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Abstract In this work, we introduce a new class ©,(w, €) of analytic functions utilizing
means of ¢-differential operator in the disk 4l = {& € C : |¢| < 1} defined as follows

f(€) —§(4€)
(1—q)¢

where ¢ € (0,1). Sufficient conditions involving coefficient inequalities for this class are also
obtained. Special cases of our main result are also shown to lead sufficient conditions for the
classes Sy (€) and KCy(¢), where Sy (e) and KCy(e€) denote, respectively, the classes of ¢- starlike
and ¢- convex functions of order € in [.

C‘qu(ﬁ) =

1 Introduction

Let A denote the class of all functions of the form
&) =6+ ag (1.1)
s=2

that are analytic in the disk 4l = {{ € C : |¢| < 1}. Further, let P denote the class of all analytic
functions () in Y of the form [1]

#( =14 p& el (1.2)
s=1

The utilization of g-calculus operators plays a crucial role in elucidating and addressing diverse
challenges in applied science. These challenges encompass ordinary fractional calculus, optimal
control, g-difference and g-integral equations, and the geometric function theory of complex
analysis. The inception of applying g-calculus can be attributed to Jackson [2]. Specifically, for
g belonging to the open interval (0, 1), Jackson’s g-derivative (refer to [2]) of a function § € A is

precisely defined.
f(&) —(q€)

0
D,f(€) = (1-q)¢ for £#£0, (1.3)
§(0) for £=0.
From (1.3), we have
Df(€) = 14 [slgase™! (14)
s=2

where
s—1

[l =12C =3¢, (1.5)

1—e

7=
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and s called the fundamental number. .
For a function h(§) = &%, we obtain D ,h(£) = D,£° = %55—1 = [s]4£°7 ", and

lim  h(¢) = lim ([s],6°")

q—1-"Dq q—1-

|

)
Ay
w
L

For further study on the g-derivative operator D, (see [3]-[17]).

Throughout this paper we will suppose g to be a fixed number and ¢ € (0, 1).

The operators associated with g-calculus, such as the fractional g-integral and fractional g¢-
derivative operators, play a crucial role in the formation of various subclasses of analytic func-
tions. . A function § € A given by (1.1) is called g-starlike of order ¢( 0 < ¢ < 1) and denote by

S; (¢) if and only if e.i(6)
Re { 24 }>e, ¢ € ). (1.6)
& (c =40

Clearly, S;(0) = S; , the class of g- starlike defined by Ismail et. al. [18].

When ¢ — 17, then the class Sy (¢) reduces to the usual class S*(e) of starlike functions of
order e( 0 < e < 1) in .

Also, a function f € A given by (1.1) is called g-convex of order ¢( 0 < € < 1) and denote by
ICq(€) if and only if

Df(€) + TEDLF(E)
Re{ D100 } >e, (el (1.7)

Clearly, Ky (0) = K, the class of g- convex defined by Ahuja et. al. [3].

When ¢ — 17, then the class Ky (¢) reduces to the usual class K(¢) of convex functions of
order e( 0 < e < 1)in gl

An interesting generalization of the function classes Sy (¢) and KCy(¢) are provided by the
following class:

Definition 1.1. A function f € A given by (1.1) is in the class ©,(w,€), w € [0, 1] if

Re ) E241(O) + wDf(6)
@EDf(6) + (1 —@)f(€

Clearly, when ¢ — 1, we have ©,(0,¢) = Sy (¢) and D,(1,€) = Ky (e).

Building upon the prior research by [19] (refer also to [20]-[27]), we derive conditions, in-
corporating coefficient inequalities, that are sufficient for functions to belong to ©,(zw,€). We
also consider various special cases of these coefficients.

The following lemmas are required to our primary result.

Lemma 1.2. (see [19], [28]) A function () € P satisfies Res(£) > 0 (€ € W) if and only if

)}>6, (€ ed).

T—1

(el

Sforall 7| = 1.
Lemma 1.3. A function §(§) € A is in © ,(w, €) if and only if

1+§:ES§S“ £0

s=2
where

B - (14+w(s=2))[s]g +ww—1)7 _;((11 ‘1‘62)7(5 —26)) [slg + (1 —=)(1 - 26)%_ (1.8)
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Proof. Applying Lemma 1.2, we have

EDJ(E)+wEDyf(E) !
@ED ¢ f(€)+(1—=)f(£) T . . _
T 7574-1 Eed;TeC |r|=1). (1.9)

From (1.9), it follows that
2(1- 6€+Z ((1+ @5 =2)) [sly + @ = D7 + (1 + @(5 = 2) [y + (1 = @)(1 — 26)] a,€* £ 0

EedreCrl=1)
or, equivalently
2(1 —e)¢
(1 +Z (1t w(s =) [sly + 9~ D7+ (1L + w(s =26) [s]y + (1 - @)1 2e>]as§sl>

[(1—-w)7 +2(1 — we)]
£ 0. (1.10)
Dividing equation (1.10) by [(1 — w)7 4+ 2(1 — we)] € (£ # 0), we obtain

5 e et 200 0
where
B, = (I4+w(s—2))[s]lq +w—1)7+w(s—2€)[s]g + (1 —w)(1 —2¢) + las.

2(1 —¢)

Remark 1.4. The normalization conditions lead to the following:

ap=0anda; =1

et (= et (1-w)(1-20 41
w—1)r+ (1 —@)(l —2¢) +
E = —
0 =0 ap =0,
and 21
— €
Er=sa—gu=1

2 Coefficient conditions for the class D, (w, €)
In this section, using Lemma 1.3, we have the following result.

Theorem 2.1. If {(£) € A satisfies the condition:

< (1+ w(u — 26) [ul +<1—w><1—26ﬂ<‘”"_“( wu)}( : )

e (L

o=1

§2(1—e;

then §(§) € D4(w, ).
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Proof. To prove that 1 + > E,£°7! £ 0, it is sufficient that
s=2

(1 + i&&“) (1-9)7(1+¢)°

—1 +§: ;{gEu(—l)”“<ofu)} (S i U)] el 40,

s=2
Thus, if f(£) satisfies
(a7 )2
o—1u s—o
s=2 lo=1 \u=lIl
that is, if
1 oo S o w 5
¥ 1) “ <1
2(1_6)82::2 Jl{ul (uque)( ) (a—u)a }(8—0)
where

Y (u,q,¢) = (1+w(u—2))[uly +@— 1)1+ @(u—2€)ul, + (1 —=)(1 —2¢) + 1.

> S vnacn (7)ol ()

< 2(11_6) 3 ( 2{2(1 + w(u—26)ul, + (1 - @)(1 26))(1)U“<U?u)au} <sfg>
Fir {Z(<1+w<uz>>[u1q+w 1><1>“(U7fu)au} L) )
<1 (teC; |7|=1),

then f(¢) € ®,(w, €) and so the proof is complete. i

If we let @ = 0, then Theorem 2.1 gives the following corollary.
Corollary 2.2. If f(¢) € A satisfies the condition:

> ({27 ) ()

> {i([qu - 1><1>0“<U?u)au} ,,)
200,
then §(€) € S:(€). In particular, for e = 0, if §(€) € A satisfies the condition:
5 (E{geenor ()
() (%)
<2,

then §(§) is q-starlike in 4.
If we let w = 1, then Theorem 2.1 gives the following corollary

+
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Corollary 2.3. I[f f(£) € A satisfies the condition:

(5 (S -7} ()
g ()

u=1
2(] )a

then §(§) € Ky(€). In particular, for e = 0, if §(€) € A satisfies the following condition:
o0 S o o o 5
;(;{;wl)[u]q(l) (U_u)au} ,2,)

S {5 (2)) ()

u=1

+

+

<2

)

then §(&) is q-convex in 4L
If we put @w = § = 0 in Theorem 2.1, we have the following corollary

Corollary 2.4. If f(§) € A satisfies the condition:
Z +w(s—e—1)[s]y —e(l —w)]|as| <1 —k,
s=2

then §(§) € D4(w, ).

Remark 2.5. (i) Letting ¢ — 17 in Corollary 2.2 and Corollary 2.3, we get the sufficient condi-
tions for the classes S*(¢) and K () obtained by Hayami et al.[19].

(ii) Letting ¢ — 17and w = 0, w = 1 in Corollary 2.4, we get the following well-known
coefficient conditions for the familiar classes S* and IC, respectively.

3 Conclusions

In this paper, we investigate a new class D, (w, €) of analytic functions defined in the disk 4 =
{¢ € C: [¢] < 1}, which are associated with g-calculus operators. Further, we gave sufficient
conditions involving coefficient inequalities for functions in this class. If we let ¢ — 17, we
observe that the inequalities in Theorem 2.1 provide the sufficient conditions for the classes
S*(e) and K(€) due to Hayami et al.[79].

We also conclude by remarking that the class ©,(w, ¢) defined in Section 1 can be used
to investigate some properties for functions in this class like, coefficient estimates, distortion
theorems, etc.
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