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Abstract In this article, we find the solution of a nonlinear fractional integro-differential
equations with impulsive and integral conditions via an efficient method. The method of solution
in this article involves the concept of fixed point theory in Banach spaces.

1 Introduction

A mapping g on a nonempty subset K of a Banach G is called contraction if there exists a
constant δ ∈ [0, 1) such that

‖g(x)− g(y)‖ ≤ δ‖x− y‖, for all x, y ∈ K. (1.1)

A point x in K is said to be a fixed point of g if g(x) = x. We denote the set of all fixed points
of g by F(g) = {x ∈ K : x = g(x)}. Let < denote the set of all real numbers and N be the set of
all natural numbers.

In this paper, we will study the the approximation of solution of the following fractional
integral integro-differential equations with impulsive and integral conditions given by

CDνx(t) = f(t, x(t),

∫ t

0
k(t, s, x(s))ds), t ∈ 0′ = 0\{t1, · · · , tm}, (1.2)

0 = [0, 1],

x(t+k ) = x(t−k ) + xk, xk ∈ <, (1.3)

x(0) =

∫ 1

0
k(s)x(s)ds, (1.4)

where k = 1, · · · ,m, 0 < ν ≤ 1, CDν is the Caputo fractional derivative, G denotes a Banach
space, f : 0× G × G → G is a given function, k : J × G → G , k ∈ L1([0, 1],<+), k(t) ∈ [0, 1)
and J = {(t, s) : 0 ≤ s ≤ t ≤ 1}, 0 = t0 < t1 < · · · < tm < tm+1 = 1, Jx|t=tk = x(t+k )−x(t

−
k ),

x(t+k ) = lim
h→0+

x(tk + h) and x(t−k ) = lim
h→0−

x(tk + h) represent the right and left limits of x(t)

at t = tk. We set

ψx(t) =

∫ t

0
k(t, s, x(s))ds.

Fractional differential equations arise in many engineering and scientific disciplines as the
mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynam-
ics, viscoelasticity, electro-chemistry, signal processing, control theory, porous media, electro-
magnetic and so forth (see [1, 2, 3, 7, 8, 14, 9, 10, 36] and the references therein). There has
been a significant theoretical development in fractional differential equations in recent years (see
[5, 13, 15, 28, 30, 31, 32, 33] and the references therein).
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The dynamics of evolving processes is often subjected to abrupt changes such as shocks,
harvesting, or natural disasters, and so on. Often these short-term perturbations are treated as
having acted instantaneously or in the form of impulses. The conditions (1.3) include such a kind
of dynamics. The classical impulsive differential equations have become important in recent
years as mathematical models of phenomena in physical, engineering and biomedical sciences
(see [4] and the references therein).

The following definition and lemmas will be important in this study.

Definition 1.1. The Caputo derivative of fractional order ν for a function f(t) is defined by

(CDνf)(t) =
1

Γ(n− ν)

∫ t

0

f (n)(s)

(t− s)ν−n+1 ds, (1.5)

where n = [ν] + 1 and [ν] denotes the integer part of ν.

Lemma 1.2. [4] If Ω(τ) =
∫ 1
τ
k(s)(s− τ)ν−1ds, for τ ∈ [0, 1], and if k ∈ L1([0, 1],<+) satisfies

0 ≤ k(s) ≤ 1 (0 ≤ s ≤ 1), then

Ω(τ)

Γ(ν)
< η and

∫ t
0 (t− s)

ν−1

Γ(ν)
< η.

Lemma 1.3. [35] Let {θn} be a nonnegative real sequence satisfying the following inequality:

θn+1 ≤ (1− σn)θn,

where σn ∈ (0, 1) for all n ∈ N and
∞∑
n=0

σn =∞, then lim
n→∞

θn = 0.

Consider the set of functions

PC(0,G ) = {y : 0→ G : y ∈ C((tk, tk+1],G ), k = 0, · · · ,m and there exist

y(t−k ) and y(t+k ), k = 1, · · · ,m with y(t−k ) = y(tk)}.

The set defined above is a Banach when endowed with the norm

‖y‖PC = sup
t∈I
|y(t)|.

A function x ∈ PC(0, Y ) whose ν-derivative exits on 0′ is said to be solution of the problem
(1.2)–(1.4) if x satisfies the equation CDνx(t) = f(t, x(t), ψx(t)) a.e. on 0′, and satisfies the
conditions (1.3)–(1.4).

The problem (1.2)–(1.4) can be transform into the following integral equation [4]:

x(t) =
1

(1− µ)Γ(ν)

∫ 1

0
Ω(τ)f(τ, x(τ), ψx(τ), ψx(τ))dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1f(s, x(s), ψx(s))ds+

ν

(1− µ)

k∑
i=1

xi,

where µ =
∫ 1

0 k(s)ds. Suppose the following conditions are verified:

(V1) The function f : 0× G × G → G is jointly continuous.

(V2) There exists a constant e > 0 such that |f(t, ξ, ω) − f(t, ξ, ω)| ≤ e[|ξ − ξ| + |ω − ω|], for
each t ∈ 0, and each ξ, ω, ξ, ω ∈ G .

(V3) k : J × G → G is continuous and there exists a constant e1 > 0, such that |k(t, s, ξ) −
k(t, s, ω)| ≤ e1|ξ − ω|, ∀ξ, ω ∈ G , t, s ∈ J .

(V4) If µ =
∫ 1

0 g(s)ds as [
(e+ ee1)

Γ(ν + 1)
+
η(e+ ee1)

(1− µ)

]
< 1.
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Anguraj et al. [4] proved the following existence result for the problem (1.2)–(1.4).

Theorem 1.4. Under the assumptions (V1)–(V4), the problem (1.2)–(1.4) has a unique solution
on PC(0, Y ).

Existence theorem for fixed points of an operator is concerned with establishing sufficient
conditions in which the operator will have solution, but does not necessarily show how to find
it. On the other hand, iteration method of fixed points is concerned with approximation or
computation of sequences which converge to the solution of such operator. There are several
results in the literature concerning approximation of various nonlinear integral and differential
equations, see for example, [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27]. In this article, we will
approximate the solution of nonlinear fractional integro-differential equations with impulsive
and integral conditions by utilizing the following iterative algorithm recently introduced by Ofem
et al. [16]:



x1 ∈ K,

sn = (1− vn)xn + vnTxn,

zn = (1− un)Txn + unTsn,

yn = Tzn,

xn+1 = Tyn,

∀n ≥ 1, (1.6)

where {un} and {vn} are sequences in (0,1).

Remark 1.5. It is shown in [16] that the iterative algorithm (1.6) has a better speed of conver-
gence than S [6], Picard-S [11], Thakur [34] and M [37] iteration processes for single-valued
generalized α-nonexpansive mappings.

2 Main result

Now we approximate the solution of the problem (1.2)–(1.4) using the iterative process (1.6).

Theorem 2.1. Let {xn} be the iterative procedure (1.6) with sequences {un}, {vn} ∈ (0, 1) such
that

∑∞
n=0 unvn = ∞. Then the problem (1.2)–(1.4) has a unique solution, say, q ∈ PC(0, Y )

and {xn} converges to q.

Proof. Let {xn} be an iterative sequence generated by the iteration process (1.6) for the operator
T : PC(0,G )→ PC(0,G ) define by

T (x)(t) =
1

(1− µ)Γ(ν)

∫ 1

0
Ω(τ)f(τ, x(τ), ψx(τ))dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1f(s, x(s), ψx(s))ds+

µ

(1− µ)

k∑
i=1

xi.
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Let x, y ∈ PC(0,G ). Then, for each t ∈ 0, from (1.6) we have

‖sn − q‖ = ‖(1− vn)xn + vnTxn − Tq‖
≤ (1− vn)‖xn − q‖+ vn‖Txn − Tq‖
= (1− vn)|xn(t)− q(t)|+ vn|T (xn)(t)− T (q)(t)|
= (1− vn)|xn(t)− q(t)|

+vn

∣∣∣∣∣ 1
(1− µ)Γ(ν)

∫ 1

0
Ω(τ)f(τ, xn(τ), ψxn(τ))dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1f(s, xn(s), ψxn(s))ds+

µ

(1− µ)

k∑
i=1

xi

− 1
(1− µ)Γ(ν)

∫ 1

0
Ω(τ)f(τ, q(τ), ψq(τ))dτ

− 1
Γ(ν)

∫ t

0
(t− s)ν−1f(s, x(s), ψq(s))ds− µ

(1− µ)

k∑
i=1

xi.

∣∣∣∣∣
≤ (1− vn)|xn(t)− q(t)|

+vn

{
1

(1− µ)Γ(ν)

∫ 1

0
Ω(τ)|f(τ, xn(τ), ψxn(τ))− f(τ, q(τ), ψq(τ))|dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1|f(s, xn(s), ψxn(s))− f(s, q(s), ψq(s))|ds

}
≤ (1− vn)|xn(t)− q(t)|+

+vn

{
ηe

(1− µ)

∫ 1

0
[|xn(τ)− q(τ)|+ |ψxn(τ)− ψq(τ)|]dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1[|xn(s)− q(s)|+ |ψxn(s))− ψq(s))|]ds

}
≤ (1− vn)‖xn − q‖+ vn

{
η(e+ ee1)

(1− µ)
‖xn − q‖+

(e+ ee1)

Γ(ν + 1)
‖xn − q‖

}
=

(
1− vn

(
1−

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]))
‖xn − q‖. (2.1)

‖zn − q‖ ≤ (1− un)‖Txn − Tq‖+ un‖Tsn − Tq‖

≤ (1− un)

{
1

(1− µ)Γ(ν)

∫ 1

0
Ω(τ)|f(τ, xn(τ), ψxn(τ))− f(τ, q(τ), ψq(τ))|dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1|f(s, xn(s), ψxn(s))− f(s, q(s), ψq(s))|ds

}

+un

{
1

(1− µ)Γ(ν)

∫ 1

0
Ω(τ)|f(τ, sn(τ), ψsn(τ))− f(τ, q(τ), ψq(τ))|dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1|f(s, sn(s), ψsn(s))− f(s, q(s), ψq(s))|ds

}
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≤ (1− un)

{
ηe

(1− µ)

∫ 1

0
[|xn(τ)− q(τ)|+ |ψxn(τ)− ψq(τ)|]dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1[|xn(s)− q(s)|+ |ψxn(s))− ψq(s))|]ds

}

un

{
ηe

(1− µ)

∫ 1

0
[|sn(τ)− q(τ)|+ |ψsn(τ)− ψq(τ)|]dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1[|sn(s)− q(s)|+ |ψsn(s))− ψq(s))|]ds

}
≤ (1− un)

{
η(e+ ee1)

(1− µ)
‖xn − q‖+

(e+ ee1)

Γ(ν + 1)
‖xn − q‖

}
+un

{
η(e+ ee1)

(1− µ)
‖sn − q‖+

(e+ ee1)

Γ(ν + 1)
‖sn − q‖

}
= (1− un)

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]
‖xn − q‖

un

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]
‖sn − q‖. (2.2)

‖yn − q‖ = ‖Tzn − Tq‖
= |T (zn)(t)− T (q)(t)|

≤ 1
(1− µ)Γ(ν)

∫ 1

0
Ω(τ)|f(τ, zn(τ), ψzn(τ))− f(τ, q(τ), ψq(τ))|dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1|f(s, zn(s), ψzn(s))− f(s, q(s), ψq(s))|ds

≤ ηe

(1− µ)

∫ 1

0
[|zn(τ)− q(τ)|+ |ψzn(τ)− ψq(τ)|]dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1[|zn(s)− q(s)|+ |ψzn(s))− ψq(s))|]ds

≤ η(e+ ee1)

(1− µ)
‖zn − q‖+

(e+ ee1)

Γ(ν + 1)
‖zn − q‖

=

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]
‖zn − q‖. (2.3)

‖xn+1 − q‖ = ‖Tyn − Tq‖
= |T (yn)(t)− T (q)(t)|

≤ 1
(1− µ)Γ(ν)

∫ 1

0
Ω(τ)|f(τ, yn(τ), ψyn(τ))− f(τ, q(τ), ψq(τ))|dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1|f(s, yn(s), ψyn(s))− f(s, q(s), ψq(s))|ds
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≤ ηe

(1− µ)

∫ 1

0
[|yn(τ)− q(τ)|+ |ψzn(τ)− ψq(τ)|]dτ

+
1

Γ(ν)

∫ t

0
(t− s)ν−1[|yn(s)− q(s)|+ |ψyn(s))− ψq(s))|]ds

≤ η(e+ ee1)

(1− µ)
‖yn − q‖+

(e+ ee1)

Γ(ν + 1)
‖yn − q‖

=

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]
‖yn − q‖. (2.4)

Using (2.1), (2.2), (2.3) and (2.4), we obtain

‖xn+1 − q‖ =

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]3

×(
1− unvn

(
1−

[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]))
‖xn − q‖. (2.5)

Since by assumption (V4) we have
[
η(e+ee1)
(1−µ) + (e+ee1)

Γ(ν+1)

]
< 1, then it follows that

[
η(e+ee1)
(1−µ) + (e+ee1)

Γ(ν+1)

]3
<

1. Thus, (2.5) becomes

‖xn+1 − q‖ ≤
(

1− unvn
(

1−
[
η(e+ ee1)

(1− µ)
+

(e+ ee1)

Γ(ν + 1)

]))
‖xn − q‖. (2.6)

Now define σn = unvn

(
1−

[
η(e+ee1)
(1−µ) + (e+ee1)

Γ(ν+1)

])
, then σn ∈ (0, 1) such that

∞∑
n=1

σn = ∞ and

set θn = ‖xn − q‖. Then (2.6) can be rewritten as

θn+1 = (1− σn)θ.

Therefore, all the conditions of Lemma 1.3 are satisfied. Hence, lim
n→∞

‖xn − q‖ = 0.

3 conclusion

In this paper, using the iterative method (1.6) which has been shown by Ofem et al. [16] to be
faster than several existing iterative methods, we solved a fractional integro-differential equations
with impulsive and integral conditions.
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