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Abstract The boundary behavior of the power series on the circle of convergence in the bi-
complex space is discussed in the current work. The bicomplex Hadamard’s gap theorem and
other theorems have been proved for the power series in bicomplex space. The unit hypersphere
in the bicomplex space is also exemplified. The bicomplex Vivanti-Pringsheim theorem and its
extension have been proved for the power series in the bicomplex space. The Ringleb decompo-
sition theorem has been applied to establish the results in the bicomplex space.

1 Introduction

A generalization of the complex and the hyperbolic numbers are the bicomplex numbers. A lot
of research work has been done in the area of bicomplex integral transform, bicomplex holomor-
phic functions. Efforts have been made in recent years to extend various theorems [3, 5, 9, 10],
Mittag-Leffler function and applications [1, 2, 25, 26] to bicomplex variables from their complex
counterparts.

Definition 1.1 (Bicomplex Number). Segre [24] defined the set of bicomplex numbers as fol-
lows:

T = {ξ = x0 + i1x1 + i2x2 + jx3 | x0, x1, x2, x3 ∈ R}. (1.1)

Alternatively,
T = {ξ = z1 + i2z2 | z1, z2 ∈ C}. (1.2)

(1.1) and (1.2) represent the bicomplex numbers in the form of real and complex numbers, re-
spectively. Bicomplex numbers are also called ‘Tetra numbers.’

Here, we denote the real components of a bicomplex number ξ as x0 = Re(ξ), x1 = Imi1(ξ), x2 =
Imi2(ξ), x3 = Imj(ξ).

The set of hyperbolic numbers D is a proper subset of the set of bicomplex numbers T (see,
e.g. [23])

D = {x1 + x3j | x1, x3 ∈ R, j2 = 1 and j /∈ R} ⊆ T. (1.3)

There are two zero divisors in T denoted by e1 and e2 such that e1 + e2 = 1, e1.e2 = 0 while

e1 =
1 + j

2
, e2 =

1− j
2

, j = i1i2. The idempotent representation [18] for every ξ = z1 + i2z2 ∈
T is as follows:

ξ = ξ1e1 + ξ2e2, (1.4)

where e1, e2 ∈ T are idempotent elements and ξ1 = z1 − i1z2, ξ2 = z1 + i1z2 are idempotent
coefficients.

Using the idempotent form of bicomplex numbers significantly benefits all algebraic operations.
Idempotent representation is useful because it allows for term-by-term addition, multiplication,
and division, which makes the results easier to evaluate.
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There exist two projection mappings Pe1 : T → Te1 , Pe2 : T → Te2 , Te1 , Te2 ⊆ C corre-
sponding to two idempotent coefficients ξ1 and ξ2 for any bicomplex number ξ = ξ1e1+ξ2e2 ∈ T,
which are given by

Pe1(ξ) = ξ1 ∈ Te1 and Pe2(ξ) = ξ2 ∈ Te2 , (1.5)

where
Te1 = {ξ1 : ξ1 = z1 − i1z2 ∈ C} and Te2 = {ξ2 : ξ2 = z1 + i1z2 ∈ C}, (1.6)

are called the auxiliary complex spaces, and T = Te1 ×Te2 can be viewed as the product of these
auxiliary spaces.

Definition 1.2 (Idempotent Representation). The idempotent representation of a hyperbolic num-
ber w = x1 + x2j ∈ D can be represented as (see, e.g.[13, p.4])

w = w1e1 + w2e2, w1 = x1 + x2, w2 = x1 − x2. (1.7)

If w1, w2 ≥ 0, then w is said to be a non-negative hyperbolic number, and D+ represents this
set. When w1, w2 > 0 hyperbolic number w, is said to be a positive hyperbolic number. This
concept defines the following partial order on hyperbolic numbers [13].

Definition 1.3 (Partial Order on D). Let u, v ∈ D, then partial order on D is defined as [13, p.4]

u 4 v if v − u ∈ D+ and u ≺ v if v − u ∈ D+/{0}. (1.8)

Definition 1.4 (Null Cone). Null cone is the set of zero-divisors in T, given by (see, e.g. [13,
p.3])

NC = {ξ = z1 + i2z2, z1, z2 ∈ C : z2
1 + z2

2 = 0}. (1.9)

If ξ ∈ NC ⇒ ξ−1 does not exist.

The product of two non-zero numbers in the bicomplex space is zero iff the first is a complex
multiple of e1 and the second is a complex multiple e2 or vice-versa. Let ξ, η ∈ T, then

ξη = 0 ⇒ ξ = 0 or η = 0 or ξ = ze1, η = we2 or ξ = ze2, η = we1, z, w ∈ C. (1.10)

Non-zero multiples of e1 and e2 are called first and second nil-factors, respectively. For a bicom-

Figure 1. Two-dimensional representation of a bicomplex number ξ

plex number ξ = ξ1e1 + ξ2e2 ∈ T, the components ξ1e1 and ξ2e2 will be located in the first and
second nil-planes, respectively (Figure 1).
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Definition 1.5 (j-Modulus). The j-modulus of ξ ∈ T is given by (see, e.g. [23])

|ξ|j = |z1 − i1z2|e1 + |z1 + i1z2|e2 ∈ D. (1.11)

Definition 1.6 (j-Argument). Let ξ ∈ T then the hyperbolic argument of ξ is given by (see, e.g.
[12])

argj(ξ) = arg(ξ1)e1 + arg(ξ1)e2. (1.12)

Definition 1.7 (Bicomplex Radicals). ([16, p.128]) Consider the bicomplex equation ξn = ω,
where ξ = ξ1e1 +ξ2e2, ω = ω1e1 +ω2e2 ∈ T. The following two complex equations in variables
ξ1, ξ2 are identical to this equation

ξn1 = ω1 and ξn2 = ω2, (1.13)

=⇒ ξ1 = n
√
ω1 and ξ2 = n

√
ω2. (1.14)

Riley [21] investigated the convergence of the bicomplex power series in Theorem 1.8.

Theorem 1.8. Let ξ = ξ1e1 + ξ2e2 ∈ T. Define

M(ξ) =

√
‖ξ‖2 +

√
‖ξ‖4 − |ξ|4abs = max(|ξ1|, |ξ2|), (1.15)

then M(ξ) is a norm, and if
∑∞
n=0 pnξ

n, pn = bne1 + cne2 is a power series with component
series

∑∞
n=0 bnξ

n
1 and

∑∞
n=0 cnξ

n
2 , both having the same radius of convergence R > 0, then∑∞

n=0 anξ
n converges for M(ξ) < R and diverges for M(ξ) > R, where the norm or the real

modulus of ξ is given by

‖ξ‖ =
√
|z1|2 + |z2|2 =

1√
2

√
|ξ1|2 + |ξ2|2 =

√
x2

0 + x2
1 + x2

2 + x2
3, (1.16)

and
|ξ|abs =

√
|ξ1||ξ2|. (1.17)

The decomposition theorem of Ringleb [22] (see, also [21, p.145]) leads to the following
result about singularities in bicomplex space:

Definition 1.9 (Singularity). A bicomplex function

f(ξ) = f1(ξ1)e1 + f2(ξ2)e2, ξ = ξ1e1 + ξ2e2 ∈ T, (1.18)

can have a singularity at ξ = ξ0 = ξ01e1 + ξ02e2 if and only if f1(ξ1) has a singularity at ξ1 = ξ01

or f2(ξ2) has a singularity at ξ2 = ξ02 .

As a result, f(ξ) has a singularity at every point, where the closure of f(ξ)’s area of analyt-
icity intersects one of the nil-planes with respect to ξ0, i.e., the set of points of the form ξ0 + a
for a in a nil-plane.

Remark 1.10. A function f(ξ) with a singularity at the origin can have no point of analyticity in
one of the nil-planes, then f(ξ) is said to be singular in that nil-plane, even though all points of
the nil-plane will, in general, not be a boundary point of the region T in which f(ξ) is analytic.

Theorem 1.11 (Taylor’s Theorem ). [21, p.142] In a four-dimensional region T ⊆ T, let h(ξ)
be analytic, and p be a point in T. Then h(ξ) can be expanded into a generalized Taylor series
centered at the point p

h(ξ) = h(p) +
(ξ − p)

1!
h′(p) +

(ξ − p)2

2!
h′′(p) + · · ·+ (ξ − p)n

n!
h(n)(p) + . . . , (1.19)

whenever h(ξ) is defined, and the series is convergent. If d is the greatest lower bound of ‖ξ−p‖
for ξ a boundary point of T, then the above series converges for M(ξ) < d

√
2. In particular, this

implies convergence in the hypersphere ‖ξ − p‖ < d.
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The above theorem’s detailed proof may be found in [21, p.142].
Motivated by the work of Luna-Elizarrarás et al. [13, 14] on the bicomplex holomorphic

functions, residue theorem, and power series in bicomplex variables, in this paper, we have dis-
cussed the boundary behavior of bicomplex power series and established the bicomplex Vivanti-
Pringsheim theorem. For the study of power series in the bicomplex space, Abel’s theorem
and Cauchy-Hadamard’s theorem are already introduced [13]. Continuing this way, we have
discussed power series in bicomplex space for further properties.

The criterion for singular points, one of the most crucial results in complex analysis, is the
Vivanti-Pringsheim theorem. It was given by Vivanti [28] in 1893 and proved by Pringsheim
[19] in 1894.

The straightforward approach for identifying the region of convergence of a power series to a
circle of convergence extends up to the nearest singular point in the disposition of the function it
represents. There will be at least one singular point on the circle of convergence for every power
series with a positive radius of convergence.

On the circle of convergence, the power series may diverge or converge everywhere or con-
verge at some points and diverge at others. The power series has a natural boundary at the circle
of convergence if every point on it is a singular point [11].

The geometric series
∑∞
n=0 z

n has a radius of convergence one and z = 1 as its only singular
point. Vivanti-Pringsheim theorem is a generalization of this example.

Theorem 1.12 (Vivanti-Pringsheim Theorem [11, 20]). Suppose ak ≥ 0 for k ≥ 0. If the power
series

∑∞
k=0 akz

k has its radius l of convergence satisfying 0 < l <∞, then z = l is a singular
point.

Another result is given by Dienes (see, e.g., [6, p.227]), which examined the singular point
of the series in connection with the argument of the coefficients an.

Theorem 1.13 (Dienes Theorem). [11, p.45] Suppose f(z) =
∑∞
n=0 anz

n has the radius of
convergence equal to 1 and | arg an| ≤ α < π

2 , n ≥ 1 for some constant α > 0. Then 1 is a
singular point of the series.

In the Vivanti-Pringsheim theorem, we have just seen that the sum of a power series with
positive coefficients can not be continued directly past the real positive point on the circle of
convergence. Now we shall be concerned with conditions that make it impossible to continue
the sum of a power series beyond the disk of convergence in any direction so that the circle of
convergence is a natural boundary ( [4, p.146]).

The convergence of a Taylor series
∑∞
k=0 ck(z − c)k is stopped only by the nearest singular

point to z = c [6]. Hadamard clarified the presence of power series with natural boundaries in
1892. Mordell’s 1927 [17] demonstration of Hadamard’s gap theorem is the simplest (see, also
[20]).

Theorem 1.14 (Hadamard’s Gap Theorem). ( [4, p.146])f(z) =
∑∞
n=0 anz

n with a finite radius
of convergence can not be continued beyond its circle of convergence if an = 0 except for
n = nk, where

nk+1

nk
≥ λ > 1, (1.20)

i.e., the circle of convergence is the natural boundary of the function.

After Hadamard’s theorem, a much deeper result is Fabry’s gap theorem (see, e.g., [4]) as
follows:

Theorem 1.15 (Fabry’s Theorem ). ( [6, p.376]) If
λn
n
→∞ and the radius of convergence of

f(z) =
∞∑
n=0

anz
λn , (1.21)

is 1, f(z) is not continued beyond the |z| = 1.
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Consider the following Hadamard’s theorem in which the term λν+1 − λν > θλν , θ > 0, is
known as the Hadamard gaps.

Theorem 1.16 (Hadamard). ( [6, p.231]) If lim | λν√aλν | = 1 and λν+1 − λν > θλν , θ > 0, the
circle |z| = 1 is a singular line for f(z) =

∑
aλνz

λν .

2 Polar Form of Bicomplex Numbers and Vivanti-Pringsheim Theorem

In this section, we discuss the polar form of the bicomplex number and some of its properties.
The polar form of a bicomplex number plays a crucial role when generalizing complex analysis
results into bicomplex outcomes where the polar form of a complex number is used. The bicom-
plex version of the Vivanti-Pringsheim theorem is presented in this study. We can find Taylor’s
series about a point in the polar form with the help of this polar form.

Futagawa [7], in 1928, discussed the polar representation of bicomplex numbers. Let ξ ∈ T
then ξ = l0 + l1i1 + l2i2 + l3j. In the exponential form, ξ can be written as

ξ = exp(δ + i1α− i2β+ jγ), (2.1)

where eδ = r, −∞ < δ <∞, −π ≤ α < π, − π
2 ≤ β < π

2 , −∞ < γ <∞, and eδ, eγ, α, β
are called the first modulus, the second modulus, the first vectorial angle, the second vectorial
angle, respectively, of the bicomplex number ξ.
Since from [7, p.186],

‖ξ‖ =
√
l20 + l21 + l22 + l23, (2.2)

where

l0 = r(cosα cosβ coshγ− sinα sinβ sinhγ), (2.3)

l1 = r(sinα cosβ coshγ+ cosα sinβ sinhγ), (2.4)

l2 = −r(cosα sinβ coshγ+ sinα cosβ sinhγ), (2.5)

l3 = r(cosα cosβ sinhγ− sinα sinβ coshγ). (2.6)

On simplifications, we get

‖ξ‖2 =r2 cosh 2γ, r = eδ. (2.7)

Remark 2.1. Futagawa [7] called the term
√
l20 + l21 + l22 + l23 as the absolute value of ξ in his

work.

Remark 2.2. ‖ξ‖2 = 1 for r = 1 i.e. (δ = 0), γ = 0 in the exponential form. The unit
hypersphere in bicomplex space is thus the set of points

U =
{
ξ = ei1α−i2β : −π ≤ α < π, − π

2
≤ β <

π

2

}
. (2.8)

To understand the position of singularity for the bicomplex power series at the boundary of
the circle of convergence, consider the following example:

Consider the bicomplex series
∞∑
n=0

ξn =
1

1− ξ
, ‖ξ‖ < 1, has a radius of convergence is

one and ξ = 1 as its only singular point, the function is analytic in T/{1}. Given bicomplex
geometric series can be written as for ξ ∈ T

∞∑
n=0

ξn =

( ∞∑
n=0

ξn1

)
e1 +

( ∞∑
n=0

ξn2

)
e2

=

(
1

1− ξ1

)
e1 +

(
1

1− ξ1

)
e2, |ξ1| < 1, |ξ2| < 1.

(2.9)
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Here

|ξ1| < 1 and |ξ2| < 1⇒ ‖ξ‖ =
√
|ξ1|2 + |ξ2|2

2
< 1. (2.10)

Since
∑∞
n=0 ξ

n
1 ,
∑∞
n=0 ξ

n
2 have radii of convergence one and ξ1 = 1, ξ2 = 1 are singular points

respectively, so by the application of the Ringleb decomposition theorem,
∑∞
n=0 ξ

n has a radius
of convergence 1 and ξ = 1 is a singular point.

In this section, bicomplex versions of the Vivanti-Pringsheim theorem have been established.
In Theorem 2.3, we have considered real coefficients in the bicomplex power series and analyzed
the cases for different radii values of convergence of the component power series. In Theorem
2.5, bicomplex power series with hyperbolic coefficients, is studied.

The following Vivanti-Pringsheim theorem in bicomplex space is an extension of the above
example and is a bicomplex extension of complex Vivanti-Pringsheim Theorem 1.12.

Theorem 2.3. Suppose an ≥ 0 for n ≥ 0. If the power series f(ξ) =
∑∞
n=0 anξ

n, ξ ∈ T has its
radius R of convergence satisfying 0 < R <∞, then ξ = R is a singular point of f .

Proof. Consider the bicomplex power series

f(ξ) =
∞∑
n=0

anξ
n, an ≥ 0, (2.11)

where ξ = ξ1e1 + ξ2e2 ∈ T.
In terms of idempotent components,

f(ξ) =
∞∑
n=0

anξ
n

=
∞∑
n=0

anξ
n
1 e1 +

∞∑
n=0

anξ
n
2 e2

= f1(ξ1)e1 + f2(ξ2)e2, an ≥ 0,

(2.12)

where fi(ξi) =
∑∞
n=0 anξ

n
i , (i = 1, 2).

Let Ri, (i = 1, 2) be the radius of convergence for the corresponding complex power series
fi(ξi). The radius of convergence R of f(ξ) can not be zero since otherwise R1 = 0 = R2.

For 0 < R <∞, we consider the following cases:
One of R1 or R2 is zero:
IfR1 = 0, R2 6= 0, then the set of points of convergence of

∑∞
n=0 anξ

n is confined to the second
nil-plane. And the set of points of convergence of

∑∞
n=0 anξ

n is confined to the first nil-plane if
R1 6= 0, R2 = 0. The convergence region for f(ξ) will be empty in these two circumstances.

For R > 0, the series fi(ξi), (i = 1, 2) converges and have radius of convergence R1 =
R2 = R. The other case (R1 6= R2) is not possible [21, p.141].
Also an ≥ 0, then by the Vivanti-Pringsheim Theorem 1.12, ξ1 = R, ξ2 = R are singular points
for f1(ξ1), f2(ξ2) respectively.

By the application of the Ringleb decomposition theorem, f(ξ) has the singularity R =
Re1 +Re2. Hence ξ = R, is the singular point.

A simple form of the above theorem in bicomplex space is given below.

Corollary 2.4. Let the power series
∑∞
m=0 amξ

m, ξ ∈ T have a radius of convergence unity and
am ≥ 0 for all values of m. Then ξ = 1 is a singular point.

Proof. We prove this result by contradiction. Suppose that ξ = 1 is a regular point. Then for a
point ρ between 0 and 1 on the real axis, there exists a hypersphere centered at ρ, which contains
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the point 1, and function f(ξ) is regular within the hypersphere. The Taylor series about the
point ρ is given by

∞∑
k=0

f (k)(ρ)

k!
(ξ − ρ)k. (2.13)

It is convergent at a point ξ = 1 + ρ, ρ > 0. Also,

f (m)(ρ) =
∞∑
k=m

k(k − 1) . . . (k −m+ 1)amρk−m, (2.14)

then series (2.13) becomes

∞∑
k=0

(ξ − ρ)k

k!

∞∑
k=m

k(k − 1) . . . (k −m+ 1)amρk−m, (2.15)

which is a double series of positive terms, and it is convergent for ξ = 1+ ρ. Breaking the series
into idempotent components and reversing the order of summation in complex domain as done
in [27, p.215]. Combining the idempotent components to obtain the value of the series in the
bicomplex domain, we get

∞∑
k=0

(ξ − ρ)k

k!

∞∑
k=m

k(k − 1) . . . (k −m+ 1)amρk−m =
∞∑
m=0

amξ
m, (2.16)

which is the original series, convergent for ξ = 1 + ρ, which contradicts the fact that the radius
of convergence is unity.

Hence 1 is the singular point of the series.

Another proof is based on the method applied by Pringsheim for the complex space (see, e.g.,
[27]).

Proof. Since there is at least one singularity ei1θ−i2φ, say, on the unit hypersphere as defined in
(2.8), the bicomplex Taylor’s series about ρei1θ−i2φ+jψ, 0 < ρ < 1 is given by

∞∑
k=0

f (k)(ρei1θ−i2φ+jψ)

k!
(ξ − ρei1θ−i2φ+jψ)k, (2.17)

and, since ei1θ−i2φ, is a singularity, it has the radius of convergence 1− ρ.
Also,

f (m)(ρ) =
∞∑
k=m

k(k − 1) . . . (k −m+ 1)amρk−m, (2.18)

and am ≥ 0, m ≥ 0, we get

|f (m)(ρei1θ−i2φ+jψ)| ≤ f (m)(ρ), m ≥ 0, ψ → 0. (2.19)

Hence, the radius of convergence does not exceed 1− ρ, accordingly, ξ = 1 is a singularity.

The following theorem is the hyperbolic version of Theorem 2.3.

Theorem 2.5. If the bicomplex power series
∑∞
n=0 anξ

n, ξ ∈ T, an = an1 + jan4 is hyperbolic
number with an1 ≥ |an4 |, ∀n ∈ N, has its radius R of convergence satisfying 0 < R < ∞ then
ξ = R is a singular point.

Proof. Consider the bicomplex power series

f(ξ) =
∞∑
n=0

anξ
n, ξ, an ∈ T. (2.20)
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Writing

an = an1 + i1an2 + i2an3 + jan4

= bne1 + cne2.
(2.21)

Here, bn = (an1 + an4) + i1(an2 − an3) and cn = (an1 − an4) + i1(an2 + an3).

By using idempotent representation, bicomplex power series can be represented as

f(ξ) =
∞∑
n=0

anξ
n =

∞∑
n=0

(bne1 + cne2)(ξ1e1 + ξ2e2)
n =

∞∑
n=0

(bne1 + cne2)(ξ
n
1 e1 + ξn2 e2)

=
∞∑
n=0

bnξ
n
1 e1 +

∞∑
n=0

cnξ
n
2 e2

= f1(ξ1)e1 + f2(ξ2)e2.

(2.22)

Since,

bn ≥ 0 and cn ≥ 0,

⇒ an1 + an4 ≥ 0, an2 − an3 = 0 and an1 − an4 ≥ 0, an2 + an3 = 0,

⇒ an1 ≥ |an4 | and an2 = an3 = 0, (2.23)

⇒ an = (an1 + an4)e1 + (an1 − an4)e2 = an1 + jan4 . (2.24)

Hence, an is a hyperbolic number such that an1 ≥ |an4 |.
Let Ri, (i = 1, 2) be the radius of convergence for the complex power series. The radius of
convergence R of f(ξ) can not be zero since otherwise R1 = 0 = R2.

For 0 < R <∞, we consider the following cases:
One of R1 or R2 is zero:
IfR1 = 0, R2 6= 0, then the set of points of convergence of

∑∞
n=0 anξ

n is confined to the second
nil-plane. And the set of points of convergence of

∑∞
n=0 anξ

n is confined to the first nil-plane if
R1 6= 0, R2 = 0. The convergence region for f(ξ) will be empty in these two circumstances.

For R > 0, the series fi(ξi), (i = 1, 2) converges and have radius of convergence R1 =
R2 = R, another case (R1 6= R2) is not possible [21, p.141].
Also an ≥ 0, cn ≥ 0 then by the Vivanti-Pringsheim Theorem 1.12, ξ1 = R, ξ2 = R are
singular points for f1(ξ1), f2(ξ2) respectively.

By the application of the Ringleb decomposition theorem, f(ξ) has the singularity R =
Re1 +Re2. Hence ξ = R, is the singular point.

Remark 2.6. Hyperbolic numbers enter the picture when analyzing series with real coefficients
in bicomplex space for the proof of Theorem 2.5. As a reason, it can be regarded as the hyper-
bolic Vivanti-Pringsheim theorem.

Now, we derive the bicomplex version of Theorem 1.13.

Theorem 2.7 (Bicomplex Dienes Theorem). Suppose f(ξ) =
∑∞
n=0 anξ

n, ξ ∈ T has the radius
of convergence equal to 1 and | arg an|j 4 α < π

2 , n ≥ 1 for some constant α > 0. Then 1 is a
singular point of the series.

Proof. From equation (2.22), we have bicomplex power series,

f(ξ) =
∞∑
n=0

anξ
n =

∞∑
n=0

bnξ
n
1 e1 +

∞∑
n=0

cnξ
n
2 e2 = f1(ξ1)e1 + f2(ξ2)e2, (2.25)

where f1(ξ1) =
∑∞
n=0 bnξ

n
1 and f2(ξ2) =

∑∞
n=0 cnξ

n
2 are complex power series. Assume that

the radius of convergence of the bicomplex power series (2.25) is unity and

| arg an|j 4 α <
π

2
, (2.26)
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n ≥ 1 for some constant α = αe1 + αe2 > 0.

From equations (1.11) and (1.12), we can write | arg bn| ≤ α < π
2 and | arg cn| ≤ α < π

2 ,
n ≥ 1 for some constant α > 0.

Since the radius of convergence of f(ξ) = f1(ξ1)e1 + f2(ξ2)e2 is unity hence the radii of
convergence of both f1(ξ1) and f2(ξ2) are also unity (see, the theorem [21, p.141]). By the
Theorem 1.13, 1 is a singular point of both series f1(ξ1) and f2(ξ2).
By the application of the decomposition theorem of Ringleb, 1 is the singular point of the series
f(ξ) = f1(ξ1)e1 + f2(ξ2)e2.

3 Gap Theorems in Bicomplex Space

As an application of the bicomplex Vivanti-Pringsheim theorem, we illustrate the natural bound-
ary of a bicomplex function by the following example:

Consider the bicomplex Series

f(ξ) =
∞∑
n=0

ξ2n , ‖ξ‖ < 1. (3.1)

Then f(ξ) is a function with the natural boundary for ‖ξ‖ = 1.
Writing (3.1) in idempotent form

f(ξ) =
∞∑
n=0

ξ2n

=

( ∞∑
n=0

ξ2n
1

)
e1 +

( ∞∑
n=0

ξ2n
2

)
e2

= f1(ξ1)e1 + f2(ξ2)e2, |ξ1| < 1, |ξ2| < 1,

(3.2)

where f1(ξ1), f2(ξ2) are in complex domain. From Example-5 [11, p.38], f1(ξ1) and f2(ξ2) have
natural boundary for |ξ1| = 1 and |ξ2| = 1 respectively.
Since

‖ξ‖ =
√
|ξ1|2 + |ξ2|2

2
= 1. (3.3)

Hence ‖ξ‖ = 1 is also a natural boundary for f(ξ).
In this section, we have derived a bicomplex version of some theorems. Initially, we derive

Hadamard’s gap theorem in bicomplex space.

Theorem 3.1 (Bicomplex Hadamard’s Gap Theorem). f(ξ) =
∑∞
n=0 anξ

n, ξ ∈ T with a finite
radius of convergence, can not be continued beyond its circle of convergence if an = 0 except
for n = nk, where

nk+1

nk
≥ λ > 1. (3.4)

Proof. Consider the bicomplex series with a finite radius of convergence

f(ξ) =
∞∑
n=0

anξ
n =

( ∞∑
n=0

bnξ
n
1

)
e1 +

( ∞∑
n=0

cnξ
n
2

)
e2 = f1(ξ1)e1 + f2(ξ2)e2. (3.5)

If an = 0 except for n = nk, where
nk+1

nk
≥ λ > 1.

For n 6= nk, an = bne1 + cne2 = 0 =⇒ bn = 0, cn = 0. (3.6)
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∵ f(ξ) has finite radius of convergence, the component series fi(ξi), (i = 1, 2) also have finite
radius of convergence (see, [21, p.141]).
Also, bn = 0, cn = 0 where

nk+1

nk
≥ λ > 1 by Theorem 1.14, fi(ξi), (i = 1, 2) can not be

continued beyond its circle of convergence.
By application of the Ringleb theorem

f(ξ) = f1(ξ1)e1 + f2(ξ2)e2, (3.7)

can not be continued beyond its circle of convergence.

We derive the bicomplex version of Fabry’s theorem, which is a much deeper result after
Hadamard’s theorem.

Theorem 3.2 ( Bicomplex Fabry’s Theorem). If
λn
n
→∞ and the radius of convergence of

f(ξ) =
∞∑
n=0

anξ
λn , ξ ∈ T (3.8)

is 1, f(ξ) is not continued beyond the ‖ξ‖ = 1.

Proof. The bicomplex series f(ξ) can be written in idempotent components as

f(ξ) =
∞∑
n=0

anξ
λn = f1(ξ1)e1 + f2(ξ2)e2, (3.9)

where f1(ξ1) =
∑∞
k=0 anξ

λn
1 and f2(ξ2) =

∑∞
k=0 anξ

λn
2 are complex power series.

Since the radius of convergence of f(ξ) = f1(ξ1)e1 + f2(ξ2)e2 is unity hence the radii of conver-
gence of both f1(ξ1) and f2(ξ2) are also unity (see, [21, p.141]).

Also,
λn
n
→ ∞, by the Theorem 1.15, f1(ξ1) and f2(ξ2) are not continued beyond the lines

|ξ1| = 1 and |ξ2| = 1 respectively.

By the application of the decomposition theorem of Ringleb, the function f(ξ) = f1(ξ1)e1 +

f2(ξ2)e2 is not continued beyond ‖ξ‖ =
√
|ξ1|2+|ξ2|2

2 = 1.

Theorem 3.3 (Bicomplex Hadamard’s Theorem). If lim | λν√aλν |j = 1 and λν+1−λν > θλν , θ >

0, ‖ξ‖ = 1 is a singular curve for f(ξ) =
∑
aλν ξ

λν , ξ ∈ T.

Proof. Proceeding as (3.5), the bicomplex power series

f(ξ) =
∞∑
ν=0

aλν ξ
λν = f1(ξ1)e1 + f2(ξ2)e2, (3.10)

where f1(ξ1) =
∑∞
ν=0 a1λν ξ

λν
1 and f2(ξ2) =

∑∞
ν=0 a2λν ξ

λν
2 are complex power series.

Now, from equation (1.13), we get

λν
√
aλν = λν

√
a1λνe1 + λν

√
a2λνe2

⇒ | λν√aλν |j = | λν
√
a1λνe1 + λν

√
a2λνe2|j

⇒ | λν√aλν |j = | λν
√
a1λν |e1 + | λν

√
a2λν |e2.

(3.11)

∵ lim | λν√aλν |j → 1 = e1 + e2, (3.12)
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⇒ lim(| λν√a1λν | → 1 and lim(| λν√a2λν | → 1, (see, e.g. [15, p.69]), (3.13)

and λν+1 − λν > θλν , θ > 0, by the Theorem 1.16, |ξ1| = 1 and |ξ2| = 1 are a singular lines for
f1(ξ1) =

∑
a1λν ξ

λν
1 , and f2(ξ2) =

∑
a2λν ξ

λν
2 respectively.

Hence, by the application of the decomposition theorem of Ringleb, ‖ξ‖ =
√
|ξ1|2+|ξ2|2

2 = 1
is a singular plane for the function f(ξ) = f1(ξ1)e1 + f2(ξ2)e2.

Remark 3.4. The analytic prolongation requires knowledge of the natural boundary [8, p.80]. If
f(ξ) is extended into the bicomplex space, then f(ξ) = f(ξ1)e1 + f(ξ2)e2, and since for ω com-
plex, ξ1 = ξ2 = ω the projections Γ1 and Γ2 of the curve Γ in the ξ1 and ξ2 planes, respectively,
are curves congruent to Γ, and thus the natural boundaries of the component functions f(ξ1) and
f(ξ2), respectively.

Continuous curves joining pairs of points similarly placed with regard to Γ1 and Γ2, thereby
crossing Γ1 and Γ2, are the projections of a continuous curve C in the bicomplex space joining
a point within Γ in the complex plane to a point outside C in the complex plane. As a result,
analytic continuation along C is ruled out, and that analytic continuation along C is impossible
[21, p.159].

4 Conclusion

The bicomplex Hadamard’s gap theorem, bicomplex Fabry’s, and Vivanti- Pringsheim theorem
have been proved, which are generalizations of the respective complex theorems. The decom-
position theorem of Ringleb plays a vital role in these generalizations. The idempotent repre-
sentation has a significant application in proving the above theorems. Hadamard’s gap theorem
can be used to prove the Fatou-Polya theorem, saying that most of the power series with positive
radii of convergence have a natural boundary [11]. For future scope, we can generalize the Szász
theorem for the Dirichlet series in the bicomplex space.
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