# Average Distance and Average Restricted Detour Distance of a Straight Chain of k-Wheels Graph 

Herish Omer Abdullah, Ivan Dler Ali and Rashad Rashid Haji

Communicated by Harikrishnan Panackal

Keywords and phrases: Wiener index, Average distance, Restricted detour index.

A straight chain of $\beta$ copies of $k$-wheels graph $W_{k}^{\beta}$ is a sequence of $\beta$ copies of $k$-wheels such that every two successive wheel have exactly one common edge. In this article, we investigate the average restricted detour distance, Hosoya polynomial, Wiener index, restricted detour polynomial and restricted detour index of the graph $W_{k}^{\beta}$ for $k=4,5$ and $\beta \geq 2$. Moreover, we find the average distance and the average restricted detour distance of the graphs $W_{4}^{\beta}$ and $W_{5}^{\beta}$ for $\beta \geq 2$.

## 1 Introduction

Throughout this article, our graphs are finite, simple and connected. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The distance $d(u, v)$ between the two vertices $u$ and $v$ of $G$ is the number of edges in the shortest $u-v$ path in $G[4]$. An induced $u-v$ path of length $D^{*}(u, v)$ is called a restricted detour path. The restricted detour distance between two vertices $u$ and $v$ of $G$ is the length of a longest $u-v$ path $p$ for the induced condition $\langle V(P)\rangle=P$ and indicated $D^{*}(u, v)[8,10]$. The restricted detour diameter $\delta^{*}$ of the graph $G$ is defined to be the maximum restricted detour distance between any pair of vertices of $G[7]$.

The Wiener index $W(G)$ of a graph $G$, is the sum of the distances between all pairs of vertices of $G[2]$.
Let $C(G, k)$ denotes the number of pairs of vertices of $G$ that are at distance $k$, for $k=0,1, \ldots, \delta$ where $\delta$ is the diameter of $G$. The Hosoya polynomial of $G$ is $H(G ; x)=\sum_{k=0}^{\delta} C(G, k) x^{k}$. The Wiener index and Hosoya polynomial have the relation $W(G)=\left.\frac{d}{d x} H(G ; x)\right|_{x=1}$. The average distance $\mu(G)$ is the expected distance between all the distinct unordered pairs of vertices of $G$, divided by $|V(G)|(|V(G)|-1)$ where $|V(G)|$ is the order of $G$, that is, $\mu(G)=$ $\frac{\sum_{\{u, v\} \subseteq V(G)} d(u, v)}{|V(G)|(|V(G)|-1)}[3,6,9]$. Therefore $\mu(G)=\frac{\sum_{\{u, v\} \subseteq V(G)} d(u, v)}{\binom{|V(G)|}{2}}=\frac{2 W(G)}{|V(G)| \mid(|V(G)|-1)}$. The restricted detour polynomial depends on restricted detour distance, which is $D^{*}(G ; x)=\sum_{\{u, v\} \subseteq V(G)} x^{D^{*}(u, v)}$ , where the summation is taken over all unordered pairs of distinct vertices $u$ and $v$ of $G$. The
index $d d^{*}(x)=\sum_{\{u, v\} \subseteq V(G)} D^{*}(u, v)$ is also based on the restricted detour distance, where the summation is taken over all unordered pairs of distinct vertices $u$ and $v$ of $G[1]$.
Also $d d^{*}(x)=\left.\frac{d}{d x} D^{*}(G ; x)\right|_{x=1}$.
Finally, we define the average restricted detour distance as $\mu^{*}(G)=\frac{2 d d^{*}(G)}{|V(G)|(|V(G)|-1)}$.
Restricted detour polynomials and restricted detour indices are computed in 2012 for a hexagonal chain and a ladder graph by Ali. A. Ali And G. A. Mohammed-Saleh [1], in 2017 for edge identification of two wheel graphs by Ivan Dler Ali and Herish Omer Abdullah [10], also computed in 2017 for some classes of thorn graphs by Gashaw A. Mohammed-Saleh, Herish O. Abdullah and Mohammed R. Ahmed [5], and in 2021 for a prism and some wheel related graphs by Herish O. Abdullah and Ivan Dler Ali [8]. The general form of average distance and average restricted detour distance of a straight chain of $k$-wheels graph is provided in this article.

## 2 Straight 4-Wheel Chains

A straight 4-wheel chain $W_{4}^{\beta}$ for $\beta \geq 2$ is a graph consisting of a chain of $\beta$ copies of 4-wheels so that every two successive wheel have exactly one common edge. This forming a chain as shown in 1.


Figure 1: The graph $W_{4}^{\beta}$

By direct computations, we see that the order of the graph $W_{4}^{\beta}$ is $p\left(W_{4}^{\beta}\right)=2 \beta+2$, and the size of the graph $W_{4}^{\beta}$ is $q\left(W_{4}^{\beta}\right)=5 \beta+1$. Next proposition computes the diameter and restricted detour diameter of the graph $W_{4}^{\beta}$.

Proposition 2.1. For $\beta \geq 2$, the diameter $\delta\left(W_{4}^{\beta}\right)$ of the graph $W_{4}^{\beta}$ is equal to $\beta-\left\lfloor\frac{\beta-1}{2}\right\rfloor$ and the restricted detour diameter $\delta^{*}\left(W_{4}^{\beta}\right)$ of the graph $W_{4}^{\beta}$ is equal to $\beta-\left\lfloor\frac{\beta-1}{3}\right\rfloor$.

Proof: It clear that from the Figure 1, and by mathematical induction on the number of copies $\beta$ of the graph $W_{4}^{\beta}$, the diameter $\delta\left(W_{4}^{\beta}\right)$ is equal to $\beta-\left\lfloor\frac{\beta-1}{2}\right\rfloor$ and the restricted detour diameter
$\delta^{*}\left(W_{4}^{\beta}\right)$ is equal to $\beta-\left\lfloor\frac{\beta-1}{3}\right\rfloor$.
Obviously, the Hosoya polynomial and the restricted detour polynomial of the 2-copies of 4wheel graphs $W_{4}^{2}$ are given by

$$
H\left(W_{4}^{2} ; x\right)=D^{*}\left(W_{4}^{2} ; x\right)=6+11 x+4 x^{2}
$$

The Hosoya polynomial of $W_{4}^{\beta}$ for $\beta \geq 2$ is given in the next result.
Theorem 2.2. If $\beta \geq 2$, then the Hosoya polynomial of the graph $W_{4}^{\beta}$ is given by

$$
\begin{equation*}
H\left(W_{4}^{\beta} ; x\right)=(2 \beta+2)+(5 \beta+1) x+(8 \beta-12) x^{2}+4 \sum_{m=4}^{\beta}(\beta-m+1) x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor} \tag{2.1}
\end{equation*}
$$

Proof: We use mathematical induction on the number of copies $\beta$ in the graph $W_{4}^{\beta}$.
The result is obvious for $\beta=2$.
For $\beta=3$, then from Figure 1a and by directed calculations we obtain $H\left(W_{4}^{3} ; x\right)=8+16 x+$ $12 x^{2}$, which satisfies the relation (2.1).

Assume that the theorem is true for $\beta=k>3$, that is

$$
H\left(W_{4}^{k} ; x\right)=(2 k+2)+(5 k+1) x+(8 k-12) x^{2}+4 \sum_{m=4}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}
$$

Now, to prove the theorem is true for $\beta=k+1$.
First, we assume $k$ is an even integer and let $w_{1}$ and $w_{2}$ be any two vertices of $V\left(W_{4}^{k+1}\right)$, and consider the following cases:
(i) If $w_{1}$ and $w_{2}$ are belong to the first $k$ copies of $W_{4}^{k+1}$, that is, if $w_{1}, w_{2} \in V\left(W_{4}^{k}\right)$, then we get the polynomial

$$
H\left(W_{4}^{k+1} ; x\right)=H\left(W_{4}^{k} ; x\right)=(2 k+2)+(5 k+1) x+(8 k-12) x^{2}+4 \sum_{m=4}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}
$$

(ii) If $w_{1}=t_{k+1}$ and $w_{2}=v_{\frac{k}{2}+2}$, then we get the polynomial $G(x)=x$.
(iii) If $w_{1}$ belongs to the first $k$ copies of $W_{4}^{k+1}$ and $w_{2} \in\left\{t_{k+1}, v_{\frac{k}{2}+2}\right\}$, then we get the polynomials.

$$
\begin{aligned}
H\left(v_{\frac{k}{2}+2}, W_{4}^{k+1} ; x\right) & =1+3 x+4 x^{2}+2 \sum_{m=4}^{k+1} x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}, \text { and } \\
& H\left(t_{k+1}, W_{4}^{k+1} ; x\right)=1+2 x+4 x^{2}+2 \sum_{m=4}^{k+1} x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}
\end{aligned}
$$

Now, by combining the results obtained from the cases (i),(ii) and (iii) we note that the pair $\left\{t_{k+1}, v_{\frac{k}{2}+2}\right\}$ of distance one is counted twice, so we obtain

$$
H\left(W_{4}^{k+1} ; x\right)=H\left(W_{4}^{k} ; x\right)+G(x)+H\left(v_{\frac{k}{2}+2}, W_{4}^{k+1} ; x\right)+H\left(t_{k+1}, W_{4}^{k+1} ; x\right)-x
$$

Hence

$$
\begin{aligned}
H\left(W_{4}^{k+1} ; x\right) & =(2 k+2)+(5 k+1) x+(8 k-12) x^{2}+4 \sum_{m=4}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}+x \\
& +2+5 x+8 x^{2}+4 \sum_{m=4}^{k+1} x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}-x
\end{aligned}
$$

Or,

$$
\begin{aligned}
H\left(W_{4}^{k+1} ; x\right) & =[2(k+1)+2]+[5(k+1)+1] x+[8(k+12)-1] x^{2} \\
& +4 \sum_{m=4}^{k+1}[(k+1)-m+1] x^{m-\left\lfloor\frac{m-1}{2}\right\rfloor}
\end{aligned}
$$

So, (2.1) is true for even $k$. Similarly, we can show that (2.1) is true for odd $k$. Hence the relation (2.1) is true for all $\beta=k+1$. This completes the proof.

Now, taking the derivative of $H\left(W_{4}^{\beta} ; x\right)$ given from Theorem 2.2 with respect to $x$ at $x=1$; we get the following interesting result.

Corollary 2.3. For $\beta \geq 2$, the Wiener index of the graph $W_{4}^{\beta}$ is given by

$$
W\left(W_{4}^{\beta}\right)= \begin{cases}\frac{1}{3} \beta^{3}+\frac{5}{2} \beta^{2}+\frac{8}{3} \beta+1, & \text { if } \beta \text { is even } \\ \frac{1}{3} \beta^{3}+\frac{5}{2} \beta^{2}+\frac{8}{3} \beta+\frac{1}{2}, & \text { if } \beta \text { is odd }\end{cases}
$$

Proof: Taking the derivative of $H\left(W_{4}^{\beta} ; x\right)$ given from Theorem 2.2 with respect to $x$ then putting $x=1$; we get

$$
\begin{align*}
W\left(W_{4}^{\beta}\right) & =21 \beta-23+4(\beta+1) \sum_{m=4}^{\beta} m-4 \sum_{m=4}^{\beta} m^{2}-4(\beta+1) \sum_{m=4}^{\beta}\left\lfloor\frac{m-1}{2}\right\rfloor  \tag{2.2}\\
& +4 \sum_{m=4}^{\beta} m\left\lfloor\frac{m-1}{2}\right\rfloor
\end{align*}
$$

One can easily see that

$$
\sum_{m=4}^{\beta}\left\lfloor\frac{m-1}{2}\right\rfloor= \begin{cases}\frac{1}{4} \beta(\beta-2)-1, & \text { if } \beta \text { is even }  \tag{2.3}\\ \frac{1}{4}(\beta+1)(\beta-3), & \text { if } \beta \text { is odd }\end{cases}
$$

and

$$
\sum_{m=4}^{\beta} m\left\lfloor\frac{m-1}{2}\right\rfloor= \begin{cases}\frac{1}{24} \beta(\beta-2)(4 \beta+5)-3, & \text { if } \beta \text { is even }  \tag{2.4}\\ \frac{1}{24}(\beta+1)(\beta-1)(4 \beta+3)-3, & \text { if } \beta \text { is odd }\end{cases}
$$

Now, substituting (2.3) and (2.4) in (2.2) and then simplifying we get the required result.

Corollary 2.4. For $\beta \geq 2$, the average distance of the graph $W_{4}^{\beta}$ is given by

$$
\mu\left(W_{4}^{\beta}\right)= \begin{cases}\frac{2 \beta^{3}+15 \beta^{2}+16 \beta+6}{6(\beta+1)(2 \beta+1)}, & \text { if } \beta \text { is even } \\ \frac{2 \beta^{3}+15 \beta^{2}+16 \beta+3}{6(\beta+1)(2 \beta+1)}, & \text { if } \beta \text { is odd }\end{cases}
$$

Proof: It follows from Corollary 2.3 and the relation $\mu\left(W_{4}^{\beta}\right)=\frac{2 W\left(W_{4}^{\beta}\right)}{(2 \beta+2)(2 \beta+1)}$.
The restricted detour polynomial of the graph $W_{4}^{\beta}$ for $\beta \geq 2$ is obtained in the next theorem.

Theorem 2.5. For $\beta \geq 2$ we have

$$
\begin{equation*}
D^{*}\left(W_{4}^{\beta} ; x\right)=(2 \beta+2)+(5 \beta+1) x+4(\beta-1) x^{2}+4 \sum_{m=3}^{\beta}(\beta-m+1) x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor} \tag{2.5}
\end{equation*}
$$

Proof: We use mathematical induction on the number of $\beta$ copies of the graph $W_{4}^{\beta}$.
The result is obvious for $\beta=2$.
For $\beta=3$, then from Figure 1a and by directed calculations we obtain $D^{*}\left(W_{4}^{3} ; x\right)=8+16 x+$ $8 x^{2}+4 x^{3}$, which satisfies the relation (2.5).

Assume that the theorem is true for $\beta=k>3$, that is

$$
D^{*}\left(W_{4}^{k} ; x\right)=(2 k+2)+(5 k+1) x+4(k-1) x^{2}+4 \sum_{m=3}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor}
$$

Now, to prove the theorem is true for $\beta=k+1$.
First, we assume $k$ is an even integer and let $w_{1}$ and $w_{2}$ be any two vertices of $V\left(W_{4}^{k+1}\right)$, and consider the following cases:
(i) If $w_{1}$ and $w_{2}$ are belong to the first $k$ copies of $W_{4}^{k+1}$, that is $w_{1}, w_{2} \in V\left(W_{4}^{k}\right)$, then we get the polynomial

$$
D^{*}\left(W_{4}^{k+1} ; x\right)=D^{*}\left(W_{4}^{k} ; x\right)=(2 k+2)+(5 k+1) x+4(k-1) x^{2}+4 \sum_{m=3}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor}
$$

(ii) If $w_{1}=t_{k+1}$ and $w_{2}=v_{\frac{k}{2}+2}$ then we get the polynomial $G(x)=x$.
(iii) If $w_{1}$ belongs to the first $k$ copies of $W_{4}^{k+1}$ and $w_{2} \in\left\{t_{k+1}, v_{\frac{k}{2}+2}\right\}$, then we get the polynomials $D^{*}\left(v_{\frac{k}{2}+2}, W_{4}^{k+1} ; x\right)=1+3 x+2 x^{2}+2 \sum_{m=3}^{k+1} x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor \text {, and }}$

$$
D^{*}\left(t_{k+1}, W_{4}^{k+1} ; x\right)=1+2 x+2 x^{2}+2 \sum_{m=3}^{k+1} x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor}
$$

Now, combining the results given from the cases (i),(ii) and (iii) we note that the distance of the pair $\left\{t_{k+1}, v_{\frac{k}{2}+2}\right\}$ of distance one is counted twice, so we obtain

$$
D^{*}\left(W_{4}^{k+1} ; x\right)=D^{*}\left(W_{4}^{k} ; x\right)+G(x)+D^{*}\left(v_{\frac{k}{2}+2}, W_{4}^{k+1} ; x\right)+D^{*}\left(t_{k+1}, W_{4}^{k+1} ; x\right)-x
$$

This leads to the following polynomial

$$
\begin{align*}
D^{*}\left(W_{4}^{k+1} ; x\right) & =2(k+1)+(5 k+1) x+4(k-1) x^{2}+4 \sum_{m=3}^{k}(k-m+1) x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor}+x \\
& +2+5 x+4 x^{2}+\sum_{m=3}^{k+1} x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor}-x \tag{2.6}
\end{align*}
$$

Or,

$$
\begin{align*}
D^{*}\left(W_{4}^{k+1} ; x\right) & =[2(k+1)+2]+[5(k+1)+1] x+4[(k+1)-1] x^{2} \\
& +4 \sum_{m=3}^{k+1}[(k+1)-m+1] x^{m-\left\lfloor\frac{m-1}{3}\right\rfloor} \tag{2.7}
\end{align*}
$$

So, (2.5) is true for even $k$. Similarly, (2.5) is true for odd $k$. This completes the proof.
Now, taking the derivative of $D^{*}\left(W_{4}^{\beta} ; x\right)$ given from Theorem 2.5 with respect to $x$ at $x=1$; and using the facts that

$$
\sum_{m=3}^{\beta}\left\lfloor\frac{m-1}{3}\right\rfloor=\left\{\begin{array}{l}
\frac{1}{6} \beta(\beta-3), \quad \text { if } \beta \equiv 0 \bmod 3 \\
\frac{1}{6}(\beta-1)(\beta-2), \quad \text { otherwise }
\end{array}\right.
$$

and

$$
\sum_{m=3}^{\beta} m\left\lfloor\frac{m-1}{3}\right\rfloor= \begin{cases}\frac{1}{18} \beta(\beta-3)(2 \beta+3), & \text { if } \beta \equiv 0 \bmod 3 \\ \frac{1}{18}(\beta-1)\left(2 \beta^{2}-\beta-4\right), & \text { if } \beta \equiv 1 \bmod 3 \\ \frac{1}{18}(\beta-2)(\beta+1)(2 \beta-1), & \text { if } \beta \equiv 2 \bmod 3 .\end{cases}
$$

we get the following result.
Corollary 2.6. For $\beta \geq 2$, the restricted detour index of the graph $W_{4}^{\beta}$ is given by

$$
d d^{*}\left(W_{4}^{\beta}\right)= \begin{cases}\frac{4}{9} \beta^{3}+\frac{8}{3} \beta^{2}+\frac{7}{3} \beta+1, & \text { if } \beta \equiv 0 \bmod 3 \\ \frac{4}{9} \beta^{3}+\frac{8}{3} \beta^{2}+\frac{7}{3} \beta+\frac{5}{9}, & \text { if } \beta \equiv 1 \bmod 3 \\ \frac{4}{9} \beta^{3}+\frac{8}{3} \beta^{2}+\frac{7}{3} \beta+\frac{1}{9}, & \text { if } \beta \equiv 2 \bmod 3\end{cases}
$$

Proof: Note that $d d^{*}\left(W_{4}^{\beta}\right)=\left.\frac{d}{d x} D^{*}\left(W_{4}^{\beta} ; x\right)\right|_{x=1}$.From Theorem 2.5, the result follows.
Corollary 2.7. For $\beta \geq 2$, the average restricted detour distance of the graph $W_{4}^{\beta}$ is given by

$$
\mu^{*}\left(W_{4}^{\beta}\right)= \begin{cases}\frac{4 \beta^{3}+24 \beta^{2}+21 \beta+9}{9(\beta+1)(2 \beta+1)}, & \text { if }(\beta \bmod 3) \equiv 0 \\ \frac{4 \beta^{3}+24 \beta^{2}+21 \beta+5}{9(\beta+1)(2 \beta+1)}, & \text { if }(\beta \bmod 3) \equiv 1, \\ \frac{4 \beta^{3}+24 \beta^{2}+21 \beta+1}{9(\beta+1)(2 \beta+1)}, & \text { if }(\beta \bmod 3) \equiv 2\end{cases}
$$

Proof: Obvious.

## 3 Straight 5-Wheel Chains

A straight 5-wheel chain $W_{5}^{\beta}$ for, $\beta \geq 2$ is a graph consisting of a chain of $\beta$ copies of 5 -wheel so that every two successive wheels have exactly one common edge. This forming a chain as depicted in the following Figure.


Figure 2: A straight 5-wheel chain $W_{5}^{\beta}$

In this section, we will obtain Hosoya polynomial, Wiener index, restricted detour polynomial, restricted detour index, average distance and average restricted detour distance of the graph $W_{5}^{\beta}$ for $\beta \geq 2$.
By simple calculations, we see that the order of the graph $W_{5}^{\beta}$ is $p\left(W_{5}^{\beta}\right)=3 \beta+2$, and the size of the graph $W_{5}^{\beta}$ is $q\left(W_{5}^{\beta}\right)=7 \beta+1$.
Next proposition computes the diameter and restricted detour diameter of the graph $W_{5}^{\beta}$
Proposition 3.1. For $\beta \geq 2$, the diameter $\delta\left(W_{5}^{\beta}\right)$ of the graph $W_{5}^{\beta}$ is equal to $\beta+1$ and the restricted detour diameter $\delta^{*}\left(W_{5}^{\beta}\right)$ of the graph $W_{5}^{\beta}$ is equal to $2 \beta$.

Proof: It clear that from the Figure 2, and by mathematical induction on the number of copies $\beta$ of the graph $W_{5}^{\beta}$, the diameter $\delta\left(W_{5}^{\beta}\right)$ is equal to $\beta+1$ and the restricted detour diameter $\delta^{*}\left(W_{5}^{\beta}\right)$ is equal to $2 \beta$.
By direct calculations, we see that the Hosoya polynomial of the 2-copies of 5-wheels graph $W_{5}^{2}$ is $H\left(W_{5}^{2} ; x\right)=8+15 x+11 x^{2}+2 x^{3}$, and the restricted detour polynomial of the 2-copies of 5 -wheels graph $W_{5}^{2}$ is $D^{*}\left(W_{5}^{2} ; x\right)=8+15 x+5 x^{2}+6 x^{3}+2 x^{4}$.

The Hosoya polynomial of the graph $W_{5}^{\beta}$, for $\beta \geq 2$ is given in the next result.
Theorem 3.2. If $\beta \geq 2$, then the Hosoya polynomial of the graph $W_{5}^{\beta}$ is given by

$$
\begin{align*}
H\left(W_{5}^{\beta} ; x\right) & =(3 \beta+2)+(7 \beta+1) x+(9 \beta-7) x^{2}+2(\beta-1) x^{3} \\
& +\sum_{m=3}^{\beta}(\beta-m+1)(7+2 x) x^{m} \tag{3.1}
\end{align*}
$$

Proof: We use mathematical induction on the number of copies $\beta$ in the graph $W_{5}^{\beta}$.

The result is obvious for $\beta=2$.
For $\beta=3$, then from Figure 3.1 and by directed calculations we obtain $H\left(W_{5}^{3} ; x\right)=11+22 x+20 x^{2}+11 x^{3}+2 x^{4}$, which satisfies the relation (3.1).
Assume that the theorem is true for $\beta=k>3$, that is,
$H\left(W_{5}^{k} ; x\right)=(3 k+2)+(7 k+1) x+(9 k-7) x^{2}+2(k-1) x^{3}+\sum_{m=3}^{k}(k-m+1)(7+2 x) x^{m}$.
Now, to prove the theorem is true for $\beta=k+1$.
Let $w_{1}$ and $w_{2}$ be any two vertices of $V\left(W_{5}^{k+1}\right)$, and consider the following cases:
(i) If $w_{1}$ and $w_{2}$ are belong to the first $k$ copies of $W_{5}^{k+1}$, that is, if $w_{1}, w_{2} \in V\left(W_{5}^{k}\right)$, then we get the polynomial

$$
H\left(W_{5}^{k+1} ; x\right)=H\left(W_{5}^{k} ; x\right)=(3 k+2)+(7 k+1) x+(9 k-7) x^{2}+2(k-1) x^{3}+\sum_{m=3}^{k}(k-m+1)(7+2 x
$$

(ii) If $w_{1}, w_{2} \in\left\{u_{k+2}, v_{k+2}, t_{k+1}\right\}$, then we get the polynomial $G(x)=3 x$.
(iii) If $w_{1}$ belongs to the first $k$ copies of $W_{5}^{k+1}$ and $w_{2} \in\left\{u_{k+2}, v_{k+2}, t_{k+1}\right\}$, then we get the polynomials

$$
\begin{aligned}
& H\left(u_{k+2}, W_{5}^{k+1} ; x\right)=1+3 x+3 x^{2}+x^{3}+\sum_{m=3}^{k+1}(2+x) x^{m} \\
& H\left(v_{k+2}, W_{5}^{k+1} ; x\right)=1+2 x+3 x^{2}+x^{3}+\sum_{m=3}^{k+1}(2+x) x^{m}
\end{aligned}
$$

and

$$
H\left(t_{k+1}, W_{5}^{k+1} ; x\right)=1+2 x+3 x^{2}+\sum_{m=3}^{k+1}\left(3 x^{m}\right)
$$

Now, by combining the results obtained from the cases (i),(ii) and (iii) we note that the distances of each of the pairs of vertices $\left\{u_{k+2}, t_{k+1}\right\},\left\{u_{k+2}, v_{k+2}\right\}$ and $\left\{v_{k+2}, t_{k+1}\right\}$ each of distance one are counted twice, we get following polynomial
$H\left(W_{5}^{k+1} ; x\right)=H\left(W_{5}^{k} ; x\right)+G(x)+H\left(u_{k+2}, W_{5}^{k+1} ; x\right)+H\left(v_{k+2}, W_{5}^{k+1} ; x\right)+H\left(t_{k+1}, W_{5}^{k+1} ; x\right)-3 x$.
Hence

$$
\begin{aligned}
H\left(W_{5}^{k+1} ; x\right) & =(3 k+2)+(7 k+1) x+(9 k-7) x^{2}+2(k-1) x^{3}+\sum_{m=3}^{k}(k-m+1)(7+2 x) x^{m} \\
& +3 x+3+7 x+9 x^{2}+2 x^{3}+\sum_{m=3}^{k+1}(7+2 x) x^{m}-3 x
\end{aligned}
$$

Or,

$$
\begin{aligned}
H\left(W_{5}^{k+1} ; x\right) & =[3(k+1)+2]+[7(k+1)+1] x+[9(k+1)-7] x^{2}+2[(k+1)-1] x^{3} \\
& +\sum_{m=3}^{k+1}[(k+1)-m+1](7+2 x) x^{m}
\end{aligned}
$$

Hence the result holds for all $\beta=k+1$. This completes the proof.

The following results are direct consequences of Theorem 3.2.
Corollary 3.3. For $\beta \geq 2$, the Wiener index of the graph $W_{5}^{\beta}$ is given by

$$
W\left(W_{5}^{\beta}\right)=\frac{3}{2} \beta^{3}+\frac{11}{2} \beta^{2}+4 \beta+1
$$

Proof: Obvious.
Corollary 3.4. For $\beta \geq 2$, the average distance of the graph $W_{5}^{\beta}$ is given by

$$
\mu\left(W_{5}^{\beta}\right)=\frac{3 \beta^{3}+11 \beta^{2}+8 \beta+2}{(3 \beta+2)(3 \beta+1)}
$$

Proof: It follows from the corollary 3.3 and the relation $\left(W_{5}^{\beta}\right)=\frac{2 W\left(W_{4}^{\beta}\right)}{(3 \beta+2)(3 \beta+1)}$.
We obtain the restricted detour polynomial of the chain $W_{5}^{\beta}$, for $\beta \geq 2$ in the next theorem.
Theorem 3.5. For $\beta \geq 2$, we have

$$
\begin{align*}
D^{*}\left(W_{5}^{\beta} ; x\right) & =(3 \beta+2)+(7 \beta+1) x+(3 \beta-1) x^{2}+6(\beta-1) x^{3}+2(\beta-1) x^{4} \\
& +\sum_{m=3}^{\beta}(\beta-m+1)\left(1+6 x+2 x^{2}\right) x^{2 m-2} \tag{3.2}
\end{align*}
$$

Proof: We use mathematical induction on the number of copies $\beta$ of the graph $W_{5}^{\beta}$.
The result is obvious for $\beta=2$.
For $\beta=3$, then from Figure 2 and by directed calculations we get $D^{*}\left(W_{5}^{3} ; x\right)=11+22 x+$ $8 x^{2}+12 x^{3}+5 x^{4}+6 x^{5}+2 x^{6}$, which satisfies the relation (3.2).
Assume that the theorem is true for $\beta=k>3$, that is

$$
\begin{aligned}
D^{*}\left(W_{5}^{k} ; x\right) & =(3 k+2)+(7 k+1) x+(3 k-1) x^{2}+6(k-1) x^{3}+2(k-1) x^{4} \\
& +\sum_{m=3}^{k}(k-m+1)\left(1+6 x+2 x^{2}\right) x^{2 m-2} .
\end{aligned}
$$

Now, we have to prove that the result is true for $\beta=k+1$. Let $w_{1}$ and $w_{2}$ be any two vertices of $V\left(W_{5}^{k+1}\right)$, and consider the following cases:
(i) If $w_{1}$ and $w_{2}$ are belong to the first $k$ copies of $W_{5}^{k+1}$, that is $w_{1}, w_{2} \in V\left(W_{5}^{k}\right)$, then we get the polynomial

$$
\begin{aligned}
D^{*}\left(W_{5}^{k+1} ; x\right) & =D^{*}\left(W_{5}^{k} ; x\right)=(3 k+2)+(7 k+1) x+(3 k-1) x^{2}+6(k-1) x^{3}+2(k-1) x^{4} \\
& +\sum_{m=3}^{k}(k-m+1)\left(1+6 x+2 x^{2}\right) x^{2 m-2}
\end{aligned}
$$

(ii) If $w_{1}, w_{2} \in\left\{u_{k+2}, v_{k+2}, t_{k+1}\right\}$, then we get the polynomial $G(x)=3 x$.
(iii) If $w_{1}$ belongs to the first $k$ copies of $W_{5}^{k+1}$, and $w_{2} \in\left\{u_{k+2}, v_{k+2}, t_{k+1}\right\}$, then we get the polynomials

$$
\begin{aligned}
& D^{*}\left(u_{k+2}, W_{5}^{k+1} ; x\right)=1+3 x+x^{2}+2 x^{3}+x^{4}+\sum_{m=3}^{k+1}\left(2 x+x^{2}\right) x^{2 m-2} \\
& D^{*}\left(v_{k+2}, W_{5}^{k+1} ; x\right)=1+2 x+x^{2}+2 x^{3}+x^{4}+\sum_{m=3}^{k+1}\left(2 x+x^{2}\right) x^{2 m-2}
\end{aligned}
$$

and

$$
D^{*}\left(t_{k+1}, W_{5}^{k+1} ; x\right)=1+2 x+x^{2}+2 x^{3}+\sum_{m=3}^{k+1}(1+2 x) x^{2 m-2}
$$

Now, by combining the results given from the cases (i),(ii) and (iii) and notice that the distances of each of the pairs of vertices $\left\{u_{k+2}, t_{k+1}\right\},\left\{u_{k+2}, v_{k+2}\right\}$ and $\left\{v_{k+2}, t_{k+1}\right\}$ each of distance one are counted twice, we get following polynomial
$D^{*}\left(W_{5}^{k+1} ; x\right)=D^{*}\left(W_{5}^{k} ; x\right)+G(x)+D^{*}\left(u_{k+2}, W_{5}^{k+1} ; x\right)+D^{*}\left(v_{k+2}, W_{5}^{k+1} ; x\right)+D^{*}\left(t_{k+1}, W_{5}^{k+1} ; x\right)-3 x$.
Hence

$$
\begin{aligned}
D^{*}\left(W_{5}^{k+1} ; x\right) & =(3 k+2)+(7 k+1) x+(3 k-1) x^{2}+6(k-1) x^{3}+2(k-1) x^{4} \\
& +\sum_{m=3}^{k}(k-m+1)(1+6 x+2) x^{2 m-2}+3 x+3+7 x+3 x^{2}+6 x^{3}+2 x^{4} \\
& +\sum_{m=3}^{k+1}(1+6 x+2) x^{2 m-2}-3 x . \\
& =[3(k+1)+2]+[7(k+1)+1] x+[3(k+1)-1] x^{2}+6[(k+1)-1] x^{3} \\
& +2[(k+1)-1] x^{4}+\sum_{m=3}^{k}[(k+1)-m+1](1+6 x+2) x^{2 m-2} .
\end{aligned}
$$

Thus, the relation (3.2) is true for all $\beta=k+1$. This completes the proof.
Now, taking the derivative of $D^{*}\left(W_{5}^{\beta} ; x\right)$ given from Theorem 3.5 with respect to $x$ at $x=1$; we get the following interesting result.

Corollary 3.6. For $\beta \geq 2$, the restricted detour index of the graph $W_{5}^{\beta}$ is given by

$$
d d^{*}\left(W_{5}^{\beta}\right)=3 \beta^{3}+5 \beta^{2}+3 \beta+1
$$

Proof: Note that $d d^{*}\left(W_{5}^{\beta}\right)=\left.\frac{d}{d x} D^{*}\left(W_{5}^{\beta} ; x\right)\right|_{x=1}$.From Theorem 3.5, the result follows.
Corollary 3.7. For $\beta \geq 2$, the average restricted detour distance of the graph $W_{5}^{\beta}$ is given by

$$
\mu^{*}\left(W_{5}^{\beta}\right)=\frac{6 \beta^{3}+10 \beta^{2}+6 \beta+2}{(3 \beta+2)(3 \beta+1)}
$$

Proof: Obvious.

## References

[1] A. A. Ali and G. A. Mohammed-Saleh, The restricted detour polynomials of a hexagonal chain and a ladder graph, J. Math. Comput. Sic. 2(6)1622-1633 (2012).
[2] Andrey A. Dobrynin, Ivan.Gutman and Petra Zigert Pletersek, Wiener index of hexagonal systems, J.Acta Applicandae Mathematicae 72(3), 247-294 (2002).
[3] D.Bienstok and E. Györi, Average distance in graphs with removed elements, J. of Graph theory 12(3) 375-390 (1988).
[4] Gary Chartrand, Linda Lesniak and Ping Zhang, Graph and digraph, 6th edition, Taylor \& Francis Group (2016).
[5] Gashaw A. Mohammed-Saleh, Herish O. Abdullah and Mohammed R. Ahmed. The Restricted Detour Polynomials of Some Classes of Thorn Graphs, AIP Conference Proceedings 1888:020046 (2017).
[6] Hans-Jürgen Bandelt and Henry Martyn Mulder, Distance-Hereditary Graphs, J. combinatorial, Theory series B 41,182-208 (1986).
[7] Herish O. Abdullah and Gashaw A. Muhammed-Saleh. Detour Hosoya polynomials of some compound graphs. Raf. J. of Comp. \& Math's. , 7(1):199-209 (2010).
[8] Herish Omer Abdullah and Ivan Dler Ali. The restricted detour polynomials of a prism and some wheel related graphs, J. of Information and Optimization Sciences 42(4), 773-784 (2021).
[9] Ingo .Althöfer, Average distances in undirected graphs and the removal of vertices, J. combinatorial, Theory series B,48(1)140-142 (1990).
[10] Ivan Dler Ali. and Herish Omer Abdullah. The restricted detour polynomials of edge- identification of two wheel graphs, AIP Conference Proceedings 1888:020011 (2017).

## Author information

Herish Omer Abdullah, Salahaddin University-Erbil, Kurdistan Region,, Iraq..
E-mail: herish.abdullah@su.edu.krd
Ivan Dler Ali, Salahaddin University-Erbil, Kurdistan Region,, Iraq..
E-mail: evan.ali1@su.edu.krd
Rashad Rashid Haji, Salahaddin University-Erbil, Kurdistan Region,, Iraq..
E-mail: rashad.haji@su.edu.krd

Received: 2022-01-09
Accepted: 2023-09-11

