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Abstract The main purpose of the present paper is to study four dimensional strict Walker
manifolds. Conditions for four dimensional strict Walker manifolds to be locally symmetric are
given..

1 Introduction

The study of the curvature properties of a given class of pseudo-Riemannian manifolds is impor-
tant to our knowledge of these spaces. They are used to exemplify some of the main differences
between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian man-
ifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different
from those which occur in Riemannian geometry.

Walker m-manifolds are pseudo-Riemannian manifolds which admit a non-trivial parallel
null r-plane field with r ≤ m. Walker m-manifolds are applicable in physics. Lorentzian Walker
manifolds have been studied extensively in physics since they constitute the background metric
of the pp-wave models. A pp-wave spacetime admits a covariantly constant null vector field U .
Brinkmann spacetimes are those Lorentzian manifolds admitting a global parallel null vector
field. A particular class consists of plane fronted waves (PFW) with obvious geometric and
physical interest. Walker manifolds represent a special subclass of plane fronted waves.

A Walker manifold is a triple (M, g,D), where M is an m-dimensional manifold, g an indefi-
nite metric andD an r-dimensional parallel null distribution. Of special interest are manifolds of
even dimensions admitting a field of null planes of maximum dimensional (r = m

2 ). Since the di-
mension of a null plane is r ≤ m

2 , the lowest possible case of a Walker metric is that of (++−−)
manifolds admitting a field of parallel null 2-planes [12]. Curvature properties and a complete
characterization of locally symmetric or locally conformally flat three-dimensional Walker man-
ifolds have been studied in [3]. Recently, the conditions for a restricted four-dimensional Walker
manifold to be Einstein, locally symmetric Einstein and locally conformally flat are given in
[8]. A lot of examples of Walker structures have appeared, which proved to be important in
differential geometry and general relativity as well [4, 5, 6, 7, 9, 11].

A field of r-plane D is said to be strictly parallel if each vector in the plane at a point p ∈M
is carried by a parallel transport by a vector in the plane at another point q ∈ M , the latter
vector being the same for all paths from p to q [12]. A four-dimensional Walker manifold is
a strict Walker manifold if and only if D admits two null parallel spanning vector fields or,
equivalently, if we can choose a coordinate system so gij(x1, x2, x3, x4) = gij(x3, x4), i, j = 3, 4.
In this paper, we study a strict four-dimensional Walker manifold. We derive the (0, 4)-curvature
tensor, the Ricci tensor, and study some of the properties associated with a class of strict four-
dimensional Walker manifolds. We establish a theorem for the metric to be locally symmetric.

The paper is organized in the following way. In Section 2, we describe the curvature of
four-dimensional strict Walker metrics. In Section 3, we recall some basic notions on symmetric
spaces. In Section 4, locally symmetric condition will be studied on four-dimensional strict
Walker metrics.
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2 Description of the metric

A four-dimensional pseudo-Riemannian M of signature (2, 2) is said to be a Walker manifold if
it admits a parallel totally isotropic 2-plane field. Such a manifold is locally isometric to (U, g)
where U is an open subset of R4 and the g is given with respect to the coordinate vector field
∂i := ∂

∂xi
by

g(∂1, ∂3) = g(∂2, ∂4) = 1 and g(∂i, ∂j) = gij(x1, x2, x3, x4) for i, j = 3, 4.

One says that M is a strict Walker manifold if g(∂i, ∂j) = gij(x3, x4) for i, j = 3, 4. In this
paper, we consider the family of metrics ga,b,c given by

ga,b,c = 2(dx1 ◦ dx3 + dx2 ◦ dx4) + a(x3, x4)dx3 ◦ dx3

+b(x3, x4)dx4 ◦ dx4 + 2c(x3, x4)dx3 ◦ dx4, (2.1)

where a, b and c are functions of the (x3, x4). The couple (U, ga,b,c) is called four-dimensional
strict Walker manifold and its matrix form is given by

(ga,b,c)ij =


0 0 1 0
0 0 0 1
1 0 a c

0 1 c b

 . (2.2)

Next, we denote by ∂i := ∂
∂xi

, fi := ∂f(x3,x3)
∂xi

and fij := ∂2f(x3,x3)
∂xi∂j

. A straightforward calculation
from (2.2), shows that the non-zero components of the Levi-Civita connection of the metric (2.1)
are given by:

∇∂3∂3 =
1
2
a3∂1 +

1
2
(2c3 − a4)∂2;

∇∂3∂4 =
1
2
a4∂1 +

1
2
b3∂2;

∇∂4∂4 =
1
2
(2c4 − b3)∂1 +

1
2
b4∂2.

The non-zero components of the curvature tensor of (U, ga,b,c) are given by:

R(∂3, ∂4)∂3 =
1
2
(a44 + b33 − 2c34)∂2 and R(∂3, ∂4)∂4 = −

1
2
(a44 + b33 − 2c34)∂1.

The nonzero component of the (0, 4)-curvature tensor of the metric (2.1) is given by:

R3434 =
1
2
(a44 + b33 − 2c34).

We find that the Ricci tensor and the scalar curvature of (U, ga,b,c) vanish. More precisely, we
have:

ρij = 0 and τ = 0 ∀i, j = 1, 2, 3, 4.

The nonzero components of the Einstein tensor Gij = ρij − τ
4 gij are given by Gij = 0 ∀i, j =

1, 2, 3, 4.

Proposition 2.1. Let (M, ga,b,c) be a strict four-dimensional Walker manifolds. Then:
(1) (M, ga,b,c) is Ricci flat.
(2) (M, ga,b,c) is Einstein.

We say that M is geodesically complete if all geodesics exist for all time. We say that M
exhibits Ricci blowup if there exists a geodesic γ defined for t ∈ [0, T ) with T < ∞ and if
limt→T |ρ(γ̇, γ̇)| = ∞. Clearly, if M exhibits Ricci blowup, then it is geodesically incomplete
and it can not be isometrically embedded in a geodesically complete manifold.
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Theorem 2.2. ( [1]) A four-dimensional strict Walker manifold is geodesically complete.

Proof. Let M be as in (2.1). Then the geodesic equations for Mare given by:

0 = ẍ1 +
1
2
a3ẋ3ẋ3 + a4ẋ3ẋ4 +

1
2
(2c4 − b3)ẋ4ẋ4,

0 = ẍ2 +
1
2
(2c3 − a4)ẋ3ẋ3 + b3ẋ3ẋ4 +

1
2
b4ẋ4ẋ4,

0 = ẍ3, 0 = ẍ4.

The last two equations have the following trivial solutions:

x3(t) = At+B; x4(t) = A′t+B′,

where A,B,A′, B′ ∈ R. The first two equations then have the form ẍ1 = f1(t) and ẍ2 = f2(t)
which can be solved. More precisely, we obtain:

x1(t) = −1
2

[1
2
a3A

2 + a4AA
′ +

1
2
(2c4 − b3)A

′2
]
t2

x2(t) = −1
2

[1
2
(2c3 − a4)A

2 + b3AA
′ +

1
2
b4A
′2
]
t2.

Thus the geodesics extend for infinite time and M is geodesically complete. The proof is com-
plete. 2

Example 2.3. Let (M, gx2
4,x

2
3,x

2
3
) be a strict Walker manifold of dimension 4 of the form

g(x2
4,x

2
3,x

2
3)
=


0 0 1 0
0 0 0 1
1 0 x2

4 x2
3

0 1 x2
3 x2

3

 .

The nonzero components of the Christoffel symbols of (M, gx2
4,x

2
3,x

2
3
) are given by : Γ2

33 = (2x3−
x4), Γ1

34 = x4, Γ2
34 = x3, Γ2

34 = x3, Γ1
44 = −x3. The geodesic equations of (M, gx2

4,x
2
3,x

2
3
) are

given by :

0 = ẍ1 + x4ẋ3ẋ4 − x3ẋ4ẋ4;

0 = ẍ2 + (2x3 − x4)ẋ3ẋ3 + x3ẋ3ẋ4;

0 = ẍ3; 0 = ẍ4.

We obtain: x3(t) = At + B, x4(t) = A′t + B′, x1(t) = 1
2(x3A

′2 − x4AA
′)t2 and x2(t) =

1
2

[
− (2x3 − x4)A2 − x3AA

′]t2. Hence (M, gx2
4,x

2
3,x

2
3
) is geodesically complete.

Example 2.4. Let (M, gx2
4,x

2
3,x

2
4
) be a strict Walker manifold of dimension 4 of the form

g(x2
4,x

2
3,x

2
4)
=


0 0 1 0
0 0 0 1
1 0 x2

4 x2
4

0 1 x2
4 x2

3

 .

The nonzero components of the Christoffel symbols of (M, gx2
4,x

2
3,x

2
4
) are given : Γ2

33 = −x4, Γ1
34 =

x4, Γ2
34 = x3, Γ2

34 = x3, Γ1
44 = (2x4 − x3). The geodesic equations of (M, gx2

4,x
2
3,x

2
4
) are given

by :

0 = ẍ1 + x4ẋ3ẋ4 − (2x4 − x3)ẋ4ẋ4;

0 = ẍ2 + x4ẋ3ẋ3 + x3ẋ3ẋ4;

0 = ẍ3; 0 = ẍ4.

We obtain x3(t) = At + B, x4(t) = A′t + B′, x1(t) = 1
2(x4A

′A − (2x4 − x3)A′2)t2 and
x2(t) = − 1

2(−x4A
2 − x3AA

′)t2. Hence (M, gx2
4,x

2
3,x

2
4
) is geodesically complete.
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3 Symmetric spaces

We say that a parametrized curve c(t) in M is a geodesic if it satisfies the geodesic equation

∇γ̇ γ̇ = 0,

or, equivalently, in a system of coordinates where c = (c1, . . . , cm) we have:

c̈i + Γ
i
jk ċj ċk = 0.

This means that c locally minimizes the distance between points on c. An affine connection∇ is
said to be geodesically complete if every geodesic extends to the parameter range (−∞,+∞).

The exponential map expp : TpM → M is a local diffeomorphism from a neighborhood of
the origin 0 ∈ TpM to a neighborhood of p in M . It is characterized by the fact that the curves
cv(s) := expp(sv) are geodesics in M with initial velocity v ∈ TpM . One says that (M,∇) is
complete if expp is defined for all TpM . Conjugate points arise where expp fails to be a local
diffeomorphism. Furthermore, since there can be different geodesics joining two points, expp
can fail to be globally one-to-one.

Let (M, g) be a pseudo-Riemannian manifold and p ∈ M . Let expp be an exponential map;
this is the local diffeomorphism from a neighborhood of 0 in TpM to a neighborhood of p in M .
It is characterized by the fact that the curves s 7→ expp(sv) are geodesics starting at p with initial
direction v for v ∈ TpM . The geodesic symmetry at p is then defined on a suitable neighborhood
of p by setting:

Sp(Q) = expp{−exp−1
p (Q)}.

We may use expp to identify a neighborhood of 0 in TpM with a neighborhood of p in M and
to regard TpM as a pseudo-Riemannian manifold locally isometric to M ; under this identifica-
tion, Sp(v) = −v is simply multiplication by −1 and the straight lines through the origin are
geodesics. One has the following result:

Lemma 3.1. Let (M, g) be a connected pseudo-Riemannian manifold.
(a) The following assertions are equivalent and, if either is satisfied, then (M, g) is said to be

locally symmetric or to be a local symmetric space:
(i) The geodesic symmetry Sp is an isometry for all p ∈M .
(ii )∇R = 0.
(b) If (M, g) is locally symmetric, then (M, g) is locally homogeneous, i.e., given any two

points p, q ∈M , there is an isometry ϕp,q from some neighborhood of p in M to some neighbor-
hood of q in M .

Remark 3.2. If (M, g) is a local symmetric space that is complete and simply connected, then
(M, g) is said to be globally symmetric or to be a symmetric space. In this setting, the geodesic
symmetry extends to a global isometry of (M, g), and (M, g) is homogeneous. If G0 is the
isotropy subgroup of the group of isometries G of (M, g), then M = G/G0 with the induced
metric. Global symmetric spaces form a very special class of pseudo-Riemannian manifolds and
techniques of group theory are used to study them. The associated Lie algebras G and G0 of G
and of G0 play a central role. We refer to Helgason [10] for further details.

4 Locally symmetric strict Walker manifolds

A symmetric space is a connected pseudo-Riemannian manifold whose geodesic symmetries are
isometries. A manifold is said to be locally symmetric if it is isometric to a symmetric space.
A well-known characterization states that a pseudo-Riemannian manifold (M, g) is locally sym-
metric if and only if ∇R = 0, where R is the Riemann curvature tensor. In particular, a locally
symmetric space is Ricci-parallel.

Theorem 4.1. A strict four dimensional Walker of the form (2.2) for some functions a(x3, x4),
b(x3, x4) and c(x3, x4) is locally symmetric if and only if the following equations are satisfied

∂3a

∂x2
4∂x3

+
∂3b

∂x3
3
− 2∂3c

∂x2
3∂x4

= 0 and
∂3b

∂x2
3∂x4

+
∂3a

∂x3
4
− 2∂3c

∂x2
4∂x3

= 0. (4.1)
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Proof. The only nonzero component of the Riemann curvature tensor is:

R3434 =
1
2
(b33 + a44 − 2c34).

Recall the locally symmetric condition is equivalent to ∇R = 0. A straightforward calculation
is that for such a metric ga,b,c, the possibly non-vanishing components of the covariant derivative
of R, i.e. ∇kRijlm = (∇∂kR)(∂i, ∂j , ∂l, ∂m) are given by

(∇∂3R)(∂3, ∂4, ∂3, ∂4) =
1
2
∂

∂x3

∂2a

∂x2
4
+

1
2
∂

∂x3

∂2b

∂x2
3
− ∂

∂x3

∂2c

∂x3∂x4
, (4.2)

and

(∇∂4R)(∂3, ∂4, ∂3, ∂4) =
1
2
∂

∂x4

∂2a

∂x2
4
+

1
2
∂

∂x4

∂2b

∂x2
3
− ∂

∂x4

∂2c

∂x4∂x3
. (4.3)

Therefore, for the strict Walker metric ga,b,c to be locally symmetric, it is necessary that:

1
2

∂3a

∂x2
4∂x3

+
1
2
∂3b

∂x3
3
− ∂3c

∂x2
3∂x4

= 0 and
1
2

∂3b

∂x2
3∂x4

+
1
2
∂3a

∂x3
4
− ∂3c

∂x2
4∂x3

= 0.

The proof is complete. 2

Using both (4.2) and (4.3), by standard calculations, we obtain the following:

Theorem 4.2. A strict four-dimensional Walker of the form (2.2) is locally symmetric if and only
the functions a, b and c satisfying the following forms:

a(x3, x4) =
K

2
x2

4 +G1(x3, x4) + x4H1(x3) + F1(x3),

b(x3, x4) =
K

2
x2

3 +G2(x3, x4) + x3H2(x4) + F2(x4),

c(x3, x4) = G3(x3, x4)−
K

2
x3x4 + x4H3(x4) + F3(x3).

where K ∈ R and G1, G2, G3, F1, F2, F3, H1, H2 and H3 are smooth functions .

Proof. From (4.2), we have :

(∇∂3R)(∂3, ∂4, ∂3, ∂4) =
1
2
∂

∂x3

∂2a

∂x2
4
+

1
2
∂

∂x3

∂2b

∂x2
3
− ∂

∂x3

∂2c

∂x3∂x4
= 0.

That means:

∂2a

∂x2
4
+
∂2b

∂x2
3
− 2

∂2c

∂x4∂x3
= A(x4). (4.4)

From (4.3), we et:

∂2a

∂x2
4
+
∂2b

∂x2
3
− 2

∂2c

∂x3∂x4
= B(x3). (4.5)

By (4.4) and (4.5), we have: A(x4) = B(x3) = K ∈ R. Hence, by (4.4):

∂2a

∂x2
4
= K +

( 2∂2c

∂x3∂x4
− ∂2b

∂x2
3

)
,

this implies

∂a

∂x4
= Kx4 +

∫ ( 2∂2c

∂x3∂x4
− ∂2b

∂x2
3

)
dx4 +H1(x3),
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and so

a(x3, x4) = Kx2
4 +

∫ (∫ ( 2∂2c

∂x3∂x4
− ∂2b

∂x2
3

)
dx4

)
dx4

+x4H1(x3) + F1(x3).

We set G1(x3, x4) =
∫ ( ∫ ( 2∂2c

∂x4∂x3
− ∂2b

∂x2
3

)
dx4

)
dx4. We obtain:

a(x3, x4) = Kx2
4 +G1(x3, x4) + x4H1(x3) + F1(x3).

By analogously, with the same routine, we get:

b(x3, x4) = Kx2
3 +G2(x3, x4) + x3H2(x4) + F2(x4),

where G2(x3, x4) =
∫ ( ∫ ( 2∂2c

∂x4∂x3
− ∂2a

∂x2
4

)
dx3

)
dx3.

Using (4.5), we have:

∂2a

∂x2
4
+
∂2b

∂x2
3
− 2

∂2c

∂x4∂x3
= B(x3) = K.

Hence:

∂2c

∂x4∂x3
=

1
2
∂2a

∂x2
4
+

1
2
∂2b

∂x2
3
− K

2

∂

∂x3
(
∂c

∂x4
) =

1
2
∂2a

∂x2
4
+

1
2
∂2b

∂x2
3
− K

2
.

By a first integration with respect to x3, we get:

∂c

∂x4
=

∫ (1
2
∂2a

∂x2
4
+

1
2
∂2b

∂x2
3

)
dx3 −

K

2
x3 +H(x4).

By a second integration with respect to x4, we get:

c(x3, x4) =

∫ (∫ (1
2
∂2a

∂x2
4
+

1
2
∂2b

∂x2
3

)
dx3

)
dx4 −

K

2
x3x4 + x4H(x4) + F (x3).

Put, G2(x3, x4) =
∫ ( ∫ ( 1

2
∂2a
∂x2

4
+ 1

2
∂2b
∂x2

3

)
dx3

)
dx4 , then, we obtain:

c(x3, x4) = G2(x3, x4)−
K

2
x3x4 + x4H(x4) + F (x3). (4.6)

The proof is complete. 2

Corollary 4.3. Let M be as in (2.1). With the following choices of a, b and c , M is locally
symmetric:

(i) a(x4) = αx2
4 + βx4 + η , b(x3) = α′x2

3 + β′x3 + η′ and c(x3) = α′′x2
3 + β′′x3 + η′′, where

α, β, η, α′, β′ , η′, α′′, β′′ , η′′ are constants.

(ii) a(x4) = αx2
4 + βx4 + η , b(x3) = α′x2

3 + β′x3 + η′ and c(x4) = α′′x2
4 + β′′x4 + η′′, where

α, β, η, α′, β′ , η′, α′′, β′′ , η′′ are constants.

(iii) a(x3, x4) = αx2
4+A(x3)x4+B(x3) , b(x3, x4) = αx2

3+A(x4)x3+B(x4) and c(x3, x4) = 0,
where A and B smooth functions.
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Example 4.4. Let M be as in (2.1). With the following choices of a = x2
4, b = x2

3 and c = x2
3.

Then M is a locally symmetric strict Walker manifold. Indeed, the nonzero components of the
christoffel symbols of M are given by : Γ2

33 = (2x3 − x4), Γ1
34 = x4, Γ2

34 = x3, Γ2
34 =

x3, Γ1
44 = −x3. The nonzero components of the Levi-Civita connection of M are given by :

∇∂3∂3 = (2x3 − x4)∂2, ∇∂3∂4 = x4∂1 + x3∂2, ∇∂4∂4 = −x3∂1. The nonzero components of
the curvature operator of M is: R(∂3, ∂4)∂3 = 2∂2 and the nonzero Riemann tensor components
of M are given by : R3434 = 2. The components of the Ricci tensor and the scalar curvature of
M are given by : ρ33 = 0 , ρ34 = 0 and τ = 0. Since the Riemann curvature tensor of M is
constant, so M is locally symmetric.

Example 4.5. Let M be as in (2.1). With the following choices of a = x2
4, b = x2

3 and c =
x2

4. Then M is a locally symmetric strict Walker manifold. Indeed, the nonzero components
of the christoffel symbols of M are given by: Γ2

33 = −x4, Γ1
34 = x4, Γ2

34 = x3, Γ2
34 =

x3, Γ1
44 = (2x4 − x3). The nonzero components of the Levi-Civita connection of M are given

by: ∇∂3∂3 = −x4∂2, ∇∂3∂4 = x4∂1+x3∂2, ∇∂4∂4 = (2x4−x3)∂1. The nonzero components of
the curvature operator of M is: R(∂3, ∂4)∂3 = 2∂2 and the nonzero Riemann tensor components
of M are given by : R3434 = 2. The components of the Ricci tensor and the scalar curvature of
M are given by : ρ33 = 0 , ρ34 = 0 and τ = 0. Since the curvature tensor of M is constant, so
M is locally symmetric.

Corollary 4.6. Let M be as in (2.1). With the following choices of a = b = c = f(x3, x4), then
M is locally symmetric if and only if the function a is solution of the following system of partial
differential equations:

1
2

∂3a

∂x2
4∂x3

+
1
2
∂3a

∂x3
3
− ∂3a

∂x2
3∂x4

= 0 and
1
2

∂3a

∂x2
3∂x4

+
1
2
∂3a

∂x3
4
− ∂3a

∂x2
4∂x3

= 0.

Corollary 4.7. Let M be as in (2.1). With the following choices of a = f(x3, x4), b = f(x3, x4)
and c ≡ 0, then M is locally symmetric if and only if the functions a and b are solutions of the
following system of partial differential equations:

1
2

∂3a

∂x2
4∂x3

+
1
2
∂3b

∂x3
3
= 0 and

1
2

∂3b

∂x2
3∂x4

+
1
2
∂3a

∂x3
4
= 0.

Corollary 4.8. Let M be as in (2.1). With the following choices of a = b = f(x3, x4) and c ≡ 0,
then M is locally symmetric if and only if the function a is solution of the following system of
partial differential equations:

1
2

∂3a

∂x2
4∂x3

+
1
2
∂3a

∂x3
3
= 0 and

1
2

∂3a

∂x2
3∂x4

+
1
2
∂3a

∂x3
4
= 0.

Corollary 4.9. Let M be as in (2.1). With the following choices of a = b ≡ 0 and c = f(x3, x4),
then M is locally symmetric if and only if the function c is solution of the following system of
partial differential equations:

∂3c

∂x2
4∂x3

= 0 and
∂3c

∂x2
3∂x4

= 0.

The Walker metric appear in several specific pseudo-Riemannian structures like 2-step nilpo-
tent Lie groups with degenerate centers, parakahler and hypersymplectic structures, hypersur-
faces with nilpotent shape operators and some four-dimensional Osserman manifolds. Indecom-
posable metrics of neutral signature (playing a distinguished role in the investigated holonomy
of indefinite metrics) are also equipped with a Walker structure. This clearly motivates the study
of pseudo-Riemannian manifolds carrying a parallel degenerate plane field (see [2] for more
information).

5 Conclusion

Various geometric quantities are computed explicitly in terms of metrics coefficients, includ-
ing the Christoffel symbols, curvature operator, Ricci curvature, and Weyl tensor. Using these
formulas, we have obtained a description of four-dimensional strict Walker metrics which are
locally symmetric.
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