Coefficient bounds for a new class of analytic functions utilizing q-difference operator

Tariq Al-Hawary and B.A. Frasin
Communicated by Thabet Abdeljawad

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases: Coefficient inequalities, Analytic functions, q-difference operator, q - starlike function, q-convex function.

The authors express gratitude to the reviewers for their valuable comments and suggestions.

Abstract

In this work, we introduce a new class $\mathfrak{D}_{q}(\varpi, \epsilon)$ of analytic functions utilizing means of q-differential operator in the disk $\mathfrak{U}=\{\xi \in \mathbb{C}:|\xi|<1\}$ defined as follows $$
\mathfrak{D}_{q} \mathfrak{f}(\xi)=\frac{\mathfrak{f}(\xi)-\mathfrak{f}(q \xi)}{(1-q) \xi}
$$ where $q \in(0,1)$. Sufficient conditions involving coefficient inequalities for this class are also obtained. Special cases of our main result are also shown to lead sufficient conditions for the classes $\mathcal{S}_{q}^{*}(\epsilon)$ and $\mathcal{K}_{q}(\epsilon)$, where $\mathcal{S}_{q}^{*}(\epsilon)$ and $\mathcal{K}_{q}(\epsilon)$ denote, respectively, the classes of q - starlike and q - convex functions of order ϵ in \mathfrak{U}.

1 Introduction

Let \mathbb{A} denote the class of all functions of the form

$$
\begin{equation*}
\mathfrak{f}(\xi)=\xi+\sum_{s=2}^{\infty} a_{s} \xi^{s} \tag{1.1}
\end{equation*}
$$

that are analytic in the disk $\mathfrak{U}=\{\xi \in \mathbb{C}:|\xi|<1\}$. Further, let \mathbb{P} denote the class of all analytic functions $\varkappa(\xi)$ in \mathfrak{U} of the form [1]

$$
\begin{equation*}
\varkappa(\xi)=1+\sum_{s=1}^{\infty} p_{s} \xi^{s}, \quad \xi \in \mathfrak{U} \tag{1.2}
\end{equation*}
$$

The utilization of q-calculus operators plays a crucial role in elucidating and addressing diverse challenges in applied science. These challenges encompass ordinary fractional calculus, optimal control, q-difference and q-integral equations, and the geometric function theory of complex analysis. The inception of applying q-calculus can be attributed to Jackson [2]. Specifically, for q belonging to the open interval $(0,1)$, Jackson's q-derivative (refer to [2]) of a function $\mathfrak{f} \in \mathbb{A}$ is precisely defined.

$$
\mathfrak{D}_{q} \mathfrak{f}(\xi)=\left\{\begin{array}{lll}
\frac{\mathfrak{f}(\xi)-\mathfrak{f}(q \xi)}{(1-q) \xi} & \text { for } & \xi \neq 0 \tag{1.3}\\
\mathfrak{f}^{\prime}(0) & \text { for } & \xi=0
\end{array}\right.
$$

From (1.3), we have

$$
\begin{equation*}
\mathfrak{D}_{q} \mathfrak{f}(\xi)=1+\sum_{s=2}^{\infty}[s]_{q} a_{s} \xi^{s-1} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
[s]_{e}=\frac{1-e^{s}}{1-e}=\sum_{i=0}^{s-1} e^{i} \tag{1.5}
\end{equation*}
$$

and s called the fundamental number.
For a function $h(\xi)=\xi^{s}$, we obtain $\mathfrak{D}_{q} h(\xi)=\mathfrak{D}_{q} \xi^{s}=\frac{1-q^{s}}{1-q} \xi^{s-1}=[s]_{q} \xi^{s-1}$, and

$$
\begin{aligned}
\lim _{q \rightarrow 1^{-} \mathfrak{D} q} h(\xi) & =\lim _{q \rightarrow 1^{-}}\left([s]_{q} \xi^{s-1}\right) \\
& =s \xi^{s-1} \\
& =\mathfrak{f}^{\prime}(\xi) .
\end{aligned}
$$

For further study on the q-derivative operator \mathfrak{D}_{q}, (see [3]-[17]).
Throughout this paper we will suppose q to be a fixed number and $q \in(0,1)$.
The operators associated with q-calculus, such as the fractional q-integral and fractional q derivative operators, play a crucial role in the formation of various subclasses of analytic functions. . A function $\mathfrak{f} \in \mathbb{A}$ given by (1.1) is called q-starlike of order $\epsilon(0 \leq \epsilon<1)$ and denote by $\mathcal{S}_{q}^{*}(\epsilon)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\xi \mathfrak{D}_{q} \mathfrak{f}(\xi)}{\mathfrak{f}(\xi)}\right\}>\epsilon, \quad(\xi \in \mathfrak{U}) \tag{1.6}
\end{equation*}
$$

Clearly, $\mathcal{S}_{q}^{*}(0)=\mathcal{S}_{q}^{*}$, the class of q-starlike defined by Ismail et. al. [18].
When $q \rightarrow 1^{-}$, then the class $\mathcal{S}_{q}^{*}(\epsilon)$ reduces to the usual class $\mathcal{S}^{*}(\epsilon)$ of starlike functions of order $\epsilon(0 \leq \epsilon<1)$ in \mathfrak{U}.

Also, a function $\mathfrak{f} \in \mathbb{A}$ given by (1.1) is called q-convex of order $\epsilon(0 \leq \epsilon<1)$ and denote by $\mathcal{K}_{q}(\epsilon)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mathfrak{D}_{q} \mathfrak{f}(\xi)+\varpi \xi \mathfrak{D}_{q}^{\prime} \mathfrak{f}(\xi)}{\mathfrak{D}_{q} \mathfrak{f}(\xi)}\right\}>\epsilon, \quad(\xi \in \mathfrak{U}) \tag{1.7}
\end{equation*}
$$

Clearly, $\mathcal{K}_{q}(0)=\mathcal{K}_{q}$, the class of q - convex defined by Ahuja et. al. [3].
When $q \rightarrow 1^{-}$, then the class $\mathcal{K}_{q}(\epsilon)$ reduces to the usual class $\mathcal{K}(\epsilon)$ of convex functions of order $\epsilon(0 \leq \epsilon<1)$ in \mathfrak{U}.

An interesting generalization of the function classes $\mathcal{S}_{q}^{*}(\epsilon)$ and $\mathcal{K}_{q}(\epsilon)$ are provided by the following class:

Definition 1.1. A function $\mathfrak{f} \in \mathbb{A}$ given by (1.1) is in the class $\mathfrak{D}_{q}(\varpi, \epsilon), \varpi \in[0,1]$ if

$$
\operatorname{Re}\left\{\frac{\xi \mathfrak{D}_{q} \mathfrak{f}(\xi)+\varpi \xi^{2} \mathfrak{D}_{q}^{\prime} \mathfrak{f}(\xi)}{\varpi \xi \mathfrak{D}_{q} \mathfrak{f}(\xi)+(1-\varpi) \mathfrak{f}(\xi)}\right\}>\epsilon, \quad(\xi \in \mathfrak{U})
$$

Clearly, when $q \rightarrow 1$, we have $\mathfrak{D}_{q}(0, \epsilon)=\mathcal{S}_{q}^{*}(\epsilon)$ and $\mathfrak{D}_{q}(1, \epsilon)=\mathcal{K}_{q}(\epsilon)$.
Building upon the prior research by [19] (refer also to [20]-[27]), we derive conditions, incorporating coefficient inequalities, that are sufficient for functions to belong to $\mathfrak{D}_{q}(\varpi, \epsilon)$. We also consider various special cases of these coefficients.

The following lemmas are required to our primary result.
Lemma 1.2. (see [19], [28]) A function $\varkappa(\xi) \in \mathbb{P}$ satisfies $\operatorname{Re} \varkappa(\xi)>0(\xi \in \mathfrak{U})$ if and only if

$$
\varkappa(\xi) \neq \frac{\tau-1}{\tau+1} \quad(\xi \in \mathfrak{U})
$$

for all $|\tau|=1$.
Lemma 1.3. A function $\mathfrak{f}(\xi) \in \mathbb{A}$ is in $\mathfrak{D}_{q}(\varpi, \epsilon)$ if and only if

$$
1+\sum_{s=2}^{\infty} E_{s} \xi^{s-1} \neq 0
$$

where

$$
\begin{equation*}
E_{s}=\frac{\left((1+\varpi(s-2))[s]_{q}+\varpi-1\right) \tau+(1+\varpi(s-2 \epsilon))[s]_{q}+(1-\varpi)(1-2 \epsilon)}{2(1-\epsilon)} a_{s} \tag{1.8}
\end{equation*}
$$

Proof. Applying Lemma 1.2, we have

$$
\begin{equation*}
\frac{\frac{\xi \mathfrak{D}_{q} \mathfrak{f}(\xi)+\varpi \xi^{2} \mathfrak{D}_{q}^{\prime} \mathfrak{f}(\xi)}{\varpi \xi \mathfrak{D}_{q} \mathfrak{f}(\xi)+(1-\varpi) \mathfrak{f}(\xi)}-\epsilon}{1-\epsilon} \neq \frac{\tau-1}{\tau+1} \quad(\xi \in \mathfrak{U} ; \tau \in \mathbb{C} ;|\tau|=1) . \tag{1.9}
\end{equation*}
$$

From (1.9), it follows that

$$
\begin{gathered}
2(1-\epsilon) \xi+\sum_{s=2}^{\infty}\left[\left((1+\varpi(s-2))[s]_{q}+\varpi-1\right) \tau+(1+\varpi(s-2 \epsilon))[s]_{q}+(1-\varpi)(1-2 \epsilon)\right] a_{s} \xi^{s} \neq 0 \\
(\xi \in \mathfrak{U} ; \tau \in \mathbb{C} ;|\tau|=1)
\end{gathered}
$$

or, equivalently

$$
\begin{align*}
& 2(1-\epsilon) \xi \\
& \times\left(1+\sum_{s=2}^{\infty} \frac{\left[\left((1+\varpi(s-2))[s]_{q}+\varpi-1\right) \tau+(1+\varpi(s-2 \epsilon))[s]_{q}+(1-\varpi)(1-2 \epsilon)\right]}{[(1-\varpi) \tau+2(1-\varpi \epsilon)]} a_{s} \xi^{s-1}\right) \\
& \neq 0 \tag{1.10}
\end{align*}
$$

Dividing equation (1.10) by $[(1-\varpi) \tau+2(1-\varpi \epsilon)] \xi \quad(\xi \neq 0)$, we obtain

$$
1+\sum_{s=2}^{\infty} \frac{\left[\left((1+\varpi(s-2))[s]_{q}+\varpi-1\right) \tau+\varpi(s-2 \epsilon)[s]_{q}+(1-\varpi)(1-2 \epsilon)+1\right]}{2(1-\epsilon)} a_{s} \xi^{s-1} \neq 0
$$

where

$$
E_{s}=\frac{\left((1+\varpi(s-2))[s]_{q}+\varpi-1\right) \tau+\varpi(s-2 \epsilon)[s]_{q}+(1-\varpi)(1-2 \epsilon)+1}{2(1-\epsilon)} a_{s} .
$$

Remark 1.4. The normalization conditions lead to the following:

$$
a_{0}=0 \text { and } a_{1}=1
$$

that

$$
E_{0}=\frac{(\varpi-1) \tau+(1-\varpi)(1-2 \epsilon)+1}{2(1-\epsilon)} a_{0}=0,
$$

and

$$
E_{1}=\frac{2(1-\epsilon)}{2(1-\epsilon)} a_{1}=1
$$

2 Coefficient conditions for the class $\mathfrak{D}_{q}(\varpi, \epsilon)$

In this section, using Lemma 1.3, we have the following result.
Theorem 2.1. If $\mathfrak{f}(\xi) \in \mathbb{A}$ satisfies the condition:

$$
\begin{aligned}
& \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left[(1+\varpi(u-2 \epsilon))[u]_{q}+(1-\varpi)(1-2 \epsilon)\right](-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.+\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left((1+\varpi(u-2))[u]_{q}+\varpi-1\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right) \\
& \leq 2(1-\epsilon), \\
& \text { then } \mathfrak{f}(\xi) \in \mathfrak{D}_{q}(\varpi, \epsilon) .
\end{aligned}
$$

Proof. To prove that $1+\sum_{s=2}^{\infty} E_{s} \xi^{s-1} \neq 0$, it is sufficient that

$$
\begin{aligned}
& \left(1+\sum_{s=2}^{\infty} E_{s} \xi^{s-1}\right)(1-\xi)^{\varpi}(1+\xi)^{\delta} \\
& =1+\sum_{s=2}^{\infty}\left[\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma} E_{u}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u}\right\}\binom{\delta}{s-\sigma}\right] \xi^{s-1} \neq 0 .
\end{aligned}
$$

Thus, if $\mathfrak{f}(\xi)$ satisfies

$$
\sum_{s=2}^{\infty}\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma} E_{u}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u}\right\}\binom{\delta}{s-\sigma}\right| \leq 1,
$$

that is, if

$$
\frac{1}{2(1-\epsilon)} \sum_{s=2}^{\infty}\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma} \Psi(u, q, \epsilon)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right| \leq 1 .
$$

where

$$
\Psi(u, q, \epsilon)=\left((1+\varpi(u-2))[u]_{q}+\varpi-1\right) \tau+\varpi(u-2 \epsilon)[u]_{q}+(1-\varpi)(1-2 \epsilon)+1 .
$$

Now

$$
\begin{aligned}
& \frac{1}{2(1-\epsilon)} \sum_{s=2}^{\infty}\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma} \Psi(u, q, \epsilon)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right| \\
& \leq \frac{1}{2(1-\epsilon)} \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left(1+\varpi(u-2 \epsilon)[u]_{q}+(1-\varpi)(1-2 \epsilon)\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.\left.+|\tau| \sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left((1+\varpi(u-2))[u]_{q}+\varpi-1\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma} \right\rvert\,\right) \\
& \leq 1 \quad(\tau \in \mathbb{C} ;|\tau|=1), \\
& \quad \text { then } \mathfrak{f}(\xi) \in \mathfrak{D}_{q}(\varpi, \epsilon) \text { and so the proof is complete. }
\end{aligned}
$$

If we let $\varpi=0$, then Theorem 2.1 gives the following corollary.
Corollary 2.2. If $\mathfrak{f}(\xi) \in \mathbb{A}$ satisfies the condition:

$$
\begin{aligned}
& \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left([u]_{q}+1-2 \epsilon\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.+\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left([u]_{q}-1\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right) \\
& \leq 2(1-\epsilon),
\end{aligned}
$$

then $\mathfrak{f}(\xi) \in \mathcal{S}_{q}^{*}(\epsilon)$. In particular, for $\epsilon=0$, if $\mathfrak{f}(\xi) \in A$ satisfies the condition:

$$
\begin{aligned}
& \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left([u]_{q}+1\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.+\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}\left([u]_{q}-1\right)(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right) \\
& \leq 2
\end{aligned}
$$

then $\mathfrak{f}(\xi)$ is q-starlike in \mathfrak{U}.
If we let $\varpi=1$, then Theorem 2.1 gives the following corollary

Corollary 2.3. If $\mathfrak{f}(\xi) \in \mathbb{A}$ satisfies the condition:

$$
\begin{aligned}
& \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}(u+1-2 \epsilon)[u]_{q}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.+\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}(u-1)[u]_{q}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right) \\
& \leq 2(1-\epsilon),
\end{aligned}
$$

then $\mathfrak{f}(\xi) \in \mathcal{K}_{q}(\epsilon)$. In particular, for $\epsilon=0$, if $\mathfrak{f}(\xi) \in \mathbb{A}$ satisfies the following condition:

$$
\begin{aligned}
& \sum_{s=2}^{\infty}\left(\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}(u+1)[u]_{q}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right. \\
& \left.+\left|\sum_{\sigma=1}^{s}\left\{\sum_{u=1}^{\sigma}(u-1)[u]_{q}(-1)^{\sigma-u}\binom{\varpi}{\sigma-u} a_{u}\right\}\binom{\delta}{s-\sigma}\right|\right) \\
& \leq 2
\end{aligned}
$$

then $\mathfrak{f}(\xi)$ is q-convex in \mathfrak{U}.
If we put $\varpi=\delta=0$ in Theorem 2.1, we have the following corollary
Corollary 2.4. If $\mathfrak{f}(\xi) \in \mathbb{A}$ satisfies the condition:

$$
\sum_{s=2}^{\infty}\left[1+\varpi(s-\epsilon-1)[s]_{q}-\epsilon(1-\varpi)\right]\left|a_{s}\right| \leq 1-\epsilon
$$

then $\mathfrak{f}(\xi) \in \mathfrak{D}_{q}(\varpi, \epsilon)$.

Remark 2.5. (i) Letting $q \rightarrow 1^{-}$in Corollary 2.2 and Corollary 2.3, we get the sufficient conditions for the classes $\mathcal{S}^{*}(\epsilon)$ and $\mathcal{K}(\epsilon)$ obtained by Hayami et al. [19].
(ii) Letting $q \rightarrow 1^{-}$and $\varpi=0$, $\varpi=1$ in Corollary 2.4, we get the following well-known coefficient conditions for the familiar classes \mathcal{S}^{*} and \mathcal{K}, respectively.

3 Conclusions

In this paper, we investigate a new class $\mathfrak{D}_{q}(\varpi, \epsilon)$ of analytic functions defined in the disk $\mathfrak{U}=$ $\{\xi \in \mathbb{C}:|\xi|<1\}$, which are associated with q-calculus operators. Further, we gave sufficient conditions involving coefficient inequalities for functions in this class. If we let $q \rightarrow 1^{-}$, we observe that the inequalities in Theorem 2.1 provide the sufficient conditions for the classes $\mathcal{S}^{*}(\epsilon)$ and $\mathcal{K}(\epsilon)$ due to Hayami et al.[19].

We also conclude by remarking that the class $\mathfrak{D}_{q}(\varpi, \epsilon)$ defined in Section 1 can be used to investigate some properties for functions in this class like, coefficient estimates, distortion theorems, etc.

References

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York (1983).
[2] H. Aldweby and M. Darus, Coefficient estimates of classes of q-starlike and q-convex functions, Advanced Studies in Contemporary Mathematics, vol. 26(1) (2016) 21-26.
[3] O. P. Ahuja, A. Cetinkaya and Y. Polatoglu, Bieberbach-de Branges and Fekete-Szego inequalities for certain families of q-convex and q-close to convex functions, J.Comput. Anal. Appl., 26(4) (2019) 639-649.
[4] A. Amourah, B. Aref Frasin, T. Al-Hawary, Coefficient Estimates for a Subclass of Biunivalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials, Kyungpook Mathematical Journal, 2022, 62 (2), 257-269.
[5] B. A. Frasin, M. Darus, Subclass of analytic functions defined by q-derivative operator associated with Pascal distribution series, AIMS Mathematics, 2021, 6(5): 5008-5019. doi: 10.3934/math. 2021295.
[6] B. A. Frasin, N. Ravikumar and S. Latha, A subordination result and integral mean for a class of analytic functions defined by q-differintegral operator, Ital. J. Pure Appl. Math., N. 45 (2021) 268-277.
[7] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Analysis Mathematica, 43(3) (2017) 475-487.
[8] S. Kanas and D. Răducanu, Some subclass of analytic functions related to conic domains,Math. Slovaca 64(5) (2014) 1183-1196.
[9] F. Müge Sakar, Muhammad Naeem, Shahid Khan and Saqib Hussain, Hankel determinant for class of analytic functions involving q-derivative operator, J. Adv. Math. Stud. 14(2) (2021) 265-278.
[10] C. Ramachandran, S. Annamalai and B.A. Frasin, The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Paran. Mat., 39(1) (2021) 133-146.
[11] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and qconvex functions of complex order, Journal of Mathematical Inequalities, 10(1) (2007) 135-145.
[12] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis, vol. 2014, Article ID 846719, 7 pages, 2014.
[13] H. Shamsan, S. Latha and B.A. Frasin, Convolution conditions for q-Sakaguchi-Janowski type functions, Ital. J. Pure Appl. Math., N. 44-2020, pp. 521-529.
[14] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020) 327-344.
[15] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials,Appl. Math. Inf. Sci. 5(34) (2011) 390-444.
[16] A. Alsoboh, A. Amourah, M. Darus and C. A. Rudder, Investigating New Subclasses of BiUnivalent Functions Associated with q-Pascal Distribution Series Using the Subordination Principle, Symmetry, 15. 5(2023) 1109.
[17] A. Amourah, A. Alsoboh, O. Ogilat, G. M. Gharib, R. Saadeh and M. Al Soudi, A generalization of Gegenbauer polynomials and bi-univalent functions, Axioms. 12(2) (2023) 128.
[18] M. E. H. Ismail, E. Merkes, D. Steyr, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990) 77-84.
[19] T. Hayami, S. Owa and H.M. Srivastava, Coefficient inequalities for certain classes of analytic and univalent functions, J. Ineq. Pure Appl. Math.Vol. 8 (2007), Issue 4, Article 95, 1-10.
[20] B. Frasin, M. Darus, T. Al-Hawary, Coefficient inequalities for certain classes of analytic functions associated with the Wright generalized hypergeometric function, Journal of Mathematics and Applications, 2011, 34, 27-34.
[21] B.A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, International Journal of Nonlinear Science, 1749-3889, 10(2) (2010) 206-211.
[22] B.A. Frasin, Coefficient inequalities for certain classes of analytic functions of complex order,Math. Vesnik 63 (1) (2011) 73-78.
[23] T. Hayami and S. Owa, Coefficient conditions for certain univalent functions, Int. \{J. Open Problems Comput. Sci. Math., 1(1) (2008).
[24] S. Latha, Certain class of analytic and univalent functions involving the Ruscheweyh derivative operator, Journal of Math. Analysis, Vol. 3(33) 2009 1633-1644.
[25] S. Latha, Coefficient inequalities and convolution conditions, Int. J. Contemp. Math. Sciences, 3(30) (2008) 1461-1467.
[26] F. Müge Sakar and H. Özlem Güney, Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Defined by the Q-derivative Operator, Konuralp Journal of Mathematics, 6(2) (2018) 279-285.
[27] F.M. Sakar, S.M. Aydogan, Coefficient Bounds for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Defined by Convolution, Acta Universitatis Apulensis, 55, 11-21., Doi: doi: 10.17114/j.aua.2018.55.02, 2018).
[28] H. Silverman, E. M. Silvia, and D. Telage, Convolution conditions for convexity, starlikeness and spirallikeness, Math. Z., 162 (1978) 125-130.

Author information

Tariq Al-Hawary, Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816. Jordan., Jordan.
E-mail: tariq_amh@bau.edu. jo
B.A. Frasin, Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan., Jordan.

E-mail: bafrasin@yahoo.com
Received: 2023-01-10
Accepted: 2023-03-20

