Cβ = 0, (viii) BC + αB = 0.

Proof. These can easily be obtained with the help of (3.3), (3.4) and (3.5).

For any η, ξ ∈ Γ(kerπ∗), using (2.8), (2.9), (3.3) and (3.4), we have the covariant derivative
of α and β as follows;

(∇ηα)ξ = BTηξ − Tηβξ (3.7)

(∇ηβ)ξ = CTηξ − Tηαξ (3.8)

(∇ηα)ξ = ∇̂ηαξ − α∇̂ηξ (3.9)

(∇ηβ)ξ = Aβξη − β∇̂ηξ, (3.10)

(3.11)

In view of (2.8)-(2.11), (3.3) and (3.4), we have

Lemma 3.6. Let π : (M, g,F) → (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then

(a) AZBW +H∇ZCW = CH∇ZW + βAZW
V∇ZBW +AZCW = BH∇ZW + αAZW,

(b) Tηαξ +Aβξη = CTηξ + β∇̂ηξ
∇̂ηαξ + Tηβξ = BTWηξ + α∇̂ηξ,
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(c) AZαη +H∇ηβξ = CAZη + βV∇Zη
V∇Zαη +AZβη = BAZη + αV∇Zη,

for any η, ξ ∈ Γ(kerπ∗) and Z,W ∈ Γ(kerπ∗)⊥.

The next results give some important relations for semi-slant angle θ. These kind of results
seem to have originated from B. Y. Chen [11].

Proposition 3.7. Let π be a CSS submersion from a l.p.R. manifold (M, g,F) onto a Riemannian
manifold (B, h). Then

α2ξ = cos2 θξ, ξ ∈ Γ(Dθ),

where θ denotes the semi-slant angle of Dθ.

Proof. Since, cos θ =
g(Fξ, αξ)
|Fξ||αξ|

. By using (3.6) and (3.3), we get

cosθ =
g
(
ξ, α2ξ

)
|ξ||αξ|

(3.12)

Also,

cos θ =
|αξ|
|Fξ|

, (3.13)

By using (3.12) and (3.13), we get

cos2 θ =
g
(
ξ, α2ξ

)
|ξ|2

, for any ξ ∈ Γ(Dθ).

Hence, the result follows.

Corollary 3.8. Let π be a CSS submersion from a l.p.R. manifold (M, g,F) onto a Riemannian
manofold (B, h). Then

g(αξ1, αξ2) = cos2 θg(ξ1, ξ2)

g(βξ1, βξ2) = sin2 θg(ξ1, ξ2),

for any ξ1, ξ2 ∈ Dθ.

Proof. Applying (3.6), (3.3) and Proposition 3.7, result follows.

Proposition 3.5 and Proposition 3.7 allow us to state;

Corollary 3.9. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then, there exists a constant k ∈ [0, 1] such that Bβ = kI ,
where k = sin2θ and θ is the semi-slant angle of Dθ.

Following lemma is crucial for our work.

Lemma 3.10. Let (M, g,F) be a l.p.R. manifold and (B, h), a Riemannian manifold and let
π : (M, g,F)→ (B, h) be a CSS submersion. Then

Tαξ1αξ1 = cos2 θTξ1ξ1, for any ξ1 ∈ Γ(Dθ),

if β is parallel with respect to ∇ on Dθ.

Proof. In (3.8), if β is parallel, we get CTξ1ξ2 = Tξ1αξ2, for ξ1, ξ2 ∈ Γ(Dθ). By interchanging
ξ1 and ξ2, we get CTξ2ξ1 = Tξ2αξ1. Therefore,

CTξ1ξ2 − CTξ2ξ1 = Tξ1αξ2 − Tξ2αξ1.

Using (2.6), we get
Tξ1αξ2 = Tξ2αξ1. (3.14)

By replacing ξ2 by αξ1, (3.14) changes to Tξ1α
2ξ1 = Tαξ1αξ1. Immediate from Proposition (3.7),

result follows.
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We proceed now to the main result of this section where we prove the equivalent conditions
for the integrability of the distributions D and Dθ.

Theorem 3.11. Let π : (M, g,F) → (B, h) be a CSS submersion from almost product manifold
(M, g,F) onto a Riemannian manifold (B, h). Then the following conditions are equivalent to
each other;

(a) The distribution D is integrable.

(b) h((∇π∗)(η1, αη2)− (∇π∗)(η2, αη1), π∗βξ) = λ2g(α(∇̂η1αη2 − ∇̂η2αη1), ξ),

(c) β is parallel and (∇̂η1αη2 − ∇̂η2αη1) ∈ Γ(D),

for any η1, η2 ∈ Γ(D) and ξ ∈ Γ(Dθ).

Proof. We note that D is integrable if and only if g([η1, η2], ξ) = 0, for any η1, η2 ∈ Γ(D), ξ ∈
Γ(Dθ) as well as g([η1, η2],W ) = 0, for any W ∈ Γ(kerπ∗)⊥. Since kerπ∗ is always integrable,
we can easily obtain g([η1, η2],W ) = 0. Furthermore, applying (3.6), (2.2), (2.8) and (3.3)

g([η1, η2], ξ) = g(H∇η1αη2, βξ) + g(∇̂η1αη2, αξ)− g(H∇η2αη1, βξ)− g(∇̂η2αη1, αξ).

Meanwhile, Using (3.3) and Lemma 2.2, we get

g([η1, η2], ξ) = λ−2h(−(∇π∗)(η1, αη2) +∇πηπ∗αη2, π∗βξ)− λ−2h(−(∇π∗)(η2, αη1)

+∇πξ π∗αη1, π∗βξ) + g(α(∇̂η1αη2 − ∇̂η2αη1), ξ)

= λ−2h((∇π∗)(η2, αη1)− (∇π∗)(η1, αη2), π∗βξ) + g(α(∇̂η1αη2 − ∇̂η2αη1), ξ).
(3.15)

Hence, (a)⇔ (b) follows.

In addition with Lemma 2.2 and (2.3), (3.15) reduces to

g([η1, η2], ξ) = −g(Tη2αη1 − Tη1αη2, βξ) + g(α(∇̂η1αη2 − ∇̂η2αη1), ξ)

In effect of (3.8) and Proposition 3.5, we easily obtain (a)⇔ (b).

Theorem 3.12. Let (M, g,F) be a l.p.R. manifold and (B, h) a Riemannian manifold and π :
(M, g,F)→ (B, h) be a CSS submersion. Then the following conditions are equivalent to each
other;

(a)Dθisintegrable.

(b)h((∇π∗)(ξ1, αξ2) +∇π∗)(ξ2, αξ1), η) = −λ2g(Tξ1βξ2 + Tξ2βξ1, η),

(c)Tξ1βξ2 − Tξ2βξ1 + α(Tξ1βαξ2 − Tξ2βαξ1) ∈ Γ(Dθ)

for any η ∈ Γ(D) and ξ1, ξ2 ∈ Γ(Dθ).

Proof. For the distributionDθ to be integrable, it is necessary and sufficient that g([ξ1, ξ2],Fη) =
0, as well as g([ξ1, ξ2],W ) = 0, for any ξ1, ξ2 ∈ Γ(Dθ), η ∈ Γ(D) and W ∈ Γ(kerπ∗)⊥. Since
the distribution kerπ∗ is integrable, then we can easily get g([ξ1, ξ2],W ) = 0.

In addition, using (3.6), (2.2), (3.3) and (2.12), we obtain

g([ξ1, ξ2],Fη) = g(∇ξ1αξ2, η) + g(∇ξ1βξ2, η) + g(∇ξ2αξ1, η) + g(∇ξ2βξ1, η).

= λ−2h((∇π∗)(ξ1, αξ2) + (∇π∗)(ξ2, αξ1), η) + g(Tξ1βξ2 + Tξ2βξ1, η),

which gives (a)⇔ (b).
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Alternatively, using (3.6), (2.2) and (3.3) we arrive

g([ξ1, ξ2],Fη) = g(∇ξ1αξ2, η) + g(∇ξ1βξ2, η) + g(∇ξ2αξ1, η) + g(∇ξ2βξ1, η).

Again by using (3.3), we get

g([ξ1, ξ2],Fη) = g(∇ξ1α
2ξ2,Fη) + g(∇ξ1βαξ2,Fη) + g(∇ξ1βξ2, η)

− g(∇ξ2α
2ξ1,Fη)− g(∇ξ2βαξ1,Fη)− g(∇ξ2βξ1, η).

From (2.9) and Proposition (3.7), we get

g([ξ1, ξ2],Fη) = cos2 θg([ξ1, ξ2],Fη) + g(−Tξ2βξ1 + Tξ1βξ2, η) + g(α(Tξ1βαξ2 − Tξ2βαξ1), η),

which implies that

sin2 θg([ξ1, ξ2],Fη) = g(−Tξ2βξ1 + Tξ1βξ2, η) + g(α(Tξ1βαξ2 − Tξ2βαξ1), η).

which gives (a)⇔ (b) as sin2θ is non-zero for all θ ∈
(

0,
π

2

)
.

Meanwhile, we study the integrability of the horizontal distribution (kerπ∗)⊥, whereas it
known that vertical distribution Γ(kerπ∗) is always integrable.

Theorem 3.13. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then the distribution (kerπ∗)⊥ is integrable if and only if

λ−2h(∇πWπ∗(CZ)−∇πZπ∗(CW ), π∗βξ) = g(AWBZ −AZBW − CW (lnλ)Z

+ CZ(lnλ)W + 2g(Z,CW )grad(lnλ), βξ)

− g(α(V∇WBZ − V∇ZBW +AWCZ −AZCW ), ξ)

for any η ∈ Γ(D), ξ ∈ Γ(Dθ) and Z,W ∈ Γ(kerπ∗)⊥.

Proof. For any Z,W ∈ Γ(kerπ∗)⊥ and ξ ∈ Γ(kerπ∗), applying (3.6) and (2.2) and (3.4), we
have

g([Z,W ], ξ) = g(∇ZBW,Fξ) + g(∇ZCW,Fξ)− g(∇WBZ,Fξ)− g(∇WCZ,Fξ).

In view of (2.10), (2.11) and (3.3), preceding equation yields

g([Z,W ], ξ) = g(V∇ZBW − V∇WBZ +AZCW −AWCZ,αξ) + g(H∇ZBW,βξ)
− g(H∇WBZ, βξ) + g(H∇ZCW,βξ)− g(H∇WCZ, βξ).

Again appealing to (2.12), (2.3), (2.10) and Lemma 2.2, we have

g([Z,W ], ξ) = g(V∇ZBW − V∇WBZ +AZCW −AWCZ,αξ)
− g(AZBW,βξ) + g(AWBZ, βξ)

− λ−2h(grad lnλ, Z)h(π∗CW,π∗βξ)− λ−2g(grad lnλ,CW )h(π∗Z, π∗βξ)

+ λ−2g(Z,CW )h(π∗(grad lnλ), π∗βξ) + λ−2h(∇πZπ∗CW,π∗βξ)

+ λ−2g(grad lnλ,W )h(π∗CZ, π∗βξ) + λ−2g(grad lnλ,CZ)h(π∗W,π∗βξ)

− λ−2g(W,CZ)h(π∗(grad lnλ), π∗βξ)− λ−2h(∇πWπ∗CZ, π∗βξ).

Moreover, we take into account that π is CSS submersion we get

g([Z,W ], ξ) = g(AWBZ −AZBW − CW (lnλ)Z + CZ(lnλ)W + 2g(Z,CW )grad lnλ, βξ)

+ g(ξ∇ZBW − V∇WBZ +AZCW −AWCZ,αξ)

− λ−2h(∇πWπ∗CZ −∇πZπ∗CW,π∗βξ), (3.16)

which proves our assertion.
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We call a horizontally conformal submersion is homethetic if the gradient of its dilation λ is
vertical, i.e.,

H(grad(λ) = 0.

Now, we assume (kerπ∗)⊥ is integrable and in addition

h(∇πWπ∗CZ −∇πZπ∗CW,π∗βξ) = λ2{g(AWBZ −AZBW,βξ)
+ g(V∇ZBW − V∇WBZ +AZCW −AWCZ,αξ)}

for any ξ ∈ Γ(kerπ∗) and Z,W ∈ Γ(kerπ∗)⊥. Consequently, (3.16) changes to

g(−g(grad lnλ,CW )Z + g(grad lnλ,CZ)W + 2g(Z,CW )grad lnλ, βξ) = 0. (3.17)

Since βξ ∈ Γ(kerπ∗)⊥ for any ξ ∈ Γ(Dθ), we take W = βξ in (3.17) and obtain

g(grad lnλ,CZ)g(βξ, βξ) = 0.

As a result we get that λ is a constant on Γ(ν). However, if we assume W = CZ in (3.17) for
Z ∈ Γ(ν) it yields

2g(Z,C2Z)g(grad lnλ, βξ) = 2g(Z,Z)g(grad lnλ, βξ) = 0,

which means λ is a constant on Γ(βDθ). Converse can easily be shown on the same lines. On
the whole we state the following result;

Theorem 3.14. Let π be a CSS submersion from a l.p.R. manifold (M, g,F) onto a Riemannian
manifold (B, h). Then any two conditions below imply the third:

(i) kerπ∗ is integrable.

(ii) π is a horizontally homothetic map.

(iii) h(∇πWπ∗CZ −∇πZπ∗CW,π∗βξ) = λ2{g(AWBZ −AZBW,βξ)
+ g(V∇ZBW − V∇WBZ +AZCW −AWCZ,αξ)}

for any ξ ∈ Γ(kerπ∗) and Z,W ∈ Γ(kerπ∗)⊥.

4 Study of leaves of the distributions

This section deals with the geometry of the leaves of the distributions. Also we give some
decomposition theorems for the fibres of the submersion as well as the total manifold. We begin
with the distribtuion D;

Theorem 4.1. Let π be a CSS submersion from a l.p.R. manifold (M, g,F) onto a Riemannian
manifold (B, h). Then, the following three assertions are equivalent to each other;

(a) The distribution D defines a totally geodesic foliation on M.

(b) g(∇̂η1αη2, αξ1) + g(Tη1αη2, βξ1) = 0,

g(∇η1FBZ, η2)− g(Tη1Fη2, CZ) = 0.

(c) h((∇π∗)(η1, αη2), π∗βξ1) = λ2g(∇̂η1αη2, αξ1) and

h((∇π∗)(η1, αη2), π∗CZ) = −λ2g(∇̂η1αBZ + Tη1βBZ, η2),

for any η1, η2 ∈ Γ(D), ξ1 ∈ Γ(Dθ) and Z ∈ Γ(kerπ∗)⊥.
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Proof. The distribution D defines a totally geodesic foliation on M if and only if g(∇η1η2, ξ1) =
0 and g(∇η1η2, Z) = 0 for any η1, η2 ∈ Γ(D), ξ1 ∈ Γ(Dθ) and Z ∈ Γ((kerπ∗)⊥). In view of
(3.6) and (2.2) and Proposition (3.5), we have

g(∇η1η2, ξ1) = g(∇η1Fη2, αξ1) + g(∇η1Fη2, βξ1)

= g(∇̂η1αη2, αξ1) + g(H∇η1αη2, βξ1). (4.1)

Furthermore, using (2.12), we get

g(∇η1η2, ξ1) = g(∇̂η1αη2, αξ1)− λ−2h((∇π∗)(η1, αη2), π∗βξ1). (4.2)

However, using (3.6), (2.2), (2.8) and (3.3), we derive

g(∇η1η2, Z) = g(∇η1Fη2, BZ) + g(∇η1Fη2, CZ)

= −g(η2,∇η1FBZ) + g(H∇η1Fη2, CZ). (4.3)

By appealing to the Definition (3.1) with (2.9), (2.12), we get

g(∇η1η2, Z) = −g(η2, ∇̂η1αBZ)− g(η2, Tη1βBZ)

− λ−2h((∇π∗)(η1, αη2), π∗CZ). (4.4)

Therefore, by the virtue of (4.1 and (4.3) we arrive at (a) ⇔ (b) and with the help of (4.2) and
(4.4), (a)⇔ (c) follows.

In the same manner, we have the following theorem for the distribution Dθ;

Theorem 4.2. Let (M, g,F) be a l.p.R. manifold and (B, h), a Riemannian manifold. Let π :
(M, g,F)→ (B, h) be a CSS submersion. Then, the following three assertions are equivalent to
each other;

(a)The distribution Dθdefines a totally geodesic foliation on M.

(b) g(∇̂ξ1αξ2, η1) + g(Aβξ2ξ1, η1) = 0 and

g(∇ξ1αξ2 + Tξ1βξ2, BZ) + g(Tξ1αξ2 +Aβξ2ξ1, CZ) = 0

(c) h((∇π∗)(ξ1, η1), π∗βξ2) = λ2g(Tξ1αη1, βαξ2) and

h((∇π∗)(ξ1, βαξ2), π∗Z)− h(∇πβξ2
π∗βξ1, π∗FCZ)

= λ2{g(Aβξ2αξ1 + g(βξ1, βξ2)grad lnλ,FCZ) + g(Tξ1βξ2, BZ)},

for any η1, η2 ∈ Γ(D), ξ1, ξ2 ∈ Γ(Dθ) and Z ∈ Γ(kerπ∗)⊥.

Proof. The distributionDθ defines a totally geodesic foliation onM if and only if g(∇ξ1ξ2,Fη1) =
0 and g(∇ξ1ξ2, Z) = 0 for any ξ1, ξ2 ∈ Γ(Dθ), η1 ∈ Γ(D) and Z ∈ Γ(kerπ∗)⊥. By using (3.6),
(2.2) and (3.3) we get

g(∇ξ1ξ2,Fη1) = g(∇ξ1αξ2, η1) + g(∇ξ1βξ2, η1) (4.5)

= g(∇ξ1Fαξ2,Fη1)− g(βξ2,∇ξ1η1)

= g(∇ξ1α
2ξ2,Fη1) + g(∇ξ1ωαξ2, αη1)− g(βξ2,∇ξ1η1).

Moreover, utilizing (2.9), (2.12), (3.3) and Lemma 3.10, we obtain

sin2 θg(∇ξ1ξ2,Fη1) = −g(Tξ1αη1, βαξ2) + λ−2gB((∇π∗)(ξ1, η1), π∗βξ2). (4.6)

Whereas, using (3.6), (2.2), (3.3) and (3.4), expression (4.6) turns to

g(∇ξ1ξ2, Z) = g(∇ξ1αξ2,FZ) + g(∇ξ1βξ2,FZ) (4.7)

= g(∇ξ1α
2ξ2, Z) + g(∇ξ1βαξ2, Z)

+ g(∇ξ1βξ2, BZ) + g(∇βξ2Fξ1,FCZ).



CONFORMAL SEMI-SLANT SUBMERSIONS 299

By using (2.8), (2.9), (2.10), Proposition 3.7 and Lemma 2.2, we arrive at

g(∇ξ1ξ2, Z) = cos2 θg(∇ξ1ξ2, Z) + g(Tξ1βξ2, BZ) + g(Aβξ2αξ1,FCZ)

− λ−2gB((∇π∗)(ξ1, βαξ2), π∗Z)

− g(grad lnλ, βξ2)g(βξ1,FCZ)− g(grad lnλ, βξ1)g(βξ2,FCZ)

+ g(βξ2, βξ1)g(grad lnλ,FCZ) + λ−2gB(∇πβξ2
π∗βξ1, π∗FCZ).

Therefore,

sin2 θg(∇ξ1ξ2, Z) = g(Tξ1βξ2, BZ) + g(Aβξ2αξ1,FCZ)
+ g(βξ2, βξ1)g(Hgrad lnλ,FCZ)

− λ−2{h((∇π∗)(ξ1, βαξ2), π∗Z) + h(∇πβξ2
π∗βξ1, π∗FCZ)}. (4.8)

Thus, from (4.5) and (4.7) we obtain (a) ⇔ (b) whereas (a) ⇔ (c) follows from (4.6) and
(4.8).

We remark that the manifold M = M1 ×M2 is called a usual product of Riemannian man-
ifold if and only if DM1 and DM2 are totally geodesic foliations, where DM1 and DM2 are the
canonical foliations orthogonal to each other.

Immediate from Theorem 4.1 and Theorem 4.2, we have the following corollaries;

Corollary 4.3. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then the fibers of π are locally product manifold if and only
if

(a) g(∇̂η1αη2, αξ1) + g(Tη1αη2, βξ1) = 0,
g(TU1Fη2, CZ) + g(η2,∇η1FBZ) = 0,

(b) g(∇̂ξ1αξ2, η1) + g(Aβξ2ξ1, η1) = 0
g(∇ξ1αξ2 + Tξ1βξ2, BZ) + g(Tξ1αξ2 +Aβξ2ξ1, CZ) = 0

for any η1, η2 ∈ Γ(D), ξ1, ξ2 ∈ Γ(Dθ) and Z ∈ Γ(kerπ∗)⊥.

Corollary 4.4. Let π be a CSS submersion from a l.p.R. (M, g,F) onto a Riemannian manifold
(B, h). Then the fibers of π are locally product manifold if and only if

(a) h((∇π∗)(η1, αη2), π∗βξ1) = λ2g(∇̂η1αη2, αξ1),
h((∇π∗)(η1, αη2), π∗CZ) = −λ2g(∇̂η1αBZ + Tη1βBZ, η2).

(b) h((∇π∗)(ξ1, η1), π∗βξ2) = λ2g(Tξ1αη1, βαξ2),
h((∇π∗)(ξ1, βαξ2), π∗Z)− h(∇πβξ2

π∗βξ1, π∗FCZ)
= λ2{g(Aβξ2αξ1 + g(βξ1, βξ2)grad lnλ,FCZ) + g(Tξ1βξ2, BZ)},

for any η1, η2 ∈ Γ(D), ξ1, ξ2 ∈ Γ(Dθ) and Z ∈ Γ(kerπ∗)⊥.

We now proceed to the necessary and sufficient conditions for the totally geodesciness of the
horizontal distribution (kerπ∗)⊥.

Theorem 4.5. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then, the distributions (kerπ∗)⊥ defines a totally geodesic
foliation on M if and only if

AZCW + V∇ZBW ∈ Γ(Dθ)
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and

λ−2{h(∇πZπ∗W,π∗βαξ)+h(∇πZπ∗CW,π∗βξ)}
= −g(AZBW,βξ) + g(grad lnλ, Z)g(W,βαξ) + g(grad lnλ,W )g(Z, βαξ)

− g(Z,W )g(grad lnλ, βαξ) + g(grad lnλ,CW )g(Z, βξ)− g(Z,CW )g(grad lnλ, βξ)

for any Z,W ∈ Γ((kerπ∗)⊥) and ξ ∈ Γ(Dθ).

Proof. For any Z,W ∈ Γ((kerπ∗)⊥) and η ∈ Γ(D), use of (3.6), (2.2), (2.10), (2.11) and (3.4)
yields

g(∇ZW, η) = g(α(AZCW + V∇ZBW ), η). (4.9)

In addition, using (3.6), (2.2), (3.3) and (3.4) for any ξ ∈ Γ(Dθ), we get

g(∇ZW, ξ) = g(∇ZW,α2ξ) + g(∇ZW,βαξ) + g(∇ZBW,βξ) + g(∇ZCW,βξ).

Appealing to Proposition 3.7 and Lemma 2.2 and (2.11), preceding equation in turn yields

g(∇ZW, ξ) = cos2 θg(∇ZW, ξ) + g(AZBW,βξ)− g(grad lnλ, Z)g(W,βαξ)

− g(grad lnλ,W )g(Z, βαξ) + g(Z,W )g(grad lnλ, βαξ)

+ λ−2gB(∇πZπ∗W,π∗βαξ)
− g(grad lnλ, Z)g(CW,βξ)− g(grad lnλ,CW )g(Z, βξ)

+ g(Z,CW )g(grad lnλ, βξ) + λ−2gB(∇πZπ∗CW,π∗βξ).

Thus,

sin2 θg(∇ZW, ξ) = g(AZBW,βξ)− g(grad lnλ, Z)g(W,βαξ)

− g(grad lnλ,W )g(Z, βαξ)

+ g(Z,W )g(grad lnλ, βαξ)− g(grad lnλ,CW )g(Z, βξ)

+ g(Z,CW )g(grad lnλ, βξ)

+ λ−2{h(∇πZπ∗W,π∗βαξ)− h(∇πZπ∗CW,π∗βξ)}. (4.10)

Hence, proof follows from (4.9) and (4.10).

On the same line, we discuss the geometry of leaves of the vertical distribution kerπ∗.

Theorem 4.6. Let π : (M, g,F) → (B, h) be a CSS submersion, where (M, g,F) is a l.p.R.
manifold and (B, h) is a Riemannian manifold. Then, the distributions (kerπ∗) defines a totally
geodesic foliation on M if and only if

h(∇πβξπ∗βFCZ, π∗βη) = λ2g(β(∇̂ηαξ + Tηβξ), Z) + g(Tηαξ,CZ)

− g(AβξFCZ,αη) + g(βξ, βη)g(Hgrad(lnλ),FCZ)

for any η, ξ ∈ Γ(kerπ∗) and Z ∈ Γ(kerπ∗)⊥.

Proof. For any η, ξ ∈ Γ(kerπ∗) and the horizontal vector field Z, using (3.6), (2.2), (3.3) and
(3.4), we obtain

g(∇ηξ, Z)=g(∇ηαξ,BZ) + g(∇ηαξ,CZ) + g(∇ηβξ,BZ) + g(∇ηβξ, CZ).

In view of (2.8) and (2.9), we have

g(∇ηξ, Z)=g(β(∇̂ηαξ+Tηβξ), Z)+g(Tηαξ,CZ)
−g(AβξFCZ,αη)−g(∇βξFCZ, βη).
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Moreover, using (2.12) and Lemma (2.2), above equation yields

g(∇ηξ, Z) = g(β(∇̂ηαξ + Tηβξ), Z) + g(Tηαξ,CZ)− g(AβξFCZ,αη)

+ λ−2g(Hgrad lnλ, βξ)λ2g(βη,FCZ) + λ−2g(βξ, βη)λ2g(Hgrad lnλ,FCZ)

− λ−2g(Hgrad lnλ, βη)λ2g(βξ,FCZ)− λ−2h(∇πβξπ∗FCZ, π∗βη).

With the fact that π is a CSS submersion, we reach out the expression

gM (∇ηξ, Z) = g(ω(∇̂ηαξ + Tηβξ), Z) + g(Tηαξ,CZ)− g(AβξFCZ,αη)

+ g(βξ, βη)g(Hgrad(lnλ),FCZ)− λ−2h(∇πβξπ∗FCZ, π∗βη). (4.11)

Thus, proof follows from (4.11).

Consequently, we deduce the following;

Theorem 4.7. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then any two of the following conditions imply the third;

(i) kerπ∗ defines a totally geodesic foliation on M1;

(ii) λ is a constant on Γ(ν);

(iii) λ−2h(∇πβξπ∗FCZπ∗βη)=g(β(∇̂ηαξ + Tηβξ), Z)

+g(Tηαξ,CZ)−g(AβξFCZ,αη)

for any η, ξ ∈ Γ(kerπ∗) and Z ∈ Γ((kerπ∗)⊥).

Proof. Considering (4.11) for any η, ξ ∈ Γ(kerπ∗) and Z ∈ Γ((kerπ∗)⊥), , we have

g(∇ηξ, Z) = g(β(∇̂ηαξ + Tηβξ), Z) + g(Tηαξ,CZ)− g(AβξFCZ,αη)

+ g(βξ, βη)g(Hgrad lnλ,FCZ)− λ−2h(∇πβξπ∗FCZ, π∗βη).

Now, if we take (i) and (iii) into account, then we can easily obtain

g(βη, βξ)g(Hgrad lnλ, FCZ) = 0,

which shows that λ is a constant on (ν). On the same line, (iii) can be obtained if (kerπ∗)
defines totally geodesic foliation and λ is constant (ν).

From Theorem 4.1, Theorem 4.2 and Theorem 4.5, we have the following result.

Theorem 4.8. Let π : (M, g,F) → (B, h) be a CSS submersion, where (M, g,F) is a l.p.R.
manifold and (B, h) is a Riemannian manifold. Then, the total space M is a locally product
manifold of the leaves of D, Dθ and (kerπ∗)⊥, i.e., M = MD ×MDθ ×M (kerπ∗)⊥ , if and only
if

(a) h((∇π∗)(η1, αη2), π∗βξ1) = λ2g(∇̂η1αη2, αξ1),
h((∇π∗)(η1, αη2), π∗CZ) = −λ2g(∇̂η1αBZ + Tη1βBZ, η2).

(b) h((∇π∗)(ξ1, η1), π∗βξ2) = λ2g(Tξ1αη1, βαξ2),
h((∇π∗)(ξ1, βαξ2), π∗Z)− h(∇πβξ2

π∗βξ1, π∗FCZ)
= λ2{g(Aβξ2αξ1 + g(βξ1, βξ2)grad lnλ,FCZ) + g(Tξ1βξ2, BZ)},

(c) AZCW + V∇ZBW ∈ Γ(Dθ),
λ−2{h(∇πZπ∗W,π∗βαξ)+h(∇πZπ∗CW,π∗βξ)
= −g(AZBW,βξ) + g(grad lnλ, Z)g(W,βαξ) + g(grad lnλ,W )g(Z, βαξ)
−g(Z,W )g(grad lnλ, βαξ) + g(grad lnλ,CW )g(Z, βξ)− g(Z,CW )g(grad lnλ, βξ).
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for any Z,W ∈ Γ(kerπ∗)⊥, η1, η2 ∈ Γ(D) and ξ, ξ1, ξ2 ∈ Γ(Dθ), where MD, MDθ and
M(kerπ∗)⊥ are the leaves of the distributions D, Dθ and (kerπ∗)⊥, respectively.

Immediate from Theorem 4.5 and Theorem 4.6, we have

Theorem 4.9. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then, the total space M is a locally product manifold of the
leaves of kerπ∗ and (kerπ∗)⊥, i.e., M =Mkerπ∗ ×M (kerπ∗)⊥ , if and only if

(a) h(∇πβξπ∗βFCZ, π∗βη) = λ2g(β(∇̂ηαξ + Tηβξ), Z) + g(Tηαξ,CZ)
−g(AβξFCZ,αη) + g(βξ, βη)g(Hgrad(lnλ),FCZ),
for any η, ξ ∈ Γ(kerπ∗) and Z ∈ Γ(kerπ∗)⊥.

(b) AZCW + V∇ZBW ∈ Γ(Dθ)
λ−2{h(∇πZπ∗W,π∗βαξ)+h(∇πZπ∗CW,π∗βξ)}
= −g(AZBW,βξ) + g(grad lnλ, Z)g(W,βαξ) + g(grad lnλ,W )g(Z, βαξ)
−g(Z,W )g(grad lnλ, βαξ) + g(grad lnλ,CW )g(Z, βξ)− g(Z,CW )g(grad lnλ, βξ),
for any Z,W ∈ Γ((kerπ∗)⊥) and ξ ∈ Γ(Dθ).

5 Totally geodesicness of The CSS submersions

We recall that a differentiable map π between two Riemannian manifolds is called totally geodesic
if ∇π∗ = 0 [7].

Following result gives the characterization for CSS submersions to be totally geodesic map.

Theorem 5.1. Let π : (M, g,F)→ (B, h) be a CSS submersion from a l.p.R. manifold (M, g,F)
onto a Riemannian manifold (B, h). Then π defines a totally geodesic map if

∇πZπ∗W = π∗(C(AZαη +H∇Zβη +AZBW +H∇ZCY2) (5.1)

+ β(V∇Zαη +AZβη + V∇ZBW +AZCW ))

for any Z ∈ Γ((kerπ∗)⊥) and E = η + W ∈ Γ(TM), where η ∈ Γ(kerπ∗) and W ∈
Γ((kerπ∗)⊥).

Proof. For any Z ∈ Γ(kerπ∗)⊥ and E ∈ Γ(TM), using (2.2) and (2.12), we get

(∇π∗)(Z,E) = ∇πZπ∗E − π∗(F∇ZFE)

Moreover, applying (2.10), (2.11), (3.3) and (3.4) we obtain

(∇π∗)(Z,E) = ∇πZπ∗E − π∗(BAZαη + CAZαη + αV∇Zαη + βV∇Zαη
+ αAZβη + βAZβη +BH∇Zβη + CH∇Zβη
+BAZBW + CAZBW + αV∇ZBW + βV∇ZBW
+ αAZCW + βAZCW +BH∇ZCW + CH∇ZCW ),

for any η ∈ Γ(kerπ∗) and W ∈ Γ(kerπ∗)⊥ such that E = η +W ∈ Γ(TM). Since the vertical
vector fields are π-related to zero vector field in B, therefore we get the expression

(∇π∗)(Z,E) = ∇πZπ∗W − π∗(C(AZαη +H∇Zβη +AZBW +H∇ZCW )

+ β(V∇Zαη +AZβη + V∇ZBW +AZCW )),

from which the result follows.

We remark that a CSS submersion is called a (βDθ, ν)-totally geodesic map if (∇π∗)(βξ, Z) =
0, for any ξ ∈ Γ(Dθ) and Z ∈ Γ(ν).

Thus, we have the following characterization;
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Theorem 5.2. Let π : (M, g,F)→ (B, h) be a CSS submersion, where (M, g,F) be a l.p.R and
(B, h), a Riemannian manifold. Then, π defines a (βDθ, ν)-totally geodesic map if and only if π
is horizontally homothetic map.

Proof. By using Lemma 2.2,

(∇π∗)(βξ, Z) = βξ(lnλ)π∗Z + Z(lnλ)π∗βξ − g(βξ, Z)π∗(grad lnλ),

for any vector field ξ ∈ Γ(Dθ) and Z ∈ Γ(ν). Simply, we obtain (∇π∗)(βξ, Z) = 0, if π is a
horizontally homothetic map.

Nevertheless, if (∇π∗)(βξ, Z) = 0, we have

βξ(lnλ)π∗Z + Z(lnλ)π∗βξ = 0. (5.2)

By taking inner product (5.2) with π∗βξ, we get

g(grad lnλ, βξ)h(π∗Z, π∗βξ) + g(grad lnλ, Z)h(π∗βξ, π∗βξ) = 0.

which in turn yields that λ is a constant on Γ(ν). Likewise, taking inner product of (5.2) with
π∗Z, we obtain

g(grad lnλ, βξ)h(π∗Z, π∗Z) + g(grad lnλ, Z)h(π∗βξ, π∗Z) = 0.

Consequently, λ is a constant on Γ(βDθ). Thus, λ is a constant on Γ(kerπ∗)⊥, which completes
the proof.

We establish the another characterization.

Theorem 5.3. A CSS submersion π : (M, g,F) → (B, h) from a l.p.R. manifold (M, g,F) onto
a Riemannian manifold (B, h) is a totally geodesic map if and only if

(a) CTη1αη2 + β∇̂η1αη2 = 0

(b) C(Tη1αξ1 +Aβξ1η1) + β(∇̂η1αξ1 + Tη1βξ1) = 0 and

(c) C(TηBZ +H∇ηCZ) + β(∇̂ηBZ + TηCZ) = 0,

for any η ∈ Γ(kerπ∗), η1, η2 ∈ Γ(D), ξ1 ∈ Γ(Dθ), and Z ∈ Γ(kerπ∗)⊥.

Proof. (a) For any η1, η2 ∈ Γ(D), using (2.12) (2.2) and (2.8), we reach to

(∇π∗)(η1, η2) = −π∗(F (Tη1αη2 + ∇̂η1αη2)).

With the help of (3.3) and (3.4), further we obtain

(∇π∗)(η1, η2) = −π∗(BTη1αη2 + CTη1αη2 + α∇̂η1αη2 + β∇̂η1αη2).

As tangential vector fields on (kerπ∗) are π−related to zero on B, thus above equation takes the
form

(∇π∗)(η1, η2) = −π∗(CTη1αη2 + β∇̂η1αη2).

Hence, ∇π∗)(η1, η2) = 0 if and only if (CTη1αη2 + β∇̂η1αη2 = 0.

(b) For any η1 ∈ Γ(D), ξ1 ∈ Γ(Dθ), making use of (2.2) and (2.12) gives

(∇π∗)(η1, ξ1) = −π∗(F∇η1Fξ1).
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Moreover, on using (2.8), (2.9), (3.3) and (3.4), we obtain

(∇π∗)(η1, ξ1) = −π∗(BTη1αξ1 + CTη1αξ1 + α∇̂η1αξ1 + β∇̂η1αξ1

+ αTη1βξ1 + βTη1βξ1 +BAβξ1η1 + CAβξ1η1).

Since π∗ kills the vertical vector field on TM , therefore arrive at

(∇π∗)(η1, ξ1) = π∗(C(Tη1αξ1 +Aβξ1η1) + β(∇̂η1αξ1 + Tη1βξ1)).

Thus, (∇π∗)(η1, ξ1) = 0 if and only if C(Tη1αξ1 +Aβξ1η1) + β(∇̂η1αξ1 + Tη1βξ1) = 0.

(c) Now for any η ∈ Γ(kerπ∗), Z ∈ Γ((kerπ∗)⊥), in view of (2.2) and (2.12) we have

(∇π∗)(η, Z) = −π∗(F∇ηFZ).

Moreover, use of (2.8), (2.9), (3.3) and (3.4) gives

(∇π∗)(η, Z) = −π∗(BTηBZ + CTηBZ + α∇̂ηBZ + β∇̂ηBZ
+ αTηCZ + βTηCZ +BACZη + CACZη).

Since BTηBZ + α∇̂ηBZ + αTηCZ +BACZη ∈ Γ(kerπ∗), we derive

(∇π∗)(η, Z) = −π∗(C(TηBZ +ACZη) + β(∇̂ηBZ + TηCZ)).

Therefore, we obtain (∇π∗)(η, Z) = 0 if and only if C(TηBZ+ACZη)+β(∇̂ηBZ+TηCZ) =
0.
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