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Abstract A theoretical model for the two layered micropolar fluid with nanoparticles flow
through a stenosed artery is investigated. A two layered model is considered to represent the
fluid flow passing through two regions (namely, Peripheral and Core) in a stenosed artery. The
micropolar fluid with nanoparticles in core region acts as a non-Newtonian fluid and the fluid
in peripheral layer is Newtonian fluid. The closed expressions of flow characteristics, like axial
velocity profile, flow resistance, shear stress, temperature profile and concentration distribution
are found to solve the governing equations using Homotopy Perturbation Method (HPM) with
the assumption of mild stenosis. The impact of flow characteristics on the conformation to the
flow, wall shear stress and velocity profiles are discussed graphically. A novel result is found
that the resistance of fluid flow, shear at the wall and the axial velocity profile diminishes with
the enhance of viscosity of fluid in the peripheral layer. Characteristics of temperature and
concentration distribution due to the presence of micropolar fluid having nanoparticles in the
core region has been studied to control the heat enhancement phenomenon. Streamlines are
drawn to explore the fluid flow pattern and characteristics of momentum transfer.

1 Introduction

Experimental and theoretical analysis on fluid flows in small channels suggests that blood in
certain flow conditions like low shear rates, acts as non-Newtonian fluid. It is known that the
blood contains different types of cells, so that the viscous property of blood is changed and it
shows non-Newtonian characteristics at shear rates in narrow elastic tube. The flow characteris-
tics depends on the shape of the stenosis in artery, which is investigated by [1, 2]. Also, many
investigations are available in the literature on the characteristics of blood flow, which explored
the effect of structure in the arterial lumen of a blood channel [3, 4, 5, 6]. The effect of non-
Newtonian fluid flowing across a non-uniform tube having multiple stenosis is studied by [7].

Erigen [8] introduced the theory of micropolar fluids, which is an effective model for the
study of blood flow. These fluids contain hard, uniformly shaped (spherical) particles, sus-
pended in a viscous layer that ignores particle deformation. Also, these types of fluids can help
body couples and couple stresses while exhibiting micro rotational and inertial effects. The fluid
substances rotation is taken care by a separate vector called the micro-rotation vector in microp-
olar fluid model. As a consequence, the micropolar fluid model might be more suitable for any
bio-fluids. [9, 10, 11, 12, 13].

In many studies, it has been observed that the existence of a peripheral layer has been found
to play a significant effect in functioning of arterial system [14]. The study of two-phase model
for fluid flowing into stenotic channels in the existence of peripheral layer is done by [15]. The
impact of the peripheral layer viscosity on the flow of blood into the arteries having mild stenosis
is analysed by [16]. The blood flow of couple stress fluid in the stenotic arteries having peripheral
layer is studied by [17].

With the foregoing points in view, a two-layered mathematical model for the fluid flow across
a stenosed artery is considered. The effects of different fluid flow parameters on flow characteris-
tics are analyzed by deriving the closed expression for resistance (or) flow Impedance and shear
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stress at wall by using Homotopy Perturbation Method under the purview of the assumptions of
mild stenosis.

2 Mathematical Formulation

Consider the axisymmetric blood flow in a uniform circular cylinder with mild stenosis. The
geometry of the stenosis is shown in Figure 1.

Figure 1. Geometry of arterial stenoses with peripheral layer

Radius of stenoses in the peripheral and core regions are [17]

h(z) =
R(z)

R0
=

{
1− δs

2R0

[
1 + cos 2π

L0

(
z − d− L0

2

)]
; d ≤ z ≤ d+ L0

1 ; Otherwise
(2.1)

h1(z) =
R1(z)

R0
=

{
β − δs

2R0

[
1 + cos 2π

L0

(
z − d− L0

2

)]
; d ≤ z ≤ d+ L0

β ; Otherwise
(2.2)

Here R(z) and R1(z) are respectively the radii of stenosed artery in peripheral and core re-
gions. β is the proportion of the central radius to normal artery radius. Also, R0 and βR0 are
radii of normal artery and core region of normal artery respectively. L0, d are length and location
of the stenoses. δs is the maximum altitude of the stenoses at z = d+ L0

2 such that δs
R0

<< 1 and
δi
R0

<< 1.

The equations of motions in the peripheral region and core region are

a) Peripheral Region(R1(z) ≤ r ≤ R(z))

∂p̄

∂z̄
= µp∇2w̄1 (2.3)

∂p̄

∂r̄
= 0 (2.4)

where, ∇2 ≡ ∂2

∂r2 +
1
r
∂
∂r +

∂2

∂z2 , w̄1 is the component of velocity in the z̄ direction, p̄, µp are
the pressure and constant velocity of Newtonian fluid in peripheral region.

b) Core Region (0 ≤ r ≤ R1(z))

(∇·W ) = 0 (2.5)



412 K. Maruthi Prasad, Bheema Sreekala and Prabhaker Reddy Yasa

ρ(W ·∇W ) = −(∇P ) + (K∇×W ) + (µ+K)∇2W (2.6)

ρj(W ·∇W ) = −(2KV ) + (K∇×W )− γ(∇×∇× V ) + (α+ β + γ)∇(∇ · V ) (2.7)

(ρc)f
dT̄

dt
= k∇2T̄ + (ρc)p

[
DB̄∇C̄.∇T̄ +

DT̄

T̄o
∇T̄ .∇T̄

]
(2.8)

dC̄

dt
= DB̄∇2C̄ +

[
DT̄

T̄0

]
∇2T̄ (2.9)

Here, p,W, V, ρ, j are fluid pressure, Velocity vector, micro rotation vector, fluid density,
micro gyration parameter respectively. (ρc)f , (ρc)p are the density of the fluid and density of the
fluid and density of the particle respectively. d

dt represents the material time derivative, C̄ is nano-
particle phenomena, DT̄ and DB̄ are the thermophoretic and Brownian diffusion coefficients
respectively. Also, as r̄ tends to h̄, the values of T̄ and C̄ are T̄0 and C̄0. k, α, β, γ are material
constants and satisfies the following inequalities [8]

2µ+K ≥ 0, 3α+ β ≥ 0, γ ≥ |β|

Since, the flow is axisymmetric, every variable is independent of θ. Therefore,W=(wr, 0, wz)
and V =(0, vθ, 0) are velocity and microrotation vectors respectively.

Introducing the following non-dimensional variables
r = r̄

R0
, z = z̄

λ , wr = λw̄r
cR0

, wz = w̄z
c , p = R2

0p̄
cλµc

, θt =
T̄−T̄0
T̄0

, t = ct̄
λ , σ = C̄−C̄0

C̄0
, α =

k
(ρc)f

, Nb =
(ρc)pDB̄C̄0

(ρc)f
, Nt =

(ρc)pDT̄ T̄0

(ρc)fα
, Gr =

gαT̄0R
3
0

ϕ2 , Br =
gαC̄0R

3
0

ϕ2 , ϕ2 = µc
ρ , δ =

R0
λ

Where, θt, σ, Nt, Nb, Br and Gr are respectively temperature profile, nano particle phe-
nomenon, Thermophoresis parameter, Brownian motion parameter, local nanoparticle Grashof
number and local temperature Grashof number.

The governing equations are

∂p

∂z
=

1
r

∂

∂r

(
µ̄r

∂

∂r

)
w1 (2.10)

∂p

∂r
= 0 (2.11)

N

r

∂

∂r
(rvθ) +

∂2w

∂r2 +
1
r

∂w

∂r
+ (1−N)

sinα
F

+ (1−N)(Grθt +Brσ) = (1−N)
∂P

∂z
(2.12)

2vθ +
∂w

∂r
− 2−N

m2
∂

∂r

(
1
r

∂

∂r
(rvθ)

)
= 0 (2.13)

1
r

∂

∂r

(
r
∂θt
∂r

)
+Nb

∂σ

∂r

∂θt
∂r

+Nt

(
∂θt
∂r

)2

= 0 (2.14)

1
r

∂

∂r

(
r
∂σ

∂r

)
+
Nt
Nb

(
1
r

∂

∂r

(
r
∂θt
∂r

))
= 0 (2.15)

Where, wz is the velocity along the axial direction. Here, m2 = R0
2k(2µc+k)
γ(µc+k)

is micropolar
parameter and N = k

µc+k
is the coupling number (0 ≤ N < 1).
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The non-dimensional boundary conditions are

w1 = −1 at r = h(z) (2.16)

∂wz
∂r

= 0 ,
∂θt
∂r

= 0,
∂σ

∂r
= 0 at r = 0 (2.17)

vθ = 0, θt = 0 , σ = 0 at r = h1(z) (2.18)

vθ is finite, wz is finite at r = h1(z) (2.19)

w1 = wz, at r = h1(z) (2.20)

µ̄
∂w1

∂r
=
∂wz
∂r
− N

1−N
vθ +

r

2
(Grθt +Brσ) at r = h1(z) (2.21)

3 Solution of the Problem

The expression for w1 from the equation (2.10) and (2.16) is

w1 =
r2 − h2

4µ̄
dp

dz
+
c1

µ̄
log
( r
h

)
(3.1)

By applying HPM, the solutions of Equations (2.14) and (2.15) are

H (qt, θt) = (1− qt) [L (θt)− L (θ10)] + qt

[
L (θt) +Nb

∂σ

∂r

∂θt
∂r

+Nt

(
∂θt
∂r

)2
]

(3.2)

H (qt, σ) = (1− qt) [L (σ)− L (σ10)] + qt

[
L (σ) +

Nt
Nb

(
1
r

∂

∂r

(
r
∂θt
∂r

))]
(3.3)

Where, qt is the embedding parameter (0 ≤ qt ≤ 1). L ≡ 1
r
∂
∂r

(
r ∂∂r
)

is a linear operator. θ10 and
σ10 are the initial guesses, given as

θ10 (r, z) =

(
r2 − h2

4

)
, σ10 (r, z) = −

(
r2 − h2

4

)
(3.4)

θt (r, z) = θt0 + qtθt1 + q2
t θt2 + . .. (3.5)

σ (r, z) = σ0 + qtσ1 + q2
tσ2 + . . . (3.6)

Convergence of equations (3.5) and (3.6) depend on the non-linear part of the expression. For
qt = 1, the solution for temperature and nanoparticle phenomena is

H (q, θ) = L (θ)− L (θ10) + qL (θ10) + q

[
Nb

(
∂σ

∂r

∂θt
∂r

)
+Nt

(
∂θt
∂r

)2
]

(3.7)

H (q, σ) = L (σ)− L (σ10) + qL (σ10) + q

[
Nt
Nb

1
r

∂

∂r

(
r
∂θt
∂r

)]
(3.8)

The solution for temperature profile and nano particle phenomena for q = 1 is

θt (r, z) =
(Nb −Nt)

64
(
r2 − h2)− Nb

18
(
r3 − h3)− Nt

(
Nb

2 +Nt
2
)

36864
(
r4 − h4) (r6 − h6)

(3.9)
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σ (r, z) = −
(
r2 − h2

)
4

Nt
Nb

+
Nt
Nb

Nb
18
(
r3 − h3)+

(
Nb

2 +Nt
2
)

36864
(
r6 − h6) (3.10)

Substituting equations (3.9) and (3.10) in (2.13) and applying boundary conditions
∂

∂r

[
Nrvθ + r

∂wz
∂r

+
N − 1

2
r2 dP

dz

]
= (1−N)

[
Gr

(
1

64
(Nb −Nt)

(
r3 − rh1

2
)
−

(
Nb
18

(
r4 − rh1

3
)
+
Nt

(
Nb

2 +Nt
2
)

36864

(
r5 − rh1

4
)(

r6 − h1
6
)))

+Br

(
−Nt
Nb(

r3 − rh1
2
)

4
+
Nt
Nb

(
Nb
18

(
r4 − rh1

3
)
+

(
Nb

2 +Nt
2
)

36864

(
r7 − rh1

6
)))]

(3.11)

From equations (3.9), (3.10) and (2.13) expression for vθ can be written as

∂2vθ
∂r2 +

1
r

∂vθ
∂r
−
(
m2 +

1
r2

)
vθ =

1−N
2−N

m2
[
r

2
dP

dz
+
Gr (Nb −Nt)

64

(
r3

4
−
rh2

1
2

)
− GrNb

18(
r4

5
−
rh3

1
2

)
−
GrNt

(
Nb

2 +Nt
2
)

36864

(
r11

12
−
r5h6

1
6
−
r7h4

1
8

+
rh10

1
2

)
− Br

4
Nt
Nb(

r3

4
−
rh2

1
2

)
+
Br
18
Nt

(
r4

5
−
rh3

1
2

)
+Br

Nt
Nb

Nb
2 +Nt

2

36864

(
r7

8
−
rh6

1
2

)]
(3.12)

The general solution of equation (3.11) is

vθ = c4 (z) I1 (mr)+c5 (z) K1 (mr)+
N − 1
2−N

[
r

2
dP

dz
+Gr (Nb −Nt)

(
r

32m2 −
rh2

1
128

+
r3

256

)

−GrNb
(

1
2m4 −

rh3
1

36
+

r2

6m2 +
r4

90

)
−
GrNt

(
Nb

2 +Nt
2
)

36864

(
7372800r
m10 −

1152rh4
1

m6 −
32rh6

1
m4

+
rh10

1
2

+
921600
m8 r3−144

m4 r
3h4

1−
4r3h6

1
m2 +

38400r5

m6 −
6r5h4

1
m2 −

r5h6
1

6
+

800r7

m4 −
r7h4

1
8

+
10r9

m2 +
r11

12

)

−Br
Nt
Nb

(
r

2m2 −
rh2

1
8

+
r3

16

)
−BrNt

(
−1
2m4 +

rh3
1

36
− r2

6m2 −
r4

90

)
+Br

Nt
Nb

(
Nb

2 +Nt
2
)

36864(
1152r
m6 −

rh6
1

2
+

144r3

m4 +
6r5

m2 +
r7

8

)]
(3.13)

where, I1(mr) andK1(mr) are respectively the first and second order modified Bessel functions.
From equations (3.12), (3.13) and by applying boundary conditions (2.17)-(2.21)

wz = −Nc4
I0 (mr)

m
+

1−N
2−N

[
r2

2
dP

dz
+Gr (Nb −Nt)

(
Nr2

64m2 +
r4

512
−
r2h2

1
128

)
+GrNb

(
−Nr
2m4 −

Nr3

18m2 −
r5

225
+
r2h3

1
36

)
+
GrNt

(
Nb

2 +Nt
2
)

36864

(
−3686400Nr2

m10 − 230400Nr4

m8 +

576Nr2h4
1

m6 − 6400Nr6

m6 +
16Nr2h6

1
m4 +

36Nr4h4
1

m4 − 100Nr8

m4 +
Nr4h6

1
m2 − Nr

10

m2 +
Nr6h4

1
m2 − r

12

72
+

r6h6
1

18
+
r8h4

1
32
−
r2h10

1
2

)
+Br

Nt
Nb

(
−Nr2

4m2 −
r4

32
+
r2h2

1
8

)
+BrNt

(
Nr

2m4 +
Nr3

18m2 +
r5

225
−

r2h3
1

36

)
+Br

Nt
Nb

(
Nb

2 +Nt
2
)

36864

(
576Nr2

m6 +
36Nr4

m4 +
Nr6

m2 +
r8

32
−
r2h6

1
2

)]
+ c6 (3.14)
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Where,

c1 = −Nh2
1
dP

dz
− N (2−N)

1−N
h1A+B

c4 =
1

I1 (mh1)

[
1−N
2−N

h1

2
dP

dz
+A

]

c6 =
dP

dz

[
N

m

I0 (mh1)

I1 (mh1)

(
1−N
2−N

)
h1

2
−
Nh2

1
2µ̄

log
h1

h
+
h2

1
4µ̄
− h2

4µ̄
+

(
N − 1
2−N

)
h2

1
2

]
+

N

m

I0 (mh1)

I1 (mh1)
A− N (2−N)

1−N
h1A

µ̄
log

h1

h
+
B

µ̄
log

h1

h
+ C − 1

A =
1−N
2−N

[
Gr (Nb −Nt)

(
h1

32m2 −
h3

1
256

)
+GrNb

(
−1
2m4 −

h2
1

6m2 +
h4

1
60

)
+GrNt(

Nb
2 +Nt

2
)

36864

(
−7372800h1

m10 −
37248h5

1
m6 −

624h7
1

m4 −
7h11

1
24
− 921600

m8 h3
1

)
+

Br
Nt
Nb

(
−h1

2m2 +
h3

1
16

)
+BrNt

(
1

2m4 +
h2

1
6m2 −

h4
1

60

)
+Br

Nt
Nb

(
Nb

2 +Nt
2
)

36864(
1152h1

m6 +
144h3

1
m4 −

3h7
1

8
+

6h5
1

m2

)]

B =
1

2−N
Gr (Nb −Nt)

(
Nh2

1
16m2 +

Nh4
1

256
−

h4
1

128
−
N2h2

1
32m2

)
+
GrNb
2−N

(
−Nh1

m4 −
Nh3

1
3m2 +

N2h1

2m4 +
N2h3

1
6m2 +

h5
1

30
−
Nh5

1
60

)
+
GrNt

(
Nb

2 +Nt
2
)

(2−N) 36864

(
−

14745600Nh2
1

m10 −Nh4
1

1843200
m8 +

37248N2h6
1

m6 +
624Nh8

1
m4 +

7Nh12
1

24

)
+

Br
2−N

Nt
Nb

(
−Nh2

1
m2 +

N2h2
1

2m2 +

h4
1

8
−
Nh4

1
16

)
+
BrNt
2−N

(
Nh1

m4 +
Nh3

1
3m2 −

N2h3
1

6m2 −
37h5

1
60
− N2h1

2m4 +
3Nh5

1
5

)
+

Br
2−N

Nt
Nb

(
Nb

2 +Nt
2
)

36864

(
2304Nh2

1
m6 +

288Nh4
1

m4 +
12Nh6

1
m2 −

3h8
1

4
−

1152N2h2
1

m6

−
144N2h4

1
m4 −

6N2h6
1

m2 +
3Nh8

1
8

)

C =
N − 1
2−N

[
Gr (Nb −Nt)

(
Nh2

1
64m2 −

3h4
1

512

)
+GrNb

(
−Nh1

2m4 −
Nh3

1
18m2 +

7h5
1

300

)
+

GrNt

(
Nb

2 +Nt
2
)

36864

(
−3686400Nh2

1
m10 −

230400Nh4
1

m8 −
5824Nh6

1
m6 −

48Nh8
1

m4 +

Nh10
1

m2 −
41
96
h12

1

)
+Br

Nt
Nb

(
−Nh2

1
m2 +

3h4
1

32

)
+BrNt

(
Nh1

2m4 +
Nh3

1
18m2 −

7h5
1

300

)

+Br
Nt
Nb

(
Nb

2 +Nt
2
)

36864

(
576Nh2

1
m6 +

36Nh4
1

m4 +
Nh6

1
m2 −

15h8
1

32

)]
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The dimension less flux (q) is

q =

∫ h1

0
2rw dr +

∫ h

h1

2rw1 dr (3.15)

Substituting w1 and wz from equations (3.1) and (3.14) in (3.15)

q =
dp

dz

[
−N
m

(
1−N
2−N

)
hh1 −

(
1−N
2−N

)
h4

1
4

+
N

m

I0 (mh1)

I1 (mh1)

(
1−N
2−N

)
h3

1
2

+
3h4

1
8µ̄

+(
N − 1
2−N

)
h4

1
8µ̄
− h4

8µ̄
−
Nh4

1
4µ̄

+
Nh2h2

1
4µ̄

]
+A

[
−2Nh
m

+
N

m

I0 (mh1)

I1 (mh1)
h2

1 −N(
2−N
1−N

)
h1
(
h2

1 − h2
)

2µ̄

]
+
B
(
h2

1 − h2
)

2̄µ
+ Ch2

1 +D − h2 (3.16)

where,

D =
1−N
2−N

[
Gr (Nb −Nt)

(
Nh4

1
128m2 −

5h6
1

1536

)
+GrNb

(
−
Nh3

1
3m4 −

Nh5
1

45m2 +
53h7

1
4200

)
+Gr

Nt

(
Nb

2 +Nt
2
)

36864

(
−1843200Nh4

1
m10 −

76800Nh6
1

m8 −
1312Nh8

1
m6 +

5Nh12
1

12m2 −
779

3360
h14

1

)

+Br
Nt
Nb

(
−Nh4

1
8m2 +

5h6
1

96

)
+BrNt

(
Nh3

1
3m4 +

Nh5
1

45m2 −
53h7

1
4200

)
+Br

Nt
Nb

(
Nb

2 +Nt
2
)

36864(
288Nh4

1
m6 +

12Nh6
1

m4 +
Nh8

1

4m2 −
39h10

1
160

)]
From equation (3.16), dpdz is

dp

dz
=

1
S

[
q −A

[
−2Nh
m

+
N

m

I0 (mh1)

I1 (mh1)
h2

1 −N
(

2−N
1−N

)
h1
(
h2

1 − h2
)

2µ̄

]
−B

(
h2

1 − h2
)

2µ̄

− Ch2
1 −D + h2

]
(3.17)

where,

S = −N
m

(
1−N
2−N

)
hh1 +

(
N − 1
2−N

)
h4

1
4

+
N

m

I0 (mh1)

I1 (mh1)
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1

2
+

3h4
1

8µ̄
+

(
N − 1
2−N

)
h4

1
2

− h4

8µ̄
−
Nh4

1
4µ̄

+
Nh2h2

1
4µ̄

(3.18)

The pressure drop per wave length is ∆Pλ is

∆Pλ = −
∫ 1

0

dP

dz
dz (3.19)

On substituting dP
dz , the pressure drop is ∆Pλ = qL1 + L2 where,

L1 = −
∫ 1

0

1
S
dz

L2 =

∫ 1

0

1
S

[
A

[
−2Nh
m

+
N

m
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1 −N
(

2−N
1−N

)
h1
(
h2

1 − h2
)

2µ̄

]
+B

(
h2

1 − h2
)

2µ̄

+Ch2
1 +D − h2

]
dz
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The flow impedance is

λ =
∆Pλ
q

(3.20)

The shearing stress acting at the wall is

τR = −h
2
dp

dz
(3.21)

Wall shear stress at the maximum altitude of the stenoses, i.e., z = d+ L0
2 is

τs =

(
−h

2
dp

dz

)
h=1− δs

R0

(3.22)

Also, R1 = βR and δi = βδs.

The dimensionless flow impedance λ̄ and shearing stress τ̄s acting at wall are

λ̄ =
λ

λc
, τ̄s =

τs
τc

(3.23)

where, λc and τc are respectively, the flow resistance and wall shear stress in the absence of the
peripheral layer for the normal artery.

4 Results and Discussions

It is noted from Figures (2 - 11) that flow Impedance enhances with increase of heights of the
stenoses, Br, m and β, but decreases with increase of Gr, Nt, Nb, q and µ . Also, Influence of
fluid flow parameters on wall shear stress (τ̄s) are shown in figures (12 - 20). It may be noted
that shear stress at the wall found increases with increase of Gr, Nt, Nb, β and µ, but decreases
with stenosis heights, Br,m and q and are shown in figures.
The effects of velocity profiles in core region can be seen in Figures (21 - 28). It is noted that,
the axial velocity profiles increase in the radial direction with the rise of β, q and stenoses height,
but decreases with the increase of Br, Gr, Nb, Nt and µ.
Figures ( 29 - 30), concentration is decreases with Nb, but increases with Nt. It is also noticed
that Temperature profile increases by enhancing Nt, whereas it decreases by enhancing Nb and
is illustrated in figures ( 31 - 32).
Figures (33 - 36) displays the streamlines for distinct values of β, µ, q and δs. It is seen that, with
the rise of values of β, the area of the boluses expands, but the number of boluses are decreased.
Also, it is observed that, the area of the boluses enlarges and the number of bolus are increased
with increase of viscosity (µ) of the fluid and flux. It is also noted that, with the increase of
stenosis height of core region, the area of bolus is decreased, but number of bolus is increased.
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Figure 2. Variation of δi on λ̄ as δs varies

di = 0.1

di = 0.2

di = 0.3

di = 0.4

0.02 0.04 0.06 0.08 0.10
1.05

1.10

1.15

1.20

ds

l–

Figure 3. Variation of δs on λ̄ as δi varies
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Figure 4. Variation of δs on λ̄ as Br varies
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Figure 5. Variation of δs on λ̄ as Gr varies
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Figure 6. Variation of δs on λ̄ as Nt varies

Nb = 0.39

Nb = 0.36

Nb = 0.33

Nb = 0.30

0.02 0.04 0.06 0.08 0.10

1.05

1.10

1.15

1.20

ds

l–
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Figure 8. Variation of δs on λ̄ as q varies
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Figure 9. Variation of δs on λ̄ as m varies
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Figure 10. Effect of δs on λ̄ as µ varies
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Figure 11. Effect of δs on λ̄ as β varies
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Figure 12. Effect of δs on τ̄s as δi varies

Br = 0.30

Br = 0.33

Br = 0.36

Br = 0.39

0.02 0.04 0.06 0.08 0.10

1.01

1.02

1.03

1.04

1.05

ds

t
s

Figure 13. Effect of δs on τ̄s as Br varies
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Figure 14. Effect of δs on τ̄s as Gr varies
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Figure 15. Effect of δs on τ̄s as Nt varies
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Figure 16. Effect of δs on τ̄s as Nb varies
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Figure 17. Effect of δs on τ̄s as β varies
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Figure 18. Effect of δs on τ̄s as m varies
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Figure 19. Effect of δs on τ̄s as µ varies
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Figure 20. Effect of δs on τ̄s as q varies
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Figure 21. Variation of w with β
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Figure 22. Variation of w with Br
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Figure 23. Variation of w with Gr
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Figure 24. Variation of w with Nb
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Figure 25. Variation of w with Nt
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Figure 26. Variation of w with µ
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Figure 27. Variation of w with q
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Figure 28. Variation of w with δs
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Figure 29. Effect of Nb on σ
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Figure 30. Effect of Nt on σ
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Figure 31. Effect of Nb on θt
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Figure 32. Effect of Nt on θt
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Figure 33. Streamlines for β = 0.9, 0.91 and 0.92
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Figure 34. Streamlines for µ = 0.6, 0.605 and 0.61
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Figure 35. Streamlines for q = 0.1, 0.15 and 0.2
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Figure 36. Streamlines for δs = 0.03, 0.04 and 0.05

5 Conclusions

A two-layered mathematical analysis for a micropolar fluid having nanoparticles flow in the core
region is considered to study the effects of fluid flow characteristics assuming mild stenoses.
The characteristics like resistance to the flow

(
λ̄
)
, shear stress at surface of tube (τ̄s), concentra-

tion (σ) and temperature profile (θt) are the important characteristics in analyzing the fluid flow
across a stenosed artery.

The conclusions based on the present study are:

(i) The flow impedance enhances by shape and size of the stricture for Stenoses heights,
Br, m, β and, but found decreases with Gr, Nt, q, µ. Also, it is seen that, the resis-
tance to the flow decreases with Nb, which represents that collision between the molecules.

(ii) The wall shear stress which enhances with the rise in the values of Gr, Nt, Nb, β, µ, but
decreases with heights of the stenosis, Br, m, q.
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(iii) The profiles of velocity in the core region increase along the radial direction with the rise
of q and β, but decreases with the increase of Br, Gr, Nb, Nt and µ.

(iv) The concentration profile due to presence of micropolar fluid having nanoparticles in core
region is decreases with Nb, but increases with Nt.

(v) Temperature profile increases by enhancing Nt, whereas it decreases by enhancing Nb.

(vi) The streamlines for distinct values of β, µ, q and δs. It is seen that, as the value of β
increases, the area of the boluses expands, but the quantity of boluses is decreased.

(vii) It is observed that, the area of the boluses expands and the quantity of boluses are increased
with the increase of viscosity (µ) of the fluid and flux.

(viii) It is also noted that, with the increase of stenoses height of the core region, the area of the
boluses is gradually decreased, but number of bolus is increased.
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