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Abstract This article deals with the problem of asymptotic stability of a fractional math-
ematical model as a nonlinear fractional differential system with a variable delay. Sufficient
conditions of the asymptotic stability are obtained in relation to the system with a variable time
delay using a suitable Lyapunov-Krasovskiı̌ functional (LKF). The result of this article has new
contributions to the existing ones in the literature. We also present an example as the numerical
application of the result.

1 Introduction

In the past years in mathematics and engineering sciences, stability, asymptotic stability, expo-
nential stability etc. of solutions of fractional differential equations, fractional integro-differential
equations, etc., have been studied. Many types of qualitative behaviors have been studied by
many researchers and many important and remarkable results have been obtained on the subject,
see, Abbas et al. [1], Alkhazzan et al. [2], Bachir et al. [3], Bohner et al. [4], Brandibur and
Kaslik [5], Duarte-Mermoud et al. [6], Liu et al. [10], Liu et al. [11], Podlubny [12], Raza et
al. [13], Tan [14], Tunç [15], Tunç [16], Tunç and Tunç [17], Tunç et al. [18], Zada et al. [19],
Zhou et al. [20] and the references included in these sources.

In this research paper, the asymptotic stability of the zero solution of a certain nonlinear
Riemann-Liouville fractional differential system (RLFrDS) will be investigated with the help of
the LKF method.

As for the main motivation of this work, Liu et al. [10] investigated the asymptotic stability
of zero solution of the following nonlinear RLFrDS:

t0
Dq
tx(t) = Ax(t) +Bx(t− τ(t)) + F1(x(t)) + F2(x(t− τ(t))), (1.1)

where q ∈ (0, 1), x ∈ Rn is the state vector, A, B ∈ Rn×n, n ∈ N, τ ∈ C1[R+, (0,∞)] such
that τ ′(t) ≤ d < 1. Additionally, Fi ∈ Rn are continuous and Fi(0) = 0, i = 1, 2, such that

lim
‖x‖→0

‖Fi (x)‖
‖x‖

= 0.

Liu et al. [10, Theorem 4.1] proved the following theorem.

Theorem 1.1. The trivial solution of the RLFrDS (1.1) is asymptotically stable if there exist
two symmetric and positive definite matrices P and Q such that the following estimates hold,
simultaneously:

PA+ATP + 2Q = 0,
‖PB‖ ≤ λmin(Q)

√
1− d.

In this paper, taking into account the RLFrDS (1.1) and the result of Liu et al. [10, Theorem
4.1], we will take into account the following RLFrDS with a variable delay

t0
Dq
tx(t) =Ax(t) +BF0(x) + F (t, x(t)) +MΦ(x(t− τ(t)))

+G(x(t− τ(t))) +H(t, x(t), x(t− τ(t))), (1.2)
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where q ∈ (0, 1), t ≥ t0, x ∈ Rn is the state vector, A, B, M ∈ Rnxn and τ ∈ C1[R+, (0,∞)]
is the variable delay.

In the entire article, we need the conditions below:

(A1)

F0, Φ, G ∈ C[Rn,Rn],

F ∈ C[[0,∞)×Rn,Rn], H ∈ C[[0,∞)×Rn ×Rn,Rn],

F0(0) = 0, F (t, 0) = 0,Φ(0) = 0, G(0) = 0, H(t, 0, 0) = 0,

τ ′(t) ≤ d < 1, d ∈ R, d > 0.

(A2) The functions F0,F,Φ, G and H satisfy the following relations:

lim
‖x‖→0

‖F0 (x)‖
‖x‖

= 0, lim
‖x‖→0

‖F (t, x)‖
‖x‖

= 0, lim
‖x‖→0

‖Φ (x)‖
‖x‖

= 0,

lim
‖x‖→0

‖G (x)‖
‖x‖

= 0, lim
‖x‖→0

‖H (t, x)‖
‖x‖

= 0.

In this paper, we benefit from the below notations: Rn represents n-dimensional Euclidean
space, Rn×n is the set of all n×n -dimensional real matrices, K is a symmetric matrix and
KT denotes transpose of this matrix. If the matrix K is positive definite, then 〈Kx, x〉 >
0,x 6= 0. ‖.‖ represents the Euclidean norm, ‖K‖ =

√
λmax(KTK) denotes the spectral

norm of this matrix, λmax(K ) and λmin(K) denote the maximum and minimum values of
the eigenvalues of the matrix K, respectively.

2 Basic results

We will give some lemmas as basic results which are used advances.

Lemma 2.1. (Kilbas et al. [8]). If p > q > 0, then

t0
Dq
t (t0

D−pt x(t)) = t0D
q−p
t x(t)

holds for “sufficiently good” functions x(t). In particular, this relation holds if x(t) is integrable.

Lemma 2.2. (Duarte-Mermoud et al. [6]). Let x ∈ Rn be a vector of differentiable functions.
Then, for any time instant t ≥ t0, the following inequality holds:

1
2 t0D

q
t (x

T (t)Px(t)) ≤ xT (t)P t0D
q
tx(t), ∀q ∈ (0, 1),

where P ∈ Rn×n is a symmetric and positive-definite matrix.

Lemma 2.3. (Liu et al. [9]). For any x, y ∈ Rn and ε > 0, the following inequality holds:

2xT y ≤ εxTx+ 1
ε
yT y .

Lemma 2.4. (Tan [14]). Let U > 0 and V ≥ 0 be real symmetric matrices and η be a positive
number. Then

ηU > V ⇔ λmax(V U
−1) < η ⇔ λmax(U

− 1
2V U−

1
2 ) < η.



370 Cemil Tunç and Kasım Mansız

3 Stability result

The main stability result of this paper is presented in the bellow theorem.

Theorem 3.1. The trivial solution of the RLFrDS (1.2) with a variable delay is asymptotically
stable if there exist symmetric and positive definite matrices P and Q such that the bellow rela-
tions fulfill:

PA+ATP + 3Q = 0, (3.1)

1
λmin (Q)

1√
1− d

‖PM‖ < 1 and
1

λmin (Q)

1√
1− d

‖PB‖ < 1. (3.2)

Proof. To prove this theorem, we define an LKF by

V (t) = t0
Dq−1
t (xT (t)Px(t)) +

t∫
t−τ(t)

xT (s)Qx(s)ds.

It is obvious that this LKF is positive definite since the matrices P and Q are positive definite.
Next, fulfilling the time derivative of the LKF V (t) along the solutions of the RLFrDS (1.2) and
using Lemma 2.2, we find

d

dt
V (t) =t0

Dq
t (x

T (t)Px(t)) + xT (t)Qx(t)

− (1− τ ′(t))xT (t− τ(t))Qx(t− τ(t))

≤2xT (t)P t0
Dq
tx(t) + xT (t)Qx(t)

− (1− d)xT (t− τ(t))Qx(t− τ(t))

=2xT (t)P [Ax(t) +BF0(x) + F (t, x(t)) +MΦ(x(t− τ(t)))
+G(x(t− τ(t))) +H(t, x(t), x(t− τ(t)))]

+ xT (t)Qx(t) − (1− d)xT (t− τ(t))Qx(t− τ(t))

=xT (t)
[
PA+ATP + 3Q

]
x(t)− xT (t) (2Q)x(t)

+ 2xT (t)PBF0(x(t)) + 2xT (t)PF (t, x(t))

+ 2xT (t)PMΦ(x(t− τ(t)) + 2xT (t)PG(x(t− τ(t)))

+ 2xT (t)PH(t, x(t), x(t− τ(t)))

− (1− d)xT (t− τ(t))Qx(t− τ(t)). (3.3)

According to the inequality 2xT y ≤ εxTx + 1
εy
T y , (see, Lemma 2.3), we get the following

inequalities, respectively:

2xT (t)PBF0(x(t)) =2xT (t)PBQ−
1
2Q

1
2F0(x(t))

≤ 1
m (1− d)

xT (t)
(
PBQ−1BTPT

)
x(t)

+m(1− d)
(
F0
T (x(t))QF0(x(t))

)
;

2xT (t)PF (t, x(t)) ≤ 1
β
xT (t)P 2x(t) + βFT (t, x(t))F (t, x(t));

2xT (t)PMΦ(x(t− τ(t)) =2xT (t)PMQ−
1
2Q

1
2 Φ(x(t− τ(t)))

≤ 1
n (1− d)

xT (t)PMQ−1MTPTx(t)

+ n(1− d)ΦT (x(t− τ(t)))QΦ(x(t− τ(t)));

2xT (t)PG(x(t− τ(t))) ≤1
g
xT (t)P 2x(t) + gGT (x(t− τ(t)))G(x(t− τ(t)));
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2xT (t)PH(t, x(t), x(t− τ(t))) ≤1
h
xT (t)P 2x(t)

+ hHT (t, x(t), x(t− τ(t)))H(t, x(t), x(t− τ(t))),

where β, g, h, m, n are some positive constants.
Hence, substituting the inequalities above into (3.3), we obtain

V̇ (t) ≤xT (t)
[

1
m (1− d)

PBQ−1BTPT

+
1

n (1− d)
PMQ−1MTPT − 2Q+

(
1
β
+

1
g
+

1
h

)
P 2
]
x(t)

+m(1− d)F0
T (x(t))QF0(x(t)) + βFT (t, x(t))F (t, x(t))

+ n(1− d)ΦT (x(t− τ(t)))QΦ(x(t− τ(t)))

+ gGT (x(t− τ(t)))G(x(t− τ(t)))

+ hHT (t, x(t), x(t− τ(t)))H(t, x(t), x(t− τ(t)))

− (1− d)xT (t− τ(t))Qx(t− τ(t)). (3.4)

According to the description of the spectral norm, we get[
λmax

(
Q−

1
2P

(
1

1− d
BQ−1BT

)
PTQ−

1
2

)] 1
2

=

[
1

1− d
λmax

(
Q−

1
2PBQ−1BTPTQ−

1
2

)] 1
2

=

[
1

1− d
λmax

∥∥∥Q− 1
2PBQ−

1
2

∥∥∥2
] 1

2

≤ 1√
1− d

∥∥∥Q− 1
2

∥∥∥2
‖PB‖

≤ 1√
1− d

∥∥∥Q− 1
2

∥∥∥2
‖PB‖

=
1

λmin (Q)

1√
1− d

‖PB‖ .

By the same way, doing similar calculations as the above, we derive[
λmax

(
Q−

1
2P

(
1

1− d
MQ−1MT

)
PTQ−

1
2

)] 1
2

=

[
1

1− d
λmax

(
Q−

1
2PMQ−1MTPTQ−

1
2

)] 1
2

=

[
1

1− d

∥∥∥Q− 1
2PMQ−

1
2

∥∥∥2
] 1

2

≤ 1√
(1− d)

∥∥∥Q− 1
2

∥∥∥2
‖PM‖

=
1

λmin (Q)

1√
(1− d)

‖PM‖ .

Hence, using the estimate (3.2), we have[
λmax

(
Q−

1
2P

(
1

1− d
BQ−1BT

)
PTQ−

1
2

)] 1
2

< 1. (3.5)
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Next, it follows from (3.5) that there exists a µ > 0 , µ ∈ R, such that[
λmax

(
Q−

1
2P

(
1

1− d
BQ−1BT

)
PTQ−

1
2

)] 1
2

< µ < 1.

Since P > 0 andBQ−1BT ≥ 0, then it follows from Lemma 2.4 that

P

(
1

1− d
BQ−1BT

)
PT < µQ .

Choose a µ ∈ R, 0 < m < 1, such that 0 < µ
m < 1. Then, we have,

P

(
1

m(1− d)
BQ−1BT

)
PT − µ

m
Q < 0

and
P

(
1

m(1− d)
BQ−1BT

)
PT −Q <

( µ
m
− 1
)
Q < 0.

By a similar way, we get[
λmax

(
Q−

1
2P

(
1

1− d
MQ−1MT

)
PTQ−

1
2

)] 1
2

< 1. (3.6)

From (3.6), we arrive that there is a µ > 0 , µ ∈ R,such that

λmax

(
Q−

1
2P

(
1

1− d
MQ−1MT

)
PTQ−

1
2

)
< µ < 1.

Since P > 0 and MQ−1MT ≥ 0, then it follows from Lemma 2.4 that

P
1

1− d
MQ−1MTPT < µQ.

Choose n < 1 such that 0 < µ
n < 1. Then, we have

1
n(1− d)

PMQ−1MTPT − µ

n
Q < 0

and
1

n(1− d)
PMQ−1MTPT −Q <

(µ
n
− 1
)
Q < 0. (3.7)

We note that m, n < 1. Next, appropriate positive numbers β, g, h can be chosen so that the
following relation fulfills:

K0 =

[
1

m(1− d)
PBQ−1BTPT

+
1

n(1− d)
PMQ−1MTPT − 2Q+

(
1
β
+

1
g
+

1
h

)
P 2
]
< 0.

Let g + h+ n < 1. Hence, since g + h+ n < 1, 0 < d < 1 and the matrix Q is positive, then
it is clear that

K1 = (g + h+ n− 1)(1− d)Q < 0.
Thus, by virtue of the discussion above, we arrive

V̇ (t) ≤xT (t)K0x(t) +m(1− d)F0
T (x(t))QF0(x(t)) + βFT (t, x(t))F (t, x(t))

+ n(1− d)ΦT (x(t− τ(t)))QΦ(x(t− τ(t)))

+ gGT (x(t− τ(t)))G(x(t− τ(t)))

+ hHT (t, x(t), x(t− τ(t)))H(t, x(t), x(t− τ(t)))

− (1− d)xT (t− τ(t))Qx(t− τ(t))

≤xT (t)K0x(t) + β‖F (t, x(t))‖2
+m(1− d)

∥∥F0
T (x(t))QF0(x(t))

∥∥2

+ n(1− d)
∥∥Φ

T (x(t− τ(t)))QΦ(x(t− τ(t)))
∥∥2

+ g‖G(x(t− τ(t)))‖2
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+ h‖H(t, x(t), x(t− τ(t)))‖2 − (1− d)
∥∥xT (t− τ(t))Qx(t− τ(t))∥∥2

≤xT (t)K0x(t) + β‖F (t, x(t))‖2
+m(1− d)

∥∥F0
T (x(t))QF0(x(t))

∥∥2

+ (n+ g + h− 1)(1− d)
∥∥xT (t− τ(t))Qx(t− τ(t))∥∥2

. (3.8)

According to (A2), for the positive constants β, g, h, m, n, there is an available constant
θ > 0 such that when ‖x(t)‖ < θ, t ≥ t0,and K0 + θI < 0, where I is a suitable identity matrix,
the following inequalities can be fulfilled:

‖F (t, x(t))‖2 ≤ θ

β
‖x(t)‖2;

∥∥F0
T (x(t))QF0(x(t))

∥∥2 ≤ θ

m (1− d)
‖x(t)‖2;

‖G(x(t− τ(t)))‖2 ≤ θ

g
‖x(t− τ(t))‖2;

‖H(t, x(t), x(t− τ(t)))‖2 ≤ θ

h
‖x(t− τ(t))‖2;

∥∥Φ
T (x(t− τ(t)))QΦ(x(t− τ(t)))

∥∥2 ≤ θ

n (1− d)
‖x(t− τ(t))‖2

.

By virtue of the inequalities above and (3.8), we obtain

V̇ (t) ≤ xT (t)(K0 + θI)x(t) + xT (t− τ(t))K1x(t− τ(t)).

In view of K1 = (g + h + n − 1)(1 − d)Q < 0 and K0 + θI < 0, we can derive that V̇ (t)
is negative definite. Therefore, the zero solution of the nonlinear RLFrDS (1.2) with a variable
delay is asymptotically stable. This result completes the proof of Theorem 3.1.

4 Numerical result

In Section “4. Numerical result”, we provide Example 4.1, which is included by RLFrDS (1.2),
for an application of Theorem 3.1.

Example 4.1. In a specific subcase of the RLFrDS (1.2) with a variable delay, we consider the
following nonlinear RLFrDS with a variable retardation:

t0
Dq
tx(t) =Ax(t) +BF0(x) + F (t, x(t)) +MΦ(x(t− τ(t)))

+G(x(t− τ(t))) +H(t, x(t), x(t− τ(t))), (4.1)

where

q ∈ (0, 1) , x(t) =

[
x1(t)

x2(t)

]
,

τ(t) = 0.3t, d = 0.3,

F0(x(t)) =

[
x1(t) exp(−x1

2(t))

x2(t) exp(−x2
2(t))

]
,

F (t, x(t)) =

[
x1(t) exp(−x1

2(t))

x2(t) exp(−x2
2(t))

]
,

G(x(t− τ(t))) =

[
x(t− τ(t)) exp(−x1

2(t− τ(t)))
x(t− τ(t)) exp(−x2

2(t− τ(t)))

]
,

Φ(x(t− τ(t))) = 0, 4

[
sin(x1(t− τ(t))) exp(−x2

2(t− τ(t)))
sin(x2(t− τ(t))) exp(−x1

2(t− τ(t)))

]
,
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H(t, x(t), x(t− τ(t))) =

[
sin(x1(t− τ(t))) exp(−x1

2(t− τ(t)))
sin(x2(t− τ(t))) exp(−x2

2(t− τ(t)))

]
,

A =

(
−4 0
0 −2

)
, B =

(
0.001 0.1

0 −0, 1

)
,M =

(
0, 008 0, 002
0, 01 0, 04

)
.

Let

P =

(
6 0
0 4

)
, Q =

(
16 0
0 16/3

)
.

Hence, we can obtain the following data:

PA+ATP + 3Q = 0,

‖PM‖√
1− d

= 0.1920, λmin(Q) = 16/3,

λmin(Q)−
1√

1− d
‖PM‖ = 5.1413 > 0,

‖PB‖√
1− d

= 0.8619, λmin(Q) = 16/3,

λmin(Q)−
1√

1− d
‖PB‖ = 4.4714 > 0.

Thus, the conditions (3.1), (3.2) and the others are satisfied. Hence, the trivial solution of non-
linear RLFrDS (4.1) with a variable delay is asymptotically stable.

5 Conclusion

In this article, we take into consideration an RLFrDS. The considered RLFrDS is a different
Riemann-Liouville fractional differential mathematical model than those in the present literature.
Here, a new theorem, which includes sufficient conditions, is established on asymptotic stability
of this RLFrDS. The technique called LKF method is utilized to prove that stability result. We
aim to have new contributions to the qualitative topic of the RLFrDS.
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