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Abstract: The objective of this study is to introduce a novel operation called pro-addition
(†) for Pythagorean triplets, which extends to various groups of Pythagorean triplets through a
new generation process. This operation works in tandem with conventional addition and serves
to establish either the closure property within a set or establish connections between sets belong-
ing to different groups. It is our sincere aspiration that this article proves valuable to scholars,
students, and math educators in their pursuit of exploring new avenues in this field.

1 Introduction

The Pythagorean theorem is a fundamental principle stating that in any right-angled triangle, the
square of the hypotenuse is equal to the sum of the squares of the two shorter legs. This theorem
can be represented by Pythagorean triplets, which are integer solutions (a, b, c) satisfying the
polynomial expression x2 + y2 = z2. Numerous proofs have been put forth for the Pythagorean
theorem, and its converse has also been shown to hold true. Research in this field has explored
various aspects of finding solutions to the polynomial expression x2 + y2 = z2. For instance,
around 300 BC, Euclid demonstrated that a triangle with sides a, b, and c satisfying the equation
a2 + b2 = c2 must be a right-angled triangle (refer to [1, 2]).

The generalization of the Pythagorean theorem by Dijkstra and the shorter proof by Bhaskara are
among the numerous proofs documented in the literature (see [3]). The exploration of integer
solutions to x2 + y2 = z2 has led to various avenues of investigation. One direction involves
dealing with polynomials of the form x2 + y2 = z2± 1, where the integer solutions were termed
"almost Pythagorean triplets" or "nearly Pythagorean triplets" based on the sign ± (see [4]). An-
other aspect involves studying solutions of x2 + y2 = z2 with special conditions. For example, a
solution (a, b, c) is called isosceles if a = b. However, there are no isosceles integer solutions to
x2 + y2 = z2, leading to investigations of isosceles-like integer triples (a, b, c) with |a − b| = 1
(explored in [4]). Scholars in the literature (refer to [5, 6, 7, 8, 9]) have studied the concept
of almost isosceles Pythagorean triplets by utilizing the Pell polynomial. In some articles, this
type of triplet has been referred to as an "almost-isosceles right-angled triangle," emphasizing
its relationship with Pythagorean triplets, almost Pythagorean triplets, and nearly Pythagorean
triplets.

The concept of Pythagorean triplets and their connection to the Pythagorean theorem serves
as a foundational principle in various fields of pure mathematics, encompassing number the-
ory, elementary geometry, and applied mathematics. These triplets have significant implications
and applications in different areas of study. Over the past decade, there has been a surge of
interest in the generation of Pythagorean triplets, leading to a flourishing stream of literature.
The relevance of this topic has been recognized in fields like cryptography and random number
generation algorithms. As a result, researchers and mathematicians have delved into exploring
novel methods for generating Pythagorean triplets and uncovering their diverse properties and
applications. This ongoing research has contributed valuable insights and advancements in the
study of these integer solutions and their significance in various mathematical contexts.
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Euclid’s formula is a fundamental method for generating Pythagorean triplets using an arbitrary
pair of non-zero natural numbers m and n. According to this formula, all primitive Pythagorean
triplets (a, b, c) can be derived from the following equations [3]:

a = m2 − n2, b = 2mn, c = m2 + n2

Here, m > n, and m and n are pairs of relatively prime numbers. An essential property to ob-
serve is that one of the numbers m or n is even, while the other is odd. Notably, each primitive
Pythagorean triplet (a, b, c) where b is even can be obtained uniquely using this formula. This
powerful method has proven to be instrumental in generating various Pythagorean triplets and
has been extensively studied and applied in the field of number theory.

Thomas Harriot, a prominent English mathematician and scientist, played a pioneering role in
proposing the existence of Pythagorean triples in series (see [10]). While classical formulae
available in the literature are known to generate all primitive Pythagorean triplets, they do not
cover all possible triplets, particularly the non-primitive ones. In more recent times, Bhanotar et
al. have explored methods for generating primitive Pythagorean triplets (refer to [11, 12]). Their
work introduced an intriguing algebraic approach, extending the field Q+ ∪ {0} to explore the
dual of given triplets, resulting in the identification of important sequences and interconnectiv-
ity. Agrawal (in [13]) delved into the history of Pythagorean triples both before and after the
time of Pythagoras, shedding light on the rich historical context of this mathematical concept.
Furthermore, many mathematicians and experts from diverse branches have contributed to the
development and communication of various aspects related to the construction, characterization,
and geometrical representation of Primitive Pythagorean triples. Numerous works in the liter-
ature (see [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) have tackled this fascinating area, offering
valuable insights and enhancing our understanding of Pythagorean triplets in different mathe-
matical contexts.

To ensure accessibility, we introduce the following notations. The set of natural numbers N
has been divided into two infinite sets: N1 – a set of all odd integers and N2 –a set of all even
integers such that,

N = N1 ∪N2 and N1 ∩N2 = φ. (1.1)

In the context of this concept, two commonly used terms are "Pythagorean triplets (PTs)" and
"Primitive Pythagorean Triplet (PPTs)."

Definition:1.1 Pythagorean triplet (PT): A triplet (a, b, h), with a, b, and h belonging to some
natural numbers is said to be a Pythagorean triplet (PT) if it satisfies the condition:

a2 + b2 = h2 (1.2)

Definition 1.2:Primitive Pythagorean triplet (PPT): A triplet (a, b, h), with a, b, and h belong-
ing to some natural numbers satisfying the following properties are known as primitive triplets
(PT)/primitive Pythagorean triplets (PPTs):

(a) G.C.D. of a and b = 1.

(b) a < b < h and

(c) a2 + b2 = h2.

Indeed, the conditions of primitive triplets distinguish them from regular triplets and offer a
unique perspective on Pythagorean triplets. Mathematicians have explored various methods to
construct these triplets, each representing their distinct ideas and approaches. In an exciting and
enjoyable manner, we present a different perspective on Pythagorean triplets (PTs) for odd and
even integers, as follows [11]:

(a, b, h) = (a,
a2 − i2

2i
,
a2 − i2

2i
) (1.3)



378 Shailesh A. Bhanotar

For a ∈ N1 − {1}, we can find b by selecting an integer i from N1 that satisfies the condition
i = 12, 32, 52, ... ∈ N1 and is less than a/2. Then, we can take h = b + i, which fulfills the
condition a2 + b2 = h2, forming a Pythagorean triplet (PT). We classify a triplet as an odd prim-
itive triplet if the smallest integer among the three, i.e., a, is an odd number. Interestingly, it is
possible to have more than one primitive triplet satisfying these conditions (see [2, 3, 8]). This
unique approach allows for the discovery of multiple odd primitive Pythagorean triplets through
suitable choices of a, b, and h, enriching our understanding of these fascinating integer solutions.

Similarly, for a ∈ N2 − {2}, we need to choose a corresponding value i from N2 that satisfies
the condition i = 2n2 = 2, 8, 18, 32, ... < a/2. Then, we can take the hypotenuse h = b + i,
which fulfills the condition a2 + b2 = h2, forming a Pythagorean triplet (PT). We classify a
triplet as an even primitive triplet (EPT) if the smallest integer among the three, i.e., a, is an
even number. This approach allows us to consider feasible values for i and potentially predict
additional primitive triplets if they exist. For example, (3, 4, 5), (5, 12, 17), . . . are odd PPTs,
whereas (8, 15, 17), (12, 35, 37), . . . are even PPTs. Now, a simple question arises: How many
primitive Pythagorean triplets are possible to correspond to a particular value of a?

Indeed, as described above, we can obtain multiple primitive Pythagorean triplets corresponding
to a given positive integer a, whether it is even or odd. The approach of choosing different values
for i from the appropriate set N1 or N2 ensures that we can generate various Pythagorean triplets,
each with a as one of its components. This flexibility in the selection of i allows us to explore
different combinations and find distinct primitive triplets for a given value of a. Consequently,
we can observe a rich variety of Pythagorean triplets with unique properties and characteristics,
adding to the intrigue and fascination of this mathematical concept.

For example,

• For a = 3, which is an odd integer, we choose i from the set of squares of odd integers, i.e.,
i = 12, 32, 52, ... < a/2 = 3/2. Thus, the possible value of i is 1. Using this value, we can
calculate the integer b as follows:

b =
a2 − i2

2i
=

32 − 12

2 · 1
= 4

The next highest integer in the sequence, which we call the hypotenuse, is calculated as:

h =
a2 + i2

2i
=

32 + 12

2 · 1
= 5

This triplet (3, 4, 5) satisfies the condition of a Pythagorean triplet: 32 + 42 = 52. It is the
only odd primitive Pythagorean triplet corresponding to the smallest leg a = 3. This exam-
ple demonstrates how the approach described earlier can be used to find specific primitive
Pythagorean triplets for a given value of a.

• For a = 8, which is an even integer, we choose i from the set of even squares, i.e., i =
2n2 = 2, 8, 18, 32, ... < a/2 = 8/2 = 4. The possible value of i is 2. Using this value of i,
we can calculate the integer b as follows:

b =
a2 − i2

2i
=

82 − 22

2 · 2
= 15

Next, we can calculate the hypotenuse h in two ways:

h =
a2 + i2

2i
=

82 + 22

2 · 2
= 17 or h = b+ i = 15 + 2 = 17

Hence, there is only one even primitive Pythagorean triplet (8, 15, 17) corresponding to the
value of a = 8. This example illustrates how the approach presented earlier can be applied
to find specific primitive Pythagorean triplets for a given value of a.
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At this juncture, it is essential to inform the readers that there are infinitely many odd integers
that possess multiple Pythagorean primitive triplets (PPTs). These special Pythagorean triplets
are known as "Multiple Primitive Pythagorean Triplets" (MPPTs). For such odd integers, it is
possible to find not just one, but two, three, or even more distinct primitive triplets that satisfy the
Pythagorean theorem. This remarkable property of MPPTs makes them particularly fascinating
and adds to the intriguing nature of Pythagorean triplets. The existence of MPPTs showcases the
richness and complexity of the world of Pythagorean triplets, making them a captivating subject
of exploration in mathematics.

Let’s consider two more examples, which are as follows:

• Let’s consider the case of a = 20, an even integer. We can choose different values of i from
the set of even squares, i.e., i = 2n2 = 2, 8, 18, ... < a/2 = 20/2 = 10. The possible
values of i are 2 and 8.

For i = 2, we can calculate the integer b as follows:

b =
a2 − i2

2i
=

202 − 22

2 · 2
= 99

The hypotenuse h is then:

h = b+ i = 99 + 2 = 101

Thus, we have the first primitive Pythagorean triplet as (20, 99, 101).

For i = 8, we calculate the integer b:

b =
a2 − i2

2i
=

202 − 82

2 · 8
= 21

The hypotenuse h is then:

h = b+ i = 21 + 8 = 29

Thus, we have the second primitive Pythagorean triplet as (20, 21, 29).

In conclusion, for a = 20, we find two distinct primitive Pythagorean triplets: (20, 99, 101)
and (20, 21, 29). This example highlights the existence of multiple primitive triplets for a
single value of a, which aligns with the concept of Multiple Primitive Pythagorean Triplets
(MPPTs).

• Indeed! Let’s consider the case of a = 33, an odd integer. We can choose different values
of i from the set of squares of odd integers, i.e., i = 12, 32, 52, ... = 1, 9, 25, ... < a/2 =
33/2 = 16.5. The possible values of i are 1 and 9.

For i = 1, we can calculate the integer b as follows:

b =
a2 − i2

2i
=

332 − 12

2 · 1
= 544

The hypotenuse h is then:

h = b+ i = 544 + 1 = 545

Thus, we have the first primitive Pythagorean triplet as (33, 544, 545).

For i = 9, we calculate the integer b:

b =
a2 − i2

2i
=

332 − 92

2 · 9
= 56
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The hypotenuse h is then:

h = b+ i = 56 + 9 = 65

Thus, we have the second primitive Pythagorean triplet as (33, 56, 65).

In conclusion, for a = 33, we find two distinct primitive Pythagorean triplets: (33, 544, 545)
and (33, 56, 65). As mentioned earlier, these are Multiple Primitive Pythagorean Triplets
(MPPTs) for the given value of a = 33. The existence of MPPTs for odd integers demon-
strates the fascinating and rich nature of Pythagorean triplets.

Let’s elaborate on some known and obvious results related to primitive Pythagorean triplets:

• A triplet corresponding to the first leg from the set {1, 4} ∪ {2(2n − 3)|n ∈ N, n ≥ 2}
cannot possess a primitive Pythagorean triplet (PPT).

• A triplet corresponding to the first leg which is a member of the set {4(2n + 3)|n ∈ N}
possesses at least one primitive Pythagorean triplet.

• A triplet corresponding to the first leg which is a member of the set {3(2n+ 9)|n ∈ N∪ 0}
possesses one or more than one primitive Pythagorean triplet.

• At least one of the integers a, b, and h in a primitive Pythagorean triplet is prime or divisible
by 5.

This article is divided into three distinct sections. Section 2, introduces various groups of
Pythagorean triplets (PTs), while Section 3 delves into a unique operation called Pro-addition
(†) within the PT family. Finally, the last section 4, presents conclusions drawn from the study.

2 Different groups of PT

Pythagorean Triplets (PTs) are categorized into distinct groups based on their research and pat-
terns, with each group named after a famous mathematician who made significant contributions
to the field. In the context of a right triangle, the shorter leg is represented by the letter a, the
second leg by the letter b, and the hypotenuse by the letter h. Thus, a Pythagorean triplet takes
the form (a, b, h), where all three numbers are positive integers. It is common to consider a < b
with (a, b) = 1 and satisfying the relation a2 + b2 = h2.

According to our theory, each class of Pythagorean triplets is a subclass of the Pythagorean fam-
ily. Considering the aforementioned restrictions, members of Pythagorean triplets or triplets that
are integer multiples of a certain basic triplet can be included. If (a, b, h) is a primitive triplet,
then for some k ∈ N, k(a, b, h) = (ka, kb, kh) is also a Pythagorean triplet, but it is not a primi-
tive Pythagorean triplet (PPT).

Let’s use the symbol P to represent the entire set of triples with the form (a, b, h) as follows:

P = {(a, b, h)|a, b, h ∈ N, a2 + b2 = h2}. (2.1)

Definition 2.1: Plato Family P1: We can define the infinite set referred to as the PTs of the Plato
family in the following manner:

P1 = {(a, b, h)|a, b, h ∈ N, a < b, (a, b) = 1, |h− b| = 1} (2.2)

Odd triplets like (3, 4, 5) and (7, 24, 25) are part of P1, a collection which is recognized as the
Plato family.

Definition 2.2: Pythagorean Sub-family P2: We define the infinite set referred to as a Pythagorean
subfamily P2 in the following manner:

P2 = {(a, b, h)|a, b, h ∈ N, a < b < h, (a, b) = 1, |h− b| = 2} (2.3)
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As an illustration, (8, 15, 17) and (12, 35, 37) are included in P2, a group designated as the
Pythagorean Sub-family P2.

Definition 2.3: Fermat Family P3: We define the infinite set known as the Fermat Family of
Pythagorean Triplets as follows :

P3 = {(a, b, h)|a, b, h ∈ N, a < b, (a, b) = 1, |b− a| = 1} (2.4)

As an instance, (3, 4, 5) and (20, 21, 29) are part of P3, a collection known as the Fermat family.

At this juncture, it is essential to note that the set P
′
= P − P1 ∪P2 ∪P3 is an infinite set.

This infinite set P
′

includes triplets such as (20, 45, 53), (39, 80, 89), and so on. Now, we shall
proceed to define the addition of Pythagorean triplets based on this split family, which is as
presented in the follwing section.

3 Special Operation - Pro-addition (†) on PTs

Within the member triples of the Plato family P1 and the Pythagorean sub-family P2, we de-
fine a set of special operations. These operations work in parallel to regular addition and serve
two main purposes: either establishing a closure property within a set or creating a connection
between the sets P1 and P2. To facilitate understanding and convenience, we introduce the no-
tation for the addition of Pythagorean triplets as "pro-addition."

Definition-3.1 Pro-addition in (†)P1 : Let a2 ≥ a1, and consider two members of the group P1,
denoted as t1 = (a1, b1, h1) and t2 = (a2, b2, h2). We introduce a unique and special operation
for the addition of Pythagorean triplets, known as the ’pro-addition,’ defined as follows:

t1 † t2 = (a1 + a2, b1 + b2 − l2, h1 + h2 − l2) (3.1)

where, l = | (a2−a1)
2 |, bj =

a2
j−1
2 , hj =

a2
j+1
2 = bj + 1, j = 1, 2.

Theorem 3.1. If t1 = (a1, b1, h1) and t2 = (a2, b2, h2) belong to the set P1 with a2 ≥ a1, then
their pro-addition is given by t1 † t2 = (a1 + a2, b1 + b2 − l2, h1 + h2 − l2), where l =

∣∣∣ (a2−a1)
2

∣∣∣,
and this results in a new Pythagorean triplet.

Proof.

(h1 + h2−l2)2 − (b1 + b2 − l2)2

=(h1 + h2)
2 − 2l2 (h1 + h2) + l4 − (b1 + b2)

2
+ 2l2 (b1 + b2)− l4

=

(
a2

1 + a2
2 + 2

2

)2

−
(
a2

1 + a2
2 − 2

2

)2

+ 2l2
(
a2

1 + a2
2 − 2

2
−
a2

1 + a2
2 + 2

2

)
=

1
4

[(
a2

1 + a2
2
)2

+ 4
(
a2

1 + a2
2
)
+ 4−

(
a2

1 + a2
2
)2

+ 4
(
a2

1 + a2
2
)
− 4
]
+ 2l2(−2)

=2
(
a2

1 + a2
)
− 4

(
|a2 − a1

2
|
)2

=a2
1 + a2

2 + 2a1a2

=(a1 + a2)
2

Hence, (a1 + a2, b1 + b2 − l2, h1 + h2 − l2), form a PT. This completes the proof. 2

Remark: 3.1. If t1 = (a1, b1, h1) and t2 = (a2, b2, h2) belong to the set P1, with a2 ≥ a1,
then their pro-addition t1 † t2 will result in an even Pythagorean triplet, and hence, t1 † t2 ∈ P2.
Furthermore, when t1 = t2, the pro-addition t1 † t2 becomes t1 † t1 = 2t1 = (2a1, 2b1, 2h1),
resulting in a new Pythagorean triplet that is even. Therefore, 2t1 ∈ P2.
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Example:3.1. If t1 = (3, 4, 5) , t2 = (7, 24, 25) ∈ P1, then their pro-addition,

t1 † t2 =

(
3 + 7, 4 + 24−

(
7− 3

2

)2

, 5 + 25−
(

7− 3
2

)2
)

=(10, 24, 26)

=2 (5, 12, 13) ∈ P2.

Example:3.2. If t1 = (5, 12, 13) , t2 = (13, 84, 85) ∈ P1, then their pro-addition,

t1 † t2 =

(
5 + 13, 12 + 84−

(
13− 5

2

)2

, 13 + 85−
(

13− 5
2

)2
)

=(18, 80, 82)

=2 (9, 40, 41) ∈ P2.

Definition-3.2. Pro-addition (†) in P2 : If a2 ≥ a1, and t1 = (a1, b1, h1) and t2 = (a2, b2, h2) are
members of the family P2, then their ’pro-addition’ of Pythagorean triplets is defined as follows:

t1 † t2 =
(
a1 + a2, b1 + b2 +

(
a1a2 + 2

2

)
, h1 + h2 +

(
a1a2 − 2

2

))
(3.2)

where, bj =
a2
j−4
4 , hj =

a2
j+4
4 = bj + 2, j = 1, 2

Remark: 3.2. If t1 = (a1, b1, h1) and t2 = (a2, b2, h2) belong to the family P2 with a2 ≥ a1,
then their ’pro-addition’ t1 † t2 will result in a new Pythagorean triplet that is even, and hence,
t1 † t2 ∈ P2.

Theorem 3.2. If t1 = (a1, b1, h1) and t2 = (a2, b2, h2) belong to the family P2 with a2 ≥ a1,
then their ’pro-addition’ is given by:

t1 † t2 =
(
a1 + a2, b1 + b2 +

(
a1a2 + 2

2

)
, h1 + h2 +

(
a1a2 − 2

2

))
This results in a new Pythagorean triplet.

Proof.(
h1 + h2 +

(
a1a2 − 2

2

))2

−
(
b1 + b2 +

(
a1a2 + 2

2

))2

=

(
b1 + 2 + b2 + 2 +

(
a1a2 − 2

2

))2

−
(
b1 + b2 +

(
a1a2 + 2

2

))2

=(b1 + b2 + 4)2
+

(
a1a2 − 2

2

)2

+ (b1 + b2 + 4) (a1a2 − 2)

− (b1 + b2)
2 −

(
a1a2 + 2

2

)2

− (b1 + b2) (a1a2 + 2)

=4 (b1 + b2) + 2a1a2 + 8

=4
(
a2

1 − 4
4

+
a2

2 − 4
4

)
+ 2a1a2 + 8

=a2
1 + a2

2 + 2a1a2

=(a1 + a2)
2
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Hence,
(
a1 + a2, b1 + b2 +

(
a1a2+2

2

)
, h1 + h2 +

(
a1a2−2

2

))
, form a PT. This completes the proof.

2

Example:3.3. If t1 = (8, 15, 17) , t2 = (12, 35, 37) ∈ P2, then their pro-addition,

t1 † t2 =(20, 50 + 49, 54 + 47)

= (20, 99, 101) ∈ P2.

Example:3.4. If t1 = (12, 35, 37) , t2 = (20, 99, 191) ∈ P2, then their pro-addition,

t1 † t2 =(32, 134 + 121, 138 + 119)

= (32, 255, 257) ∈ P2.

Definition-3.3. Pro-addition (†) of members of group P1 and P2 : Let a2 ≥ a1 and let
t1 = (a1, b1, h1) ∈ P1 and t2 = (a2, b2, h2) ∈ P2 be the two PTs, then their ’pro-addition’ (†) is
defined as follow:

t1 † t2 = (a1 + a2, b1 + 2b2 + a1a2 + 2, h1 + 2h2 + a1a2 − 2) ∈ P1 (3.3)

where, b1 =
a2

1−1
2 , h1 =

a2
1+1
2 = b1 + 1, and b2 =

a2
2−4
4 , h2 =

a2
2+4
2 = b2 + 2

Theorem 3.3. For a2 ≥ a1 and let t1 = (a1, b1, h1) ∈ P1 and t2 = (a2, b2, h2) ∈ P2 be the two
PTs, then their ’pro-addition’ defined as follows form a PT

t1 † t2 = (a1 + a2, b1 + 2b2 + a1a2 + 2, h1 + 2h2 + a1a2 − 2) ∈ P1.

where, b1 =
a2

1−1
2 , h1 =

a2
1+1
2 = b1 + 1, and b2 =

a2
2−4
4 , h2 =

a2
2+4
2 = b2 + 2

Proof.

(h1 + 2h2 + a1a2 − 2)2 − (b1 + 2b2 + a1a2 + 2)2

=(b1 + 1 + 2b2 + 4 + a1a2 − 2)2 − (b1 + 2b2 + a1a2 + 2)2

=(b1 + 2b2 + a1a2 + 3)2 − (b1 + 2b2 + a1a2 + 2)2

Let b1 + 2b2 + a1a2 = A

=(A+ 3)2 − (A− 2)2

=2A+ 5

=2(a2
1 + a2

2 + 2a1a2) + 5

=
(
a2

1 − 1 + a2
2 − 4 + 2a1a2

)
+ 5

=(a1 + a2)
2

This shows that, (a1 + a2, b1 + 2b2 + a1a2 + 2, h1 + 2h2 + a1a2 − 2) ∈ P1, form a PT. This
completes the proof. 2

Example:3.5. If t1 = (5, 12, 13) ∈ P1, and t2 = (12, 35, 37) ∈ P2, then their pro-addition
is ,

t1 † t2 =(5 + 12, 12 + 2(35) + 60 + 2, 13 + 2(37) + 60− 2)

= (17, 144, 145) ∈ P1.

Example:3.6. If t1 = (7, 24, 25) ∈ P1, and t2 = (16, 63, 65) ∈ P2, then their pro-addition is ,

t1 † t2 =(7 + 16, 24 + 2(63) + 112 + 2, 25 + 2(65) + 112− 2)

= (23, 264, 265) ∈ P1.
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4 Conclusion

In consequence of the previous article [11], this study presents a novel method for generating
all Pythagorean triplets, both primitive and non-primitive. The special operation of Pro-addition
(†) within the Pythagorean triplet families P1 and P2 has demonstrated closure properties for
addition, providing a coherent and elegant approach to generating new triplets from existing
ones. The potential extension of research into fields such as Field theory and Linear algebra holds
promise for uncovering deeper connections and applications of this newly proposed method. The
discovery of multiplicative closure property within the defined framework further amplifies the
potential for future investigations and opens exciting avenues for exploring Pythagorean triplets
in novel contexts. The method presented in this article not only expands our understanding of the
structure and properties of Pythagorean triplets but also contributes significantly to the broader
field of mathematics. It offers valuable insights and fresh perspectives, fostering interdisciplinary
research possibilities and igniting interest in the study of Pythagorean triplets. As researchers
delve deeper into the implications and applications of this approach, it is expected to enrich
various mathematical disciplines and inspire new discoveries.
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