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Abstract For a cyclic Kummer extension K of a rational function field k is considered, via
class field theory, the extended Hilbert class field K+

H of K and the corresponding extended
genus field K+

g of K over k, along the lines of the definitions of R. Clement for such extensions
of prime degree. We obtain K+

g explicitly. Also, we use cohomology to determine the number
of ambiguous classes and obtain a reciprocity law for K/k. Finally, we present a necessary and
sufficient condition for a prime of K to decompose fully in K+

g .

1 Introduction

For a number field K, one of the most important arithmetic objects attached to K is its class
group. This group is isomorphic to the Galois group of the extension KH/K, where KH denotes
the maximal unramified abelian extension of K. The field KH is the Hilbert class field of K
(HCF). We have that KH/K is a finite extension and also that KH is the abelian extension of
K such that the primes of K that are fully ramified in KH are precisely the non-zero principal
ideals of K. One variant of the HCF is the extended or narrow Hilbert class field of K, denoted
by K+

H . The field K+
H is the maximal abelian extension of K unramified at the finite primes. We

have that K+
H/K is a finite extension, that KH ⊆ K+

H and also that K+
H is the abelian extension

of K where a prime of K is fully decomposed precisely when it is a principal ideal generated by
a totally positive element, that is, an element such that all its real conjugates are positive.

In order to study the class group of K, but also interesting by itself, it is considered an
intermediate field K ⊆ Kg ⊆ KH , called the genus field of K (relative to Q). The field Kg is, by
definition, the composite of K and the maximal abelian extension of Q contained in KH . That
is, Kg = Kk∗, where k∗ is the maximal abelian extension of Q contained in KH . Similarly, it
is considered the extended or narrow genus field of K (relative to Q) K+

g , as the composite of
K and the maximal abelian extension of Q contained in K+

H . These definitions are due to A.
Fröhlich ([3, 4]). For a number field K, the fields KH , K+

H , Kg and K+
g are defined without

any ambiguity and all of them are finite extensions of K. In particular, when K/k is an abelian
extension, Kg (resp. K+

g ) is the maximal abelian extension of k contained in KH (resp. K+
H).

When we study global function fields and we want to consider genus fields and/or extended
genus fields, the situation is different from the number field case since the extensions of constants
of any global function field K are unramified so that the maximal unramified abelian extension
of K is of infinite degree over K. That is, if we consider the straight analog of the Hilbert class
field as the maximal unramified abelian extension of K we have to deal with infinite extensions.

There have been a good number of alternatives to define a Hilbert class field that is a finite
extension of a global function field K. One of them is to define the Hilbert class field of K as the
maximal geometric abelian extension of K, that is, the maximal unramified abelian extension of
K with the same field of constants as K. It turns out that there are hK such extensions, where
hK denotes the class number of K, that is, the cardinality of the zero degree divisor class group
of K which is a finite group. This definition has the issue that KH is not unique but there are hK
different choices.

To avoid infinite extensions and the lack of uniqueness of KH , we have to deal with ex-
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tensions of constants. Since every prime in K is eventually inert in an extension of constants,
the most accepted way to define KH is first to fix a non-empty finite set S of primes of K and
then consider the maximal unramified abelian extension of K where the primes of S decompose
fully. Such field is denoted by KH,S and it is a finite extension of K. The Galois group of
KH,S/K is isomorphic to the ideal class group of the Dedekind ring OS := {x ∈ K | vp(x) ≥
0 for all p /∈ S}. This ideal class group is a finite group. B. Anglès and J.-F. Jaulent [1] have
given class field theory definitions of Hilbert class field and extended Hilbert class field that
work for any global field.

R. Clement [2] offered another definition of extended Hilbert class field for a cyclic Kummer
extension K of k := Fq(T ), the rational function field, of prime degree l (necessarily l|q−1) and
consequently another definition of extended genus field K+

g of K (relative to k). As far as we
know, she was the first one to consider the concept of extended genus field for global function
fields.

Since the introduction of the concept of genus by C. F. Gauss, in the study of quadratic forms
and its translation to number fields by D. Hilbert, the concept has been studied by several authors.
H. Hasse [5] was the first to give a definition of genus field by means of class field theory. Hasse
gave his definition for quadratic number fields. The concept was generalized by H. Leopoldt in
[6] to finite abelian extensions of the field of rational numbers Q. As a consequence of the work
of Hasse, the Galois group of K+

H/K, where K is a quadratic extension of Q, is isomorphic to
IK/PK+ , where IK is the group of fractional ideals of K and PK+ is the subgroup of principal
ideals generated by a totally positive element ofK. SinceK is a quadratic extension of Q, to be a
totally positive element of K is equivalent to have that its norm in Q is a square of a real number.
This concept was brought to the case of a cyclic extension K/k of prime degree l with l|q− 1 by
Clement. She defined K+

H as the class field of K corresponding to the subgroup ∆×
∏

p-∞ Up of
the idèle group JK of K, where ∆ :=

{
(xp)p|∞ ∈

∏
p|∞K∗p |

∏
NKp/k∞

xp ∈ k∗l∞
}

and where∞
denotes the infinite prime of k, that is the pole of T in k . This definition only works for cyclic
Kummer extensions of k of prime degree.

The aim of this paper is to confirm that the definition of K+
H given by Clement can be ex-

tended to general cyclic Kummer extensions K of k and to obtain the extended genus field of a
general cyclic Kummer extension of k explicitly. We use cohomology theory to determine the
number of ambiguous classes. Finally, we obtain a reciprocity law for K/k and present a nec-
essary and sufficient condition for a prime of K to decompose fully in K+

g . We use techniques
similar to the ones used by Clement.

2 Cyclic Kummer extensions of k

For any global field E, JE denotes the idèle group of E. For a place p of E, Ep denotes the com-
pletion of E at p and Up the group of local units of Ep. Let k := Fq(T ) be the rational function
field over the finite field Fq, RT := Fq[T ] and R+

T := {P ∈ RT | P is monic and irreducible}.
The infinite prime∞ = P∞ of k is the pole of T in k. Finally, for any m ∈ N, Cm denotes the
cyclic group of order m.

Let n ∈ N be a natural number dividing q−1: n|q−1. LetK/k be a cyclic Kummer extension
of degree n. Therefore, K = k

(
n
√
D
)

with D = γPα1
1 · · ·Pαrr ∈ RT , γ ∈ F∗q , P1, . . . , Pr ∈ R+

T

and 1 ≤ αi ≤ n − 1 for 1 ≤ i ≤ r. The ramified finite primes are P1, . . . , Pr. Let ei denote the
ramification index of Pi in K/k, 1 ≤ i ≤ r. Denote by e∞ and f∞ the ramification index and
the inertia degree of any prime p in K above P∞.

Define

∆ :=
{
(xp)p|∞ |

∏
p|∞

NK∗p/k
∗
∞
(xp) ∈ k∗n∞

}
⊆ JK ,

J+
K := {~α ∈ JK | (αp)p|∞ ∈ ∆}
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and

K+ : = K∗ ∩ J+
K = {(x, . . . , x . . .) | x ∈ K∗, (x)p|∞ ∈ ∆}

= {x ∈ K∗ | NK/k(x) ∈ k∗n∞ }.

Lemma 2.1. Let n ∈ N be a divisor of q − 1. Then k∗∞
k∗n∞
∼= Cn × Cn.

Proof. It follows from the group structure of k∗∞, the fact that n|q − 1 = |F∗q | and, since n is
relatively prime to the characteristic of k, that

(
U

(1)
∞
)n

= U
(1)
∞ , where U (1)

∞ are the one units of
k∗∞.

Lemma 2.2. We have

(1) Jk = k∗
(
k∗∞ ×

∏
P∈R+

T
UP
)
.

(2) K∗J+
K = JK .

Proof. (1) Let ~β = (β∞, βP )P∈R+
T
∈ Jk. Let Q1, . . . , Qt ∈ R+

T be the finite primes such that
vQi(βQi) = ci 6= 0. We have that vP (βP ) = 0 for all P ∈ R+

T \ {Q1, . . . , Qt}. Define f ∈ k∗ as
f =

∏t
i=1 Q

ci
i . Then f−1~β ∈

(
k∗∞ ×

∏
P∈R+

T
UP
)

and the result follows.
(2) Let ~α ∈ JK . By the approximation theorem, there exists x ∈ K∗ such that vp(αp −

x) > vp(αp) for all p|∞. Then x−1αp ∈ U (1)
K =

(
U

(1)
K

)n
and NKp/k∞(x

−1αp) ∈ k∗n∞ . Hence
x−1~α ∈ J+

K .

Lemma 2.3. The map N:
∏

p|∞K∗p
∆

−→ k∗∞
k∗n∞

induced by the norm, is injective. Furthermore, the
sequence

1 −→
∏

p|∞K∗p

∆

N−−−−−→ k∗∞
k∗n∞

π−−−−→ k∗∞
N
(∏

p|∞K∗p
) −→ 1,

is exact, where N
(∏

p|∞K∗p
)
= {

∏
p|∞NK∗p/k

∗
∞
(xp) ∈ k∗∞ | xp ∈ K∗p}.

Proof. Follows from the definition of ∆.

Remark 2.4. For any finite Galois extension E/F of global function fields, we have that if P is
prime in F and p1 and p2 are two primes in E above P , then NEp1/FP

(E∗p1
) = NEp2/FP

(E∗p2
).

Corollary 2.5. We have
[∏

p|∞K∗p : ∆
]
= n2

e∞f∞
.

Proof. From Lemma 2.3 we obtain that

[ ∏
p|∞

K∗p : ∆

]
=

[
k∗∞ : k∗n∞

][
k∗∞ : N

(∏
p|∞K∗p

)] ,
and from Remark 2.4 we have that N

(∏
p|∞K∗p

)
= NK∗p/k

∗
∞
(K∗p) for any p|P∞. From the

fundamental result of local field theory, we have that
[
k∗∞ : NK∗p/k

∗
∞
(K∗p)

]
= e∞f∞. The result

now follows from Lemma 2.1.

Remark 2.6. We have ∏
p|∞K∗p

∆

∼=

∏
p|∞K∗p ×

∏
P∈R+

T
UP

∆×
∏
P∈R+

T
UP

.



EXTENDED GENUS FIELD OF CYCLIC KUMMER EXTENSION 443

Lemma 2.7. We have the following equalities[∏
p|∞K∗p : ∆

]
[
K∗ ∩

(∏
p|∞K∗p ×

∏
p-∞ Up

)
: K∗ ∩

(
∆×

∏
p-∞ Up

)]
=

[∏
p|∞K∗p ×

∏
p-∞ Up : ∆×

∏
p-∞ Up

]
[
K∗ ∩

(∏
p|∞K∗p ×

∏
p-∞ Up

)
: K∗ ∩

(
∆×

∏
p-∞ Up

)]
=
[
K∗
(∏

p|∞

K∗p ×
∏
p-∞

Up

)
/K∗ : K∗

(
∆×

∏
p-∞

Up

)
/K∗

]
=
[
K∗
(∏

p|∞

K∗p ×
∏
p-∞

Up

)
: K∗

(
∆×

∏
p-∞

Up

)]
.

Proof. The first equality follows from Remark 2.6. The second equality is a consequence of
the fact that for any finite subgroups A,B,C of an abelian group X with A ⊆ B, we have
B∩C
A∩C

∼= CA∩B
A . The last equality is a consequence of the third isomorphism theorem.

Let OK be the integral closure of RT in K. Let UK be the group of units of OK : UK = O∗K .
Set U+

K := {α ∈ UK | NK/k(α) ∈ k∗n∞ } = {α ∈ UK | NK/k(α) ∈ F∗nq } = UK ∩K+.

Lemma 2.8. We have

UK
U+
K

∼=
K∗ ∩

(∏
p|∞K∗p ×

∏
p-∞ Up

)
K∗ ∩

(
∆×

∏
p-∞ Up

) .

Proof. The natural map

ϕ : UK −→
K∗ ∩

(∏
p|∞K∗p ×

∏
p-∞ Up

)
K∗ ∩

(
∆×

∏
p-∞ Up

)
α 7→ (α, . . . , α, . . .) mod

(
K∗ ∩

(
∆×

∏
p-∞

Up

))
,

is a group epimorphism with kerϕ = U+
K .

Lemma 2.9. We have [UK : U+
K ] | n.

Proof. Let ρ : UK : −→ NK/k(UK)/F∗nq be given by ρ(α) = NK/k(α) mod F∗nq . Then ker ρ =

U+
K . It follows that UK/U+

K is a subgroup of F∗q/F∗nq ∼= Cn.

Remark 2.10. In Lemma 2.9 we may have [UK : U+
K ] < n. For instance, if P∞ is totally inert

in K/k, then UK = F∗q and UK = U+
K .

3 Extended Hilbert class field and extended genus field

Let K/k be a cyclic Kummer extension of degree n. We will define the extended Hilbert class
field of K by means of an open subgroup of finite index in JK . To do this, first, we prove the
following proposition which is the generalization of the corresponding one in Clement’s paper.
We present the proof for the sake of completeness.

Proposition 3.1. The index of K∗
(
∆×

∏
p-∞ Up

)
in the idèle group JK is finite.

Proof. We have that K∗
(
∆ ×

∏
p-∞ Up

)
⊆ K∗

(∏
p|∞K∗p ×

∏
p-∞ Up

)
. On the one hand, we

have that JK/
(
K∗
(∏

p|∞K∗p ×
∏

p-∞ Up

)) ∼= Cl(OK), the ideal class group of OK , which is
a finite group.
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On the other hand, we have

[
K∗
(∏

p|∞

K∗p ×
∏
p-∞

Up

)
: K∗

(
∆×

∏
p-∞

Up

)]

=

[∏
p|∞K∗p : ∆

]
[
K∗ ∩

(∏
p|∞K∗p ×

∏
p-∞ Up

)
: K∗ ∩

(
∆×

∏
p-∞ Up

)] =

[∏
p|∞K∗p : ∆

]
[
UK : U+

K

] .

The result follows from Corollary 2.5 and Lemma 2.9.

Remark 3.2. The group ∆ is the inverse image of k∗n∞ under the norm map, which is a continuous
function. Hence the subgroup K∗

(
∆×

∏
p-∞ Up

)
is an open subgroup of JK of finite index.

Definition 3.3. We define the extended Hilbert class field K+
H of K as the class field associated

with the idèle subgroup K∗
(

∆×
∏

p-∞ Up

)
of JK .

Remark 3.4. We have that K+
H/K is a finite Galois extension,

Gal(K+
H/K) ∼=

JK

K∗
(

∆×
∏

p-∞ Up

)
and also that K+

H/K is unramified at every finite place p of K.

Proposition 3.5. We have

JK

K∗
(

∆×
∏

p-∞ Up

) ∼= J+
K

K+
(

∆×
∏

p-∞ Up

) ∼= IK
P+
K

,

where IK is the group of non-zero fractional ideals of OK , PK the subgroup of principal ideals
of IK , and P+

K the subgroup of PK of fractional ideals (β) such that β ∈ K+.

Proof. From Lemma 2.2 we obtain that the natural map ϕ : J+
K 7→ JK/K

∗ is surjective and
kerϕ = K∗∩J+

K = K+. Let ρ = ϕ̂−1 : JK/K∗ −→ J+
K/K

+ be the induced isomorphism. Then
ρ
(
K∗
(
∆×

∏
p-∞ Up)/K∗

)
=
(
J+
K ∩K∗

(
∆×

∏
p-∞ Up

))
/K+. It follows that

J+
K/K

+(
J+
K ∩K∗

(
∆×

∏
p-∞ Up

))
/K+

∼=
JK/K

∗

K∗
(
∆×

∏
p-∞ Up

)
/K∗

.

The first isomorphism follows since J+
K ∩K∗

(
∆×

∏
p-∞ Up

)
= K+

(
∆×

∏
p-∞ Up

)
. For the sec-

ond isomorphism it is considered the map θ : J+
K −→ IK/P

+
K given by

(
(αp)p|∞, (αp)p-∞

)
7→∏

p-∞ pvp(αp) mod P+
K . Then θ is a group epimorphism and ker θ = K+

(
∆×

∏
p-∞ Up

)
.

Definition 3.6. The extended ideal class group of K is defined by

Cl+
(
OK
)

:=
IK
P+
K

∼= Gal(K+
H/K).

Proposition 3.7. The extension K+
H/k is a Galois extension.

Proof. It follows from the facts that ρ(∆×
∏

p-∞ Up) = ∆×
∏

p-∞ Up for all k–embeddings ρ of
K+
H into a fixed algebraic closure of K+

H and that K/k is a Galois extension.

Proposition 3.8. The finite primes in K that decompose fully in K+
H are precisely the principal

ideals generated by an element β ∈ K∗ satisfying NK/k(β) ∈ k∗n∞ .
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Proof. From class field theory, see for instance [7, Corolario 17.6.47], we have that p decom-
poses fully in K+

H/K if and only if K∗p ⊆ K∗
(
∆×

∏
p-∞ Up

)
. Let π be such that vp(π) = 1. We

have
K∗p ⊆ K∗

(
∆×

∏
p-∞

Up

)
⇐⇒ (1, 1, . . . , x, 1, . . .) ∈ K∗

(
∆×

∏
p-∞

Up

)
for each x ∈ K∗p , in particular for x = π. Therefore there exist β ∈ K∗ and ~α ∈ ∆ ×

∏
p-∞ Up

such that (1, 1, . . . , π, 1, . . .) = β~α. It follows that vq(β) = 0 for every finite prime q 6= p and
vp(β−1π) = 0. Therefore the only prime dividing 〈β〉 is p and it does so to the power 1. Hence
p = 〈β〉.

On the other hand, (β−1)q|∞ ∈ ∆ so that NK/k(β) =
∏

q|∞NK∗q/k
∗
∞
(β) ∈ k∗n∞ .

Corollary 3.9. If Q ∈ R+
T is inert in K, then q decomposes fully in K+

H where q = QOK is the
prime in K above Q.

Proof. We have NK/k(q) = Qn. The result follows.

Definition 3.10. We define the extended genus field K+
g of K (relative to k) as the maximal

abelian extension of k contained in K+
H .

Remark 3.11. From class field theory, see for instance [7, Proposición 17.6.48], the field K+
g is

the class field associated with k∗NK/k

(
∆×

∏
p-∞ Up

)
.

Proposition 3.12. The degree of K+
g over k and the degree of K+

g over K are given by

[
K+
g : k

]
= n

r∏
i=1

ei and
[
K+
g : K

]
=

r∏
i=1

ei.

Proof. Let P ∈ R+
T . Then from Remark 2.4 we obtain that

∏
p|P NKp/kP (Up) = NKp/kP (Up)

for any fixed prime p|P . From the theory of local fields, we have [UP : NKp/kP (Up)] = eP , the
ramification index of P in K/k. Recall that eP = 1 if P is unramified and ePi = ei, 1 ≤ i ≤ r.

Therefore, from Lemmas 2.1 and 2.2 and since k∗ ∩
(
k∗∞ ×

∏
P∈R+

T
UP
)
= F∗q , we obtain

[
K+
g : k

]
=
[
Jk/k

∗ :
(
k∗NK/k

(
∆×

∏
p-∞

Up

))
/k∗
]

=
[
k∗
(
k∗∞ ×

∏
P∈R+

T

UP
)

: k∗NK/k

(
∆×

∏
p-∞

Up

)]

=

[
k∗∞ ×

∏
P∈R+

T
UP : NK/k

(
∆×

∏
p-∞ Up

)][
k∗ ∩

(
k∗∞ ×

∏
P∈R+

T
UP
)

: k∗ ∩
(

NK/k

(
∆×

∏
p-∞ Up

))]
=

[
k∗∞ ×

∏
P∈R+

T
UP : NK/k

(
∆×

∏
p-∞ Up

)][
F∗q : F∗nq

]
=

[k∗∞ : k∗n∞ ] ·
∏
P∈R+

T
[UP : NKp/kP (Up)]

n
=
n2∏r

i=1 ei
n

= n

r∏
i=1

ei.

Finally, since [K : k] = n, it follows that
[
K+
g : K

]
=
∏r
i=1 ei.

Define Γ := Fqn
(
T, e1
√
P1, . . . ,

er
√
Pr
)
. Then [Γ : k] = n

∏r
i=1 ei = [K+

g : k] and Γ/k is an
abelian extension. On the other hand, by Abhyankar’s Lemma, the ramification index of Pi in
KΓ is ei, 1 ≤ i ≤ r and Γ/k is unramified at every P ∈ R+

T \ {P1, . . . , Pr}. It follows that Γ/K
is unramified at every finite prime P ∈ R+

T .
We are ready to prove our main result, which gives an explicit and nice expression for K+

g .

Theorem 3.13. Let n ∈ N be a natural number dividing q − 1: n|q − 1. Let K/k be a
cyclic Kummer extension of degree n, K = k

(
n
√
D
)

with D = γPα1
1 · · ·Pαrr ∈ RT , γ ∈ F∗q ,
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P1, . . . , Pr ∈ R+
T and 1 ≤ αi ≤ n − 1 for 1 ≤ i ≤ r. The ramified finite primes are P1, . . . , Pr.

Let ei be the ramification index of Pi in K/k, 1 ≤ i ≤ r.
Then

K+
g = Γ = Fqn

(
T, e1
√
P1, . . . ,

er
√
Pr
)
.

Proof. It suffices to prove that Γ ⊆ K+
H sinceK+

g is the maximal abelian extension of k contained
in K+

H and Γ/k is an abelian extension. Now, let H := Gal(Γ/k) ∼= Cn×Ce1 × · · · ×Cer . Since
ei|n for all 1 ≤ i ≤ r, H is of exponent n. Therefore, it is enough to show that any abelian
extension of k, containing K, of exponent n and such that it is unramified at the finite primes of
K, is contained in K+

H .
Let L be such an extension. By class field theory, it is enough to prove that K∗

(
∆ ×∏

p-∞ Up

)
⊆ K∗NL/K(JL). We have the following commutative diagram

JK
ρK //

NK/k
��

Gal(L/K)

ι

��
Jk

ρk

// Gal(L/k) ∼= Cm1 × · · · × Cmt ,

where ρK and ρk denote Artin’s reciprocity maps, ι is the natural embedding and mj |n, 1 ≤
j ≤ t. The norm of an element ~α ∈ ∆ is of the form (β, 1, . . . , 1, . . .) ∈ Jnk . Therefore
(β, 1, . . . , 1, . . .) ∈ ker ρk. Hence ρK(∆) ∈ ker ρK = K∗NL/K(JL). Since L/K is unrami-
fied at every finite prime, it follows that Up ⊆ K∗NL/K(JL) for every finite prime p. Therefore
∆×

∏
p-∞ Up ⊆ K∗NL/K(JL). The result follows.

4 Ambiguous classes

We understand by ambiguous classes the elements of Cl+(OK) fixed under the action of G :=
Gal(K/k): Cl+(OK)G. We are interested in the number of such classes.

LetG = Gal(K/k) = 〈σ〉. Let ρ : Cl+(OK) −→ Cl+(OK)1−σ be the map [a] 7→ [a][a]−σ for
a ∈ IK and [a] = a mod P+

K . Then ρ is an epimorphism and ker ρ = Cl+(OK)G. In particular,
Cl+(OK)

Cl+(OK)1−σ
∼= Cl+(OK)G. Let G := Gal(K+

H/k). Since K+
g is the maximal abelian extension of

k contained in K+
H , we have that the commutator subgroup G′ is isomorphic to Gal(K+

H/K
+
g ).

K+
g

G′
// K+

H

K

Cl+(OK)/G′
11

Cl+(OK)

44

k

G

OO

G

FF

G/G′

GG

Now, we have that G′ ∼= Cl+(OK)1−σ. To find |Cl+(OK)G| we need several results on
cohomology theory, most of them well known.

First, we have the exact sequence

1 −→ K+ −→ K∗ −→ K∗/K+ −→ 1,

From Hilbert’s theorem 90, we have H1(G,K∗) = {1}, therefore we obtain the cohomology
exact sequence

1 −→ k∗ −→ k∗ −→ (K∗/K+)G −→ H1(G,K+) −→ 1,
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so that H1(G,K+) ∼= (K∗/K+)G. We have, for any a ∈ K∗, σ(a)/a ∈ K+, which implies that
(K∗/K+)G = K∗/K+. Using the approximation theorem, we obtain that

K∗/K+ ∼=
( ∏
p|∞

K∗p
)
/∆.

From Corollary 2.5 it follows that

|H1(G,K+)| = n2

e∞f∞
.

Lemma 4.1. The Herbrand quotient of UK is h(G,UK) = e∞f∞
n .

Proof. From Dirichlet’s unit theorem, we have that UK ∼= Zm−1 × F∗q where m is the number
of primes of K above the infinite prime P∞ of k. Let p1, . . . , pm be the primes of K that lie
above P∞, ordered such that σ(pj) = pj+1 for 1 ≤ j ≤ m − 1 and σ(pm) = p1. Choose a ∈ N
such that

( pj
pj+1

)a
= 〈µj〉 is a principal ideal and µj ∈ UK , for all 1 ≤ j ≤ m − 1. We have

σ(µj) = µj+1 for 1 ≤ j ≤ m− 2 and σ(µm−1) = (µ1 · · ·µm−1)−1 =: µm. Thus σ(µm) = µ1.
It follows that V := 〈µ1, . . . , µm−1〉 is a G–submodule of UK of finite index. Furthermore,

V ∼=
(
Z[G/D]

)
/Z as G–modules, where D is the decomposition group of any of the primes of

K above P∞.
We have an exact sequence of G–modules

1 −→ V −→ UK −→ F −→ 1,

where F is finite. Then we have h(G,UK) = h(G,V ). Now, from the exact sequence of G–
modules

1 −→ Z −→ Z[G/D] −→ V −→ 1,

we obtain that

h(G,V ) =
h(G,Z[G/D])

h(G,Z) =
n/m

n
=

1
m

=
e∞f∞
n

.

Lemma 4.2. We have |H1(G,U+
K)| = n2/e∞f∞.

Proof. Since UK/U+
K is finite, it follows that h(G,UK) = h(G,U+

K) = e∞f∞/n. Now, we have
the Tate cohomology group

Ĥ0(G,U+
K) =

(U+
K)

G

NK/k(U
+
K)

=
F∗q
F∗nq

∼= Cn.

The result follows.

Lemma 4.3. We have |IK/Ik| = e1 · · · er.

Proof. For any P ∈ R+
T , let aP =

(∏
p|P p)eP be the conorm of P , where eP denotes the rami-

fication index of P in K/k. Then IGK is the free abelian group with free generators
{
aP
}
P∈R+

T

.

Since Ik is the free abelian group with generators {P}P∈R+
T

=
{
aePP
}
P∈R+

T

and the ramified
finite primes are P1, . . . , Pr with ramification indices e1, . . . , er, we get the result.

Theorem 4.4. The number of ambiguous classes
∣∣Cl+(OK)G∣∣ is equal to e1 · · · er.
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Proof. From the exact sequence 1 −→ P+
K −→ IK −→ Cl+(OK) −→ 1, and sinceH1(G, IK) =

{1}, we obtain the cohomology sequence

1 −→ (P+
K)

G −→ IGK −→ Cl+(OK)G −→ H1(G,P+
K) −→ 1.

Dividing the first two terms by Ik = Pk ⊆ PGK , we obtain

∣∣Cl+(OK)G∣∣ = ∣∣IGK/Ik∣∣∣∣(P+
K)

G/Ik
∣∣ · ∣∣H1(G,P+

K)
∣∣.

Next, we consider the exact sequence of G–modules

1 −→ U+
K −→ K+ −→ P+

K −→ 1.

Since
(
U+
K

)
= F∗q and (K+)G = k∗, we obtain the exact cohomology sequence

1 −→ F∗q −→ k∗ −→
(
P+
K

)G −→ H1(G,U+
K) −→ H1(G,K+)

−→ H1(G,P+
K)

ν−−→ H2(G,U+
K)

ρ−−→ H2(G,K+) −→ · · ·

Now, we have that Ik ∼= k∗/F∗q , that

H2(G,U+
K)
∼= H0(G,U+

K) =

(
U+
K

)G
NK/k

(
U+
K

) =
F∗q
F∗nq

,

H2(G,K+) ∼= H0(G,K+) =

(
K+
)G

NK/k

(
K+
) =

k∗

NK/k(K+)

and that ρ is an injective map. Therefore, we obtain the exact sequence

1 −→
(
P+
K

)G
Ik

−→ H1(G,U+
K) −→ H1(G,K+) −→ H1(G,P+

K) −→ 1.

Therefore ∣∣H1(G,P+
K)
∣∣∣∣(P+

K

)G
/Ik
∣∣ =

∣∣H1(G,K+)
∣∣∣∣H1(G,U+

K)
∣∣ .

The result now follows from Lemma 4.3.

Theorem 4.5. We have

Gal(K+
g /K) ∼=

Cl+(OK)
Cl+(OK)1−σ

∼= Cl+(OK)G.

Proof. From the isomorphism Cl+(OK)
Cl+(OK)1−σ

∼= Cl+(OK)G and Theorem 4.4, we obtain that∣∣Cl+(OK)1−σ
∣∣ = ∣∣G′∣∣ = [K+

H : K+
g

]
, where G = Gal(K+

H/k).
Let ρ : Cl+(OK) −→ Gal(K+

H/K) ⊆ G be the Artin reciprocity map. For any b ∈ Cl+(OK)
we have

ρ
(
b1−σ) = ρ(b)ρ

(
b−σ

)
= ρ(b)ρ

(
bσ
)−1

= ρ(b)
(
σ−1ρ(b)σ

)−1

= ρ(b)σ−1ρ(b)−1σ ∈ G′.

Hence ρ
(
Cl+(OK)1−σ) = G′ and we get the result.
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5 A reciprocity law for K/k

Here we present a reciprocity law that is analogous to the quadratic reciprocity law. Let K =
k
(
n
√
D
)

be as in Section 2. Let Q ∈ R+
T be such that Q - D. Let q be a prime in K above Q. The

extension Kq/kQ of local fields is unramified of degree f , the inertia degree of q/Q. We denote
the residue fields by K̂ and k̂ respectively. If Q is of degree d, then |k̂| = qd and |K̂| = qdf . We
denote by ϕQ the element of Gal(K/k) that corresponds to the Frobenius generator of Gal(K̂/k̂).
Then ϕQ is given by

ϕQ
(
n
√
D
)
≡
(
n
√
D
)qd

mod q,

that is,

ϕQ
(
n
√
D
)

n
√
D

≡ D
qd−1
n mod q.

Since n|qd − 1, both sides of the congruence belong to k. Furthermore there exists j ∈ N such
that ϕQ

(
n
√
D
)
/ n
√
D = ζjn, where ζn is a primitive n–th root of unity.

Definition 5.1. We define the residue symbol(
D

Q

)
n

∈ F∗q

as the unique n–th root of unity satisfying

(
D

Q

)
n

≡ D
qd−1
n mod Q.

More generally, if R =
∏t
j=1 Q

αj
j ∈ RT is relatively prime to D,

(
D

R

)
n

:=
t∏
j=1

(
D

Qj

)αj
n

.

Equivalently, if a is a non-zero ideal of RT relatively prime to D,

(
D

a

)
n

:=
∏
P∈R+

T

(
D

P

)vP (a)

n

.

Note that Q decomposes fully in K if and only if
(
D

Q

)
n

= 1.

The main properties of the symbol
(
D

Q

)
n

are given in the following proposition, we omit the

straightforward proof.

Proposition 5.2. We have

(1) Let C,D ∈ RT and Q ∈ R+
T be such that Q - CD. Then(

C

Q

)
n

(
D

Q

)
n

=

(
CD

Q

)
n

.

(2) For Q - D, we have
(
D

Q

)
n

= 1 if and only if D mod Q ∈
(
(RT /〈Q〉)∗

)n
.
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(3) For a ∈ F∗q , (
a

Q

)
n

= a
qd−1
n .

Definition 5.3. Let p be a prime in k and let R,S ∈ RT be two relatively prime non-zero poly-
nomials: gcd(R,S) = 1. We define the Hilbert norm residue symbol by

(
R,S

)
p

:=

(
S, kp

(
n
√
R
)
/kp
)(

n
√
R
)

n
√
R

,

where
(
S, kp

(
n
√
R
)
/kp
)

denotes the local norm residue symbol.

We have the following symbol product formula.∏
p

(
R,S

)
p
= 1,

where p runs through all the prime divisors of k, from which it is obtained the following reci-
procity law.

Theorem 5.4. Let Q,R ∈ R+
T be of degrees δ(Q) and δ(R) respectively. Then

(
Q

〈R〉

)
n

·
(
R

〈Q〉

)−1

n

=

[
(−1)δ(Q)δ(R)b

δ(Q)
0

a
δ(R)
0

] q−1
n

= 1.

Proof. Similar to [2, Proposition 4.1].

Finally, we give our generalization to Theorem 4.2 [2].

Theorem 5.5. We have that a prime p of OK decomposes fully in K+
g if and only if each finite

prime of k ramified in K, that is, each Pj , 1 ≤ j ≤ r, decomposes fully in k
(
n
√
B)/k, where B

is a monic generator of NK/k p and n divides degB.

Proof. Let dj := degPj and P ∗j := (−1)djPj , 1 ≤ j ≤ r. We have that p decomposes fully in
K+
g /K if and only if the Artin symbol (p,K+

g /K) = 1. Since K+
g = Fqn

(
e1
√
P1, . . . ,

er
√
Pr
)
=

Fqn
(
e1
√
P ∗1 , . . . ,

er
√
P ∗r
)
, we have (p,K+

g /K) = 1 if and only if (p,K+
g /K)|

k
(
ej
√
P∗j

) = 1 for

all 1 ≤ j ≤ r, and (p,K+
g /K)|Fqn (T ) = 1. This is equivalent to

(NK/k p, k
(
ej

√
P ∗j
)
/k) = 1 ⇐⇒

(
P ∗j

NK/k p

)
ej

= 1 for all 1 ≤ j ≤ r,

and

(NK/k p,Fqn(T )/k) = 1 ⇐⇒
(

ξ

NK/k p

)
n

= 1,

where ξ is a generator of F∗q .
Let h = degB. Then, by the reciprocity law,(

P ∗j
NK/k p

)
ej

=

(
−1

NK/k p

)dj
ej

(
Pj

NK/k p

)
ej

= (−1)((q
h−1)/ej)dj (−1)hdj(q−1)/ej

(
B

〈Pj〉

)
ej

=

(
B

〈Pj〉

)
ej

,

for 1 ≤ j ≤ r.
Therefore, p decomposes fully inK+

g /K if and only if
(
Pj(T ), k

(
n
√
B
)
/k
)
= 1 for 1 ≤ j ≤ r

and ξ(q
h−1)/n = 1. The last equality is equivalent to n|h since the order of ξ in F∗q is q − 1 and

q ≡ 1 mod n.
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