
Palestine Journal of Mathematics

Vol. 12(4)(2023) , 314–320 © Palestine Polytechnic University-PPU 2023

On Degree Product Eigenvalues and Degree Product Energy of
Graphs

H. S. Ramane, G. A. Gudodagi and K. C. Nandeesh

Communicated by V. Lokesha

MSC 2020 Classifications: 05C50, 05C57

Keywords and phrases: Degree of a vertex, degree product matrix, degree product energy.

The authors G. A. Gudodagi and K. C. Nandeesh are thankful to KLE’s G. I. Bagewadi College, Nipani and Karnataka
State Open University, Mukthagangothri, Mysuru respectively for their support. Also, the authors would like to thank the
Editor and the anonymous reviewers for their valuable suggestions which are helped to improve the quality of the manuscript.

Abstract.
Let G be a simple connected graph with n-vertices and m-edges. In this paper we introduce

the concept of degree product matrix DP (G) and degree product energy EDP (G) of a graph
G and obtain the bounds for the degree product eigenvalues and degree product energy of any
connected graph G.

1 Introduction

In this paper we consider simple, undirected and unweighted graphs. Let G = (V,E) be such
a graph with a vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n and
|E(G)| = m. For vi ∈ V (G), let di be the degree of vertex vi. Let A(G) be the adjacency matrix
of the graph G is a square matrix of order n whose (i, j)- entry is equal to unity if the vertices
vi and vj are adjacent and is equal to zero otherwise. The eigenvalues of adjacency matrix A(G)
are denoted by λ1, λ2, . . . , λn and since they are real it can be ordered as λ1 ≥ λ2 ≥ . . . ≥ λn.
The energy of graph G was first defined by Gutman in 1978 as [6]

E(G) =
n∑

i=1

|λi| .

Its mathematical properties were extensively investigated in the literature. For details see the
book [10], the recent articles [4, 5, 7, 8, 11, 12, 13, 14, 18] and references cited theirin. Mo-
tivated by work on maximum degree energy [1], bounds for the degree sum eigenvalues and
degree sum energy [17], we introduce in this paper a new matrix called degree product matrix
defined as DP (G) = [dpij ], in which

dpij =

{
didj if i 6= j

0 otherwise.

Denote the eigenvalues of the degree product matrix DP (G) by γ1, γ2, . . . , γn and label them in
non-increasing order as γ1 ≥ γ2 ≥ . . . ≥ γn. In addition φDP (G, γ) = det(γIn −DP (G)) will
be referred as the DP -characteristic polynomial of G, where In is the identity matrix of order n.
The energy of degree product matrix DP (G) is defined as

EDP (G) =
n∑

i=1

|γi|.
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Fig. 1: Graph G and its degree product matrix.

DP (G) =

v1 v2 v3 v4

v1

v2

v3

v4


0 3 2 2
3 0 6 6
2 6 0 4
2 6 4 0



γ1 = −6.7788, γ2 = −4, γ3 = −1.3171 and γ4 = 12.0960.
Therefore, EDP (G) = 24.1919.

In this paper, we obtain bounds for the degree product eigenvalues and degree product energy of
graph G.

2 Bounds for the eigenvalues and energy

Lemma 2.1. Let G be any graph with n-vertices and let γ1 ≥ γ2 ≥ . . . ≥ γn be its degree prod-
uct eigenvalues.

(i)
n∑

i=1
γi = 0.

(ii)
n∑

i=1
γi

2 = 2M , where M =
∑

1≤i<j≤n
(didj)2.

Proof.
n∑

i=1

γi = trace[DP (G)] = 0.

For i = 1, 2, . . . , n the (i, i) entry of (DP (G))2 is equal to

n∑
j=1

(di dj)(dj di) =
n∑

j=1

(di dj)
2

n∑
i=1

γ2
i = trace[DP (G)]2

=
n∑

i=1

n∑
j=1

(di dj)
2

= 2
∑

1≤i<j≤n

(didj)
2

= 2M.

Theorem 2.2. Let G be any graph with n-vertices. Then γ1 ≤
√

2M(n−1)
n .

Proof. Consider the Cauchy-Schwarz inequality,(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2
i

) (
n∑

i=1

b2
i

)
.

Choosing ai = 1, bi = γi for i = 2, 3, . . . , n, then
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(
n∑

i=2

γi

)2

≤ (n− 1)
n∑

i=2

γ2
i (2.1)

From Lemma ( 2.1) ,

n∑
i=2

γi = −γ1 and
n∑

i=2
γi

2 = −γ2
1 + 2M ,

Then Eq. ( 2.1) becomes

(−γ1)
2 ≤ (n− 1)(2M − γ2

1)

γ1 ≤
√

2M(n− 1)
n

.

Theorem 2.3. Let G be any graph with n-vertices. Then
√

2M ≤ EDP (G) ≤
√

2Mn.

Proof. Consider the Cauchy-Schwarz inequality,(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2
i

) (
n∑

i=1

b2
i

)
.

Put ai = 1 and bi = |γi| in Cauchy-Schwarz inequality, we get

(
n∑

i=1

|γi|

)2

≤ n

n∑
i=1

γ2
i

(EDP (G))
2 ≤ n(2M)

EDP (G) ≤
√

2nM

which is an upperbound.

Now, (EDP (G))2 =

(
n∑

i=1
|γi|
)2

≥
n∑

i=1
|γi|2 = 2M ,

⇒ EDP (G) ≥
√

2M which is a lower bound.

Theorem 2.4. LetG be any graph with n-vertices and4 be the absolute value of the determinant
of the degree product matrix DP (G). Then√

2M + n(n− 1)42/n ≤ EDP (G) ≤
√

2Mn.

Proof. By the definition of degree product energy,

(EDP (G))
2 = (

n∑
i=1

γi)
2 =

n∑
i=1

γ2
i + 2

∑
i<j

|γi| |γj |

= 2M +
∑
i 6=j

|γi| |γj |. (2.2)

Since for nonnegative number the Arithmetic mean is greater than Geometric mean ,
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1
n(n− 1)

∑
i 6=j

|γi| |γj | ≥

∏
i 6=j

|γi| |γj |

 1
n(n−1)

=

(
n∏

i=1

|γi|2(n−1)

) 1
n(n−1)

=
n∏

i=1

|γi|2/n

= 42/n. (2.3)

Combining Eq. ( 2.2) and Eq. ( 2.3) we get a lower bound.

Consider,

P =
n∑

i=1

n∑
j=1

(|γi| − |γj |)2 (2.4)

On simplifying,

= 4Mn− 2(EDP (G))
2

Since P ≥ 0,
4Mn− 2(EDP (G))

2 ≥ 0

⇒ EDP (G) ≤
√

2Mn which is an upper bound.

Lemma 2.5. [9] Let a1, a2, . . . , an be non-negative numbers. Then

n

 1
n

n∑
i=1

ai −

(
n∏

i=1

ai

)1/n
 ≤ n n∑

i=1

ai−

(
n∑

i=1

√
ai

)2

≤ n(n− 1)

 1
n

n∑
i=1

ai −

(
n∏

i=1

ai

)1/n
 .

Theorem 2.6. Let G be a connected graph with n vertices. Then√
2M + n(n− 1)42/n ≤ EDP (G) ≤

√
2M(n− 1) + n42/n.

Proof. Let ai = |γi|2, i = 1, 2, . . . , n and

K = n

 1
n

n∑
i=1

|γi|2 −

(
n∏

i=1

|γi|2
)1/n


= n

2M
n
−

(
n∏

i=1

|γi|

)2/n


= n

[
2M
n
−42/n

]
= 2M − n42/n .

By Lemma ( 2.5)

K ≤ n
n∑

i=1

|γi|2 −

(
n∑

i=1

|γi|

)2

≤ (n− 1)K
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that is
2M − n42/n ≤ 2nM − (EDP (G))

2 ≤ (n− 1)(2M − n42/n).

Simplification of above equation leads to the desired result.

Theorem 2.7. [16] Let ai and bi, 1 ≤ i ≤ n are nonnegative real numbers. Then

n∑
i=1

a2
i

n∑
i=1

b2
i ≤

1
4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

aibi

)2

.

whereM1 = max1≤i≤n(ai); M2 = max1≤i≤n(bi); m1 = min1≤i≤n(ai) andm2 = min1≤i≤n(bi).

Theorem 2.8. [15] Let ai and bi, 1 ≤ i ≤ n are positive real numbers . Then

n∑
i=1

a2
i

n∑
i=1

b2
i −

(
n∑

i=1

aibi

)2

≤ n2

4
(M1M2 −m1m2)

2.

where Mi andmiare defined similar to the Theorem ( 2.7).

Theorem 2.9. [2] Let ai and bi, 1 ≤ i ≤ n are nonnegative real numbers. Then∣∣∣∣∣n
n∑

i=1

aibi −
n∑

i=1

ai

n∑
i=1

bi

∣∣∣∣∣ ≤ α(n) (A− a) (B − b).
where a, b, A andB are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ai ≤ A and b ≤ bi ≤ B.
Further, α(n) = n dn2 e

(
1− 1

n d
n
2 e
)
.

Theorem 2.10. [3] Let ai and bi, 1 ≤ i ≤ n are nonnegative real numbers. Then
n∑

i=1

b2
i + rR

n∑
i=1

a2
i ≤ (r +R)(

n∑
i=1

aibi),

where r and R are real constants, so that for each i, 1 ≤ i ≤ n, holds rai ≤ bi ≤ Rai.

Theorem 2.11. Let G be a graph of order n. Then

EDP (G) ≥
√

2Mn− n2

4
(γ1 − γmin)2

where γ1 = γmax = max1≤i≤n|γi| and γmin = min1≤i≤n|γi| .

Proof. Suppose γ1, γ2, . . . , γn are the eigenvalues of DP (G). We assume that ai = 1 and bi =
|γi|, which by Theorem ( 2.8) implies

n∑
i=1

12
n∑

i=1

|γi|2 −

(
n∑

i=1

|γi|

)2

≤ n2

4
(γ1 − γmin)

2

2Mn− (EDP (G))
2 ≤ n2

4
(γ1 − γmin)

2

EDP (G) ≥
√

2Mn− n2

4
(γ1 − γmin)2.

Theorem 2.12. Suppose zero is not an eigenvalue of DP (G), then

EDP (G) ≥
2√γ1 γmin

√
2Mn

γ1 + γmin
.

where γ1 = γmax = max1≤i≤n|γi| and γmin = min1≤i≤n|γi| .
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Proof. Suppose γ1, γ2, . . . , γn are the eigenvalues of DP (G). We assume that ai = |γi| and
bi = 1, which by Theorem ( 2.7) implies

n∑
i=1

|γi|2
n∑

i=1

12 ≤ 1
4

(√
γ1

γmin
+

√
γmin

γ1

)2
(

n∑
i=1

|γi|

)2

2Mn ≤ 1
4

(
(γ1 + γmin)2

γ1 γmin

)
(EDP (G))

2

EDP (G) ≥
2√γ1 γmin

√
2Mn

γ1 + γmin
.

Theorem 2.13. Let G be a graph of order n. Let γ1 ≥ γ2 ≥ . . . ≥ γn be the eigenvalues of
DP (G). Then

EDP (G) ≥
2M + nγ1γmin

γ1 + γmin
.

where γ1 = γmax = max1≤i≤n|γi| and γmin = min1≤i≤n|γi| .

Proof. We assume that bi = |γi|, ai = 1, R = |γ1| and r = |γmin|. Then by Theorem ( 2.10),
we get

n∑
i=1

|γi|2 + γ1γmin

n∑
i=1

12 ≤ (γ1 + γmin)
n∑

i=1

|γi|

2M + nγ1 γmin ≤ (γ1 + γmin)EDP (G).

On simplification we get the desired result.

Theorem 2.14. Let G be a graph of order n. Let γ1 ≥ γ2 ≥ . . . ≥ γn be the eigenvalues of
DP (G). Then

EDP (G) ≥
√

2Mn− α(n)(γ1 − γmin)2.

where γ1 = γmax = max1≤i≤n|γi| and γmin = min1≤i≤n|γi| and α(n) = n dn2 e
(
1− 1

n d
n
2 e
)
.

Proof. We assume that ai = |γi| = bi, A ≤ |γi| ≤ B and a ≤ |γn| ≤ b, then by Theorem ( 2.9)
we get

∣∣∣∣∣n
n∑

i=1

|γi|2 − (
n∑

i=1

|γi|)2

∣∣∣∣∣ ≤ α(n)(γ1 − γmin)
2

∣∣2Mn− (EDP (G))
2∣∣ ≤ α(n)(γ1 − γmin)

2

EDP (G) ≥
√

2Mn− α(n)(γ1 − γmin)2.

Corollary 2.15. If α(n) = n2

4 , then

EDP (G) ≥
√

2Mn− n2

4
(γ1 − γmin)2.

This shows that inequality in the Theorem ( 2.14) is stronger than the inequality in the Theorem
( 2.12).
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