VALUE DISTRIBUTION OF MEROMORPHIC FUNCTION CONCERNING CERTAIN SMALL FUNCTION

Pai Yang, Zhiju Jiang, Song Deng and Jinhua Yang

Communicated by Harikrishnan Panackal

MSC 2010 Classifications: 30D35, 30D45.

Keywords and phrases: Meromorphic function, Value distribution, Normal family.

This work was supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A217) and National Natural Science Foundation of China(12061077,11961068).

Abstract The paper uses the theory of quasinormal families to study the value distribution of derivatives of meromorphic functions. Let R be a nonzero rational function, and let f be a meromorphic function, whose zeros are multiple. We prove that if $\rho(f) > 2$, then f'(z) = a(z) has infinitely many solutions in the complex plane, where $a(z) = R(z) \tan z$ or $a(z) = R(z)e^{z}$.

1 Introduction

Let \mathbb{C} be the complex plane and D be a domain on \mathbb{C} . For $z_0 \in \mathbb{C}$ and r > 0, we write $\overline{\Delta}(z_0, r) := \{z | |z-z_0| \le r\}$, $\Delta(z_0, r) := \{z | |z-z_0| < r\}$, $\Delta := \Delta(0, 1)$ and $\Delta'(z_0, r) := \{z | 0 < |z-z_0| < r\}$. We write $f_n \stackrel{\chi}{\Rightarrow} f$ in D to indicate that the sequence $\{f_n\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_n \Rightarrow f$ in D if the convergence is in the Euclidean metric.

For f meromorphic on \mathbb{C} and D a domain on \mathbb{C} , set

$$f^{\#}(z) := \frac{|f'(z)|}{1+|f(z)|^2}$$
 and $S(D,f) := \frac{1}{\pi} \iint_D [f^{\#}(z)]^2 \mathrm{d}x \mathrm{d}y.$

Set $S(r, f) := S(\Delta(0, r), f)$. The Ahlfors-Shimizu characteristic is defined by $T_0(r, f) = \int_0^r \frac{S(t, f)}{t} dt$. Let T(r, f) denote the usual Nevanlinna characteristic function. Since $T(r, f) - T_0(r, f)$ is bounded as a function of r, we can replace $T_0(r, f)$ with T(r, f) in the sequel.

Recall that a family \mathcal{F} of functions meromorphic in D is said to be quasinormal in D if from each sequence $\{f_n\} \subset \mathcal{F}$ one can extract a subsequence $\{f_{n_k}\}$ which converges locally uniformly with respect to the spherical metric in $D \setminus E$, where the set E (which may depend on $\{f_{n_k}\}$) has no accumulation points in D. For further details, please see [1, pp. 131–132].

Our point of departure is the following classical result of Hayman in the value distribution theory of meromorphic functions.

Theorem 1.1. [2] Let f(z) be a transcendental meromorphic function. If $f(z) \neq 0$ for each z, then f'(z) = 1 has infinitely many solutions in the complex plane.

A meromorphic function a(z) is called a small function with respect to f(z) provided that $T(r, a(z)) = o\{T(r, f(z))\}$ as $r \to \infty$ outside of a possible exceptional set of r of finite linear measure.

We wonder if Theorem 1.1 still holds provided that the constant 1 is replaced by a small function a(z) with respect to f(z).

In 2008, Pang et al. gave a generalized version of Theorem 1.1.

Theorem 1.2. [3] Let $\alpha(z)$ be a nonzero rational function, and let f(z) be a transcendental meromorphic function, whose zeros are multiple. Then $f'(z) = \alpha(z)$ has infinitely many solutions in the complex plane. In 2013, Yang and Nevo [4] proved the following result.

Theorem 1.3. Let f(z) be a meromorphic function in the complex plane, whose zeros are multiple, and let $\alpha(z)$ be a nonconstant elliptic function such that $T(r, \alpha) = o\{T(r, f)\}$ as $r \to \infty$. Then $f'(z) = \alpha(z)$ has infinitely many solutions in the complex plane.

In 2017, Yang et al. obtained the following result.

Theorem 1.4. [5] Let f(z) be a meromorphic function in the complex plane, whose poles are multiple and whose zeros have multiplicity at least 3. Let $\alpha(z) := \beta(z) \exp(\gamma(z))$, where $\beta(z)$ is a nonconstant elliptic function and $\gamma(z)$ is an entire function. If $\sigma(f(z)) > \sigma(\alpha(z))$, then $f'(z) = \alpha(z)$ has infinitely many solutions in the complex plane.

In this paper, we continue to consider the value distribution of derivatives of meromorphic functions.

2 Lemmas

Lemma 2.1. Let \mathcal{F} be a family of meromorphic functions in D, and suppose that there exists $M \ge 1$ such that $|f'(z)| \le M$ whenever f(z) = 0. Then if \mathcal{F} is not normal at z_0 , there exist, for each $0 \le \alpha \le 1$,

- (a) points $z_n, z_n \to z_0$,
- (b) functions $f_n \in \mathcal{F}$, and
- (c) positive numbers $\rho_n \rightarrow 0$

such that $\rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) = g_n(\zeta) \xrightarrow{\chi} g(\zeta)$ on \mathbb{C} , where g is a nonconstant meromorphic function on \mathbb{C} such that $g^{\#}(\zeta) \leq g^{\#}(0) = M + 1$. In particular, g has order at most 2.

This is the local version of [6, Lemma 2] (cf. [7, Lemma 1]; [8, pp. 216-217]). The proof consists of a simple change of variable in the result cited from [6]; cf. [9, pp. 299-300]. For a thorough discussion of related issues, see [10].

Lemma 2.2. [4, Lemma 3.9] Let $\{f_n\}$ be a family of meromorphic functions in D, all of whose zeros are multiple, and let $\{\psi_n\}$ be a sequence of meromorphic functions in D such that $\psi_n \stackrel{X}{\Rightarrow} \psi$ in D, where $\psi(z) \not\equiv 0, \infty$ in D. If for each $n \in \mathbb{N}$, $f'_n(z) \neq \psi_n(z)$ for all $z \in D$, then $\{f_n\}$ is quasinormal in D.

Lemma 2.3. [11, Lemma 17] Let $\{f_n\}$ be a family of meromorphic functions in D, whose zeros are multiple. Let $\{\psi_n\}$ be a sequence of meromorphic functions in D such that $\psi_n(z) \stackrel{\chi}{\Rightarrow} \psi(z)$ in D, where ψ is a nonzero holomorphic function in D. Let $E \subset D$ be a set which has no accumulation points in D. Assume that

- (a) ψ and ψ_n have the same zeros with the same multiplicity;
- (b) for each $n \in \mathbb{N}$ and each $z \in D$, $f'_n(z) \neq \psi_n(z)$;
- (c) for each $a^* \in E$, no subsequence of $\{f_n\}$ is normal at a^* ;
- (d) $f_n(z) \stackrel{\chi}{\Rightarrow} f(z)$ in $D \setminus E$.

Then

- (e) for each $a^* \in E$, there exist $r_{a^*} > 0$ and $N_a > 0$ such that for sufficiently large n, $n(\Delta(a^*, r_{a^*}), \frac{1}{f_n}) < N_{a^*}$, where r_{a^*} and N_{a^*} only depend on a^* ;
- (f) for each $a^* \in E$, $f(z) = \int_{a^*}^z \psi(\zeta) d\zeta$ in $D \setminus E$.

Lemma 2.4. [12, Lemma 2.5] Let $\{f_n\}$ be a family of meromorphic functions in $\Delta(z_0, r)$. Suppose that

- (a) there exists $M_0 > 0$ such that $n(\Delta(z_0, r), \frac{1}{t_n}) \leq M_0$ for sufficiently large n, and
- (b) $f_n \stackrel{\chi}{\Longrightarrow} f \text{ in } \Delta'(z_0, r)$, where $f(\neq 0)$ may be ∞ identically.

Then there exists M > 0 such that $S(\Delta(z_0, r/4), f_n) < M$ for sufficiently large n.

Lemma 2.5. Let f(z) be a meromorphic function of order $\rho(f) > 2$ in \mathbb{C} . Then there exist $\alpha_n \to \infty$ and $\delta_n \to 0$ such that $f^{\#}(\alpha_n) \to \infty$ and $S(\Delta(\alpha_n, \delta_n), f) \to \infty$ as $n \to \infty$.

Remark 2.6. From the process of proof of Lemma 10 in [13] (see [13, p.12]), it is easy to see that Lemma 2.5 holds. A full and complete proof of Lemma 2.5 is given in [14, p.1278].

Lemma 2.7. Let d be an integer, and let f be a transcendental meromorphic function, all but finite many of whose zeros are multiple. Set $g(z) := \frac{f(z)}{z^d}$. If $\rho(f) > 2$, then there exist $\alpha_n \to \infty$ and $\delta_n \to 0$ such that

$$\frac{f(\alpha_n)}{\alpha_n^d} \to 0, \quad \frac{f'(\alpha_n)}{\alpha_n^d} \to \infty \text{ and } S(\Delta(\alpha_n, \delta_n), g) \to \infty \text{ as } n \to \infty.$$

Proof. Clearly, $\rho(g) > 2$. By Lemma 2.5, there exist $\beta_n \to \infty$ and $\varepsilon_n \to 0$ such that $g^{\#}(\beta_n) \to \infty$ and $S(\Delta(\beta_n, \varepsilon_n), g) \to \infty$ as $n \to \infty$.

Set $g_n(z) := g(z + \beta_n)$ for $z \in \Delta$. Clearly, $g_n^{\#}(0) = g^{\#}(\beta_n) \to \infty$ and hence $\{g_n\}$ is not normal at 0. It is also clear that all zeros of $g_n(z)$ are multiple for sufficiently large n in Δ . Using Lemma 2.1 for $\alpha = 1/2$, there exist points $z_n \to 0$, positive numbers $\rho_n \to 0$ and a subsequence of $\{g_n\}$ (still denoted by $\{g_n\}$) such that

$$G_n(\zeta) = \frac{g_n(z_n + \rho_n \zeta)}{\rho_n^{1/2}} \xrightarrow{\chi} G(\zeta) \text{ in } \mathbb{C},$$

where G is a nonconstant meromorphic function in \mathbb{C} , all of whose zeros are multiple.

Set $\alpha_n := \beta_n + z_n + \rho_n \zeta_0$, where ζ_0 is not a zero or pole of $G'(\zeta)$ (In fact, $G'(\zeta)$ is not a constant function. Otherwise, either G is a constant function, or G has a simple zero). Noting that

$$\frac{g(\alpha_n)}{\rho_n^{1/2}} = \frac{g_n(z_n + \rho_n\zeta_0)}{\rho_n^{1/2}} = G_n(\zeta_0) \to G(\zeta_0),$$
$$\rho_n^{1/2}g'(\alpha_n) = \rho_n^{1/2}g'_n(z_n + \rho_n\zeta_0) = G'_n(\zeta_0) \to G'(\zeta_0),$$

we have

$$a_n \to \infty$$
, $g(\alpha_n) \to 0$ and $g'(\alpha_n) \to \infty$

A simple calculation shows that

С

$$\frac{f(\alpha_n)}{\alpha_n^d} = g(\alpha_n) \to 0,$$
$$\frac{f'(\alpha_n)}{\alpha_n^d} = \left. \frac{\left(z^d g(z) \right)'}{\alpha_n^d} \right|_{z=\alpha_n} = \frac{d}{\alpha_n} \cdot g(\alpha_n) + g'(\alpha_n) \to \infty.$$

Set $\delta_n := \varepsilon_n + |\alpha_n - \beta_n| = \varepsilon_n + |z_n + \rho_n \zeta_0|$. Obviously, $\delta_n \to 0$ and $\Delta(\beta_n, \varepsilon_n) \subset \Delta(\alpha_n, \delta_n)$, and hence $S(\Delta(\alpha_n, \delta_n), g) \to \infty$ as $n \to \infty$.

Lemma 2.8. Let d be an integer, and let f be a transcendental meromorphic function, all but finite many of whose zeros are multiple. Set $g(z) := \frac{f(z)}{z^{d}e^{z}}$. If $\rho(f) > 2$, then there exist $\alpha_n \to \infty$ and $\delta_n \to 0$ such that

$$\frac{f(\alpha_n)}{\alpha_n^d \mathbf{e}^{\alpha_n}} \to 0, \quad \frac{f'(\alpha_n)}{\alpha_n^d \mathbf{e}^{\alpha_n}} \to \infty \text{ and } S(\Delta(\alpha_n, \delta_n), g) \to \infty \text{ as } n \to \infty.$$

Proof. Since $\rho(z^d e^z) = 1$, we have $\rho(g) > 2$. Set $g_n(z) := g(z + \beta_n)$ for $z \in \Delta$.

Using the same argument as in Lemma 2.7, we can show that

$$\alpha_n \to \infty$$
, $g(\alpha_n) \to 0$ and $g'(\alpha_n) \to \infty$,

where α_n has the same definition as in Lemma 2.7. A simple calculation shows that

$$\frac{f(\alpha_n)}{\alpha_n^d \mathbf{e}^{\alpha_n}} = g(\alpha_n) \to 0,$$

$$\frac{f'(\alpha_n)}{\alpha_n^d e^{\alpha_n}} = \left. \frac{\left(z^d e^z g(z) \right)'}{\alpha_n^d e^{\alpha_n}} \right|_{z=\alpha_n} = \left(1 + \frac{d}{\alpha_n} \right) g(\alpha_n) + g'(\alpha_n) \to \infty.$$

Set $\delta_n := \varepsilon_n + |\alpha_n - \beta_n|$. Then we also have $\delta_n \to 0$ and $S(\Delta(\alpha_n, \delta_n), g) \to \infty$.

3 Main results

Theorem 3.1. Let R be a nonzero rational function, and let f be a meromorphic function, all but finite many of whose zeros are multiple. If $\rho(f) > 2$, then $f'(z) = R(z) \tan z$ has infinitely many solutions in the complex plane (including the possibility of infinitely many common poles of f and $\tan z$).

Remark 3.2. Theorem 3.1 still holds provided that $\tan z$ is replaced by $\cot z$.

Proof. We present the proof of Theorem 3.1 using reduction to absurdity.

Now let us assume that $f'(z) = R(z) \tan z$ has finitely many solutions in the complex plane. Let $R(z) \sim cz^d$ as $z \to \infty$, where c is a finite nonzero complex number and d is an integer.

Set $g(z) := \frac{f(z)}{z^d}$. Clearly, $\rho(g) > 2$. By Lemma 2.7, there exist $\alpha_n \to \infty$ and $\delta_n \to 0$ such that

$$S(\Delta(\alpha_n, \delta_n), g) \to \infty \text{ as } n \to \infty,$$
 (3.1)

$$\frac{f(\alpha_n)}{\alpha_n^d} \to 0 \text{ and } \frac{f'(\alpha_n)}{\alpha_n^d} \to \infty \text{ as } n \to \infty.$$
(3.2)

Write $\alpha_n := x_n + iy_n$. Taking a subsequence and renumbering if necessary, we may assume that $y_n \to y^*$ as $z \to \infty$.

We consider the following two cases.

Case 1 $y^* \neq \pm \infty$.

There exist integers j_n and points $\hat{x}_n \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\hat{x}_n = x_n - \pi j_n$. Taking a suitable subsequence and renumbering if necessary, we may assume that $\hat{x}_n \to x^*$. Clearly, $x^* \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Set $\beta^* = x^* + iy^*$, $\beta_n := \beta^* + \pi j_n$ and $\sigma_n := |\alpha_n - \beta_n| + \delta_n$. Then we have

$$+iy^*, \ \beta_n := \beta^* + \pi j_n \text{ and } \sigma_n := |\alpha_n - \beta_n| + \delta_n.$$
 Then we have
 $\beta_n \to \infty, \ \ \sigma_n \to 0 \ \text{ and } S(\Delta(\beta_n, \sigma_n), g) \to \infty.$ (3.3)

In fact, a simple calculation shows that

$$|\alpha_n - \beta_n| = |(\hat{x}_n - x^*) + i(y_n - y^*)| \le |\hat{x}_n - x^*| + |y_n - y^*| \to 0,$$
(3.4)
$$\sigma_n = |\alpha_n - \beta_n| + \delta_n \to 0.$$

It is easy to see that $\Delta(\alpha_n, \delta_n) \subset \Delta(\beta_n, \sigma_n)$ and hence $S(\Delta(\beta_n, \sigma_n), g) \to \infty$.

Set

$$g_n(z) := g(z + \beta_n)$$
 and $f_n(z) := \frac{f(z + \beta_n)}{\beta_n^d}$ for $z \in \Delta$.

Then we see that

$$S(\Delta(0,\sigma_n),g_n) = S(\Delta(\beta_n,\sigma_n),g) \to \infty,$$
(3.5)

$$g_n(z) = \frac{\beta_n^d}{(z+\beta_n)^d} \cdot f_n(z) \text{ and } \frac{\beta_n^d}{(z+\beta_n)^d} \Rightarrow 1 \text{ in } \Delta.$$
 (3.6)

By (3.2), we have

$$f_n(\alpha_n - \beta_n) = \frac{f(\alpha_n)}{\alpha_n^d} \cdot \frac{\alpha_n^d}{\beta_n^d} \to 0 \text{ and } f'_n(\alpha_n - \beta_n) = \frac{f'(\alpha_n)}{\alpha_n^d} \cdot \frac{\alpha_n^d}{\beta_n^d} \to \infty.$$
(3.7)

Then, (3.4) and (3.7) imply that no subsequence of $\{f_n\}$ is normal at z = 0.

Now, we have, for sufficiently large n,

(a1) all zeros of f_n are multiple in Δ ,

(a2) $f'_n(z) \neq \psi_n$ in Δ , where $\psi_n = \frac{R(z+\beta_n)}{\beta_n^d} \tan(z+\beta_n) \stackrel{\chi}{\Rightarrow} c \tan(z+\beta^*)$ in Δ .

By Lemma 2.2, $\{f_n\}$ is quasinormal in Δ . Thus there exist a subsequence of $\{f_n\}$ (still denoted by $\{f_n\}$) and $\delta \in (0, 1)$ such that

(b1) no subsequence of $\{f_n\}$ is normal at 0,

(b2) $f_n \stackrel{\chi}{\Rightarrow} f^*$ in $\Delta'(0, \delta)$, where f^* is meromorphic or identically infinite there.

By Lemma 2.3, we have

(c1) there exist $r_0 \in (0, \delta)$ and $N_0 > 0$ such that $n(\Delta(0, r_0), 1/f_n) < N_0$ for sufficiently large n,

(c2)
$$f^*(z) = \int_0^z c \tan(\zeta + \beta^*) d\zeta \text{ in } \Delta'(0, \delta).$$

Since $f^*(z)$ is a single-valued meromorphic function, $\int_0^z c \tan(\zeta + \beta^*) d\zeta$ must also be a single-valued meromorphic function, and hence $\tan(\zeta + \beta^*)$ must be holomorphic in $\Delta'(0, \delta)$. It follows from (3.6), (c1) and (c2) that

(d1) $n(\Delta(0, r_0), 1/g_n) < N_0$ for sufficiently large n,

(d2)
$$g_n(z) \Rightarrow \int_0^z c \tan(\zeta + \beta^*) \,\mathrm{d}\zeta \,\mathrm{in}\,\Delta'(0, r_0)$$

By Lemma 2.4, there exists M > 0 such that $S(\Delta(0, r_0/4), g_n) < M$ for sufficiently large n. This contradicts (3.5).

Case 2 $y^* = +\infty$ or $y^* = -\infty$.

Without loss of generality, we may assume that $y^* = +\infty$. Set

$$g_n(z) := g(z + \alpha_n)$$
 and $f_n(z) := \frac{f(z + \alpha_n)}{\alpha_n^d}$ for $z \in \Delta$.

Then we see that

$$S(\Delta(0,\delta_n),g_n) = S(\Delta(\alpha_n,\delta_n),g) \to \infty,$$
(3.8)

$$g_n(z) = \frac{\alpha_n^d}{(z+\alpha_n)^d} \cdot f_n(z) \text{ and } \frac{\alpha_n^d}{(z+\alpha_n)^d} \Rightarrow 1 \text{ in } \Delta.$$
 (3.9)

It follows from (3.2) that

$$f_n(0) = rac{f(lpha_n)}{lpha_n^d} o 0 ext{ and } f_n'(0) = rac{f'(lpha_n)}{lpha_n^d} o \infty.$$

Then, no subsequence of $\{f_n\}$ is normal at z = 0.

Now, we have, for sufficiently large n,

(A1) all zeros of f_n are multiple in Δ ,

(A2) $f'_n(z) \neq \psi_n$ in Δ , where $\psi_n = \frac{R(z+\alpha_n)}{\alpha_n^d} \tan(z+\alpha_n) \Rightarrow c i$ in Δ . (A note: $\tan z = \frac{1}{i} \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} \rightarrow i$ as $\operatorname{Im}(z) \rightarrow \infty$.)

By Lemma 2.2, $\{f_n\}$ is quasinormal in Δ . Thus there exist a subsequence of $\{f_n\}$ (still denoted by $\{f_n\}$) and $\delta \in (0, 1)$ such that

(B1) no subsequence of $\{f_n\}$ is normal at 0,

(B2) $f_n \stackrel{\chi}{\Rightarrow} f^*$ in $\Delta'(0, \delta)$, where f^* is meromorphic or identically infinite there.

By Lemma 2.3, we have

(C1) there exist $r_0 \in (0, \delta)$ and $N_0 > 0$ such that $n(\Delta(0, r_0), 1/f_n) < N_0$ for sufficiently large n,

(C2)
$$f^*(z) = \int_0^z c \, i \, \mathrm{d}\zeta = c \, i z \, \mathrm{in} \, \Delta'(0, \delta).$$

It follows from (3.9), (C1) and (C2) that

- (D1) $n(\Delta(0, r_0), 1/g_n) < N_0$ for sufficiently large n,
- (D2) $g_n(z) \Rightarrow c \, iz \, \text{in} \, \Delta'(0, r_0).$

By Lemma 2.4, there exists M > 0 such that $S(\Delta(0, r_0/4), g_n) < M$ for sufficiently large n. This contradicts (3.8).

Theorem 3.3. Let R be a nonzero rational function, and let f be a meromorphic function, all but finite many of whose zeros are multiple. If $\rho(f) > 2$, then $f'(z) = R(z)e^{z}$ has infinitely many solutions in the complex plane.

Proof. We assume that $f'(z) = R(z)e^z$ has at most finitely many zeros and derive a contradiction. Let $R(z) \sim cz^d$ as $z \to \infty$, where c is a finite nonzero complex number and d is an integer.

Set $g(z) := \frac{f(z)}{z^d e^z}$. By Lemma 2.8, there exists a sequence $\alpha_n \to \infty$ and $\delta_n \to 0$ such that

 $S(\Delta(\alpha_n, \delta_n), g) \to \infty \text{ as } n \to \infty,$

$$\frac{f(\alpha_n)}{\alpha_n^d \mathbf{e}^{\alpha_n}} \to 0 \text{ and } \frac{f'(\alpha_n)}{\alpha_n^d \mathbf{e}^{\alpha_n}} \to \infty \text{ as } n \to \infty.$$
(3.10)

Set

$$g_n(z) := g(z + \alpha_n) \text{ and } f_n(z) := \frac{f(z + \alpha_n)}{\alpha_n^d e^{\alpha_n}} \text{ for } z \in \Delta$$

Then we see that

$$S(\Delta(0,\delta_n),g_n) = S(\Delta(\alpha_n,\delta_n),g) \to \infty,$$

$$g_n(z) = \frac{\alpha_n^d \mathbf{e}^{\alpha_n}}{(z+\alpha_n)^d \mathbf{e}^{z+\alpha_n}} \cdot f_n(z) \text{ and } \frac{\alpha_n^d \mathbf{e}^{\alpha_n}}{(z+\alpha_n)^d \mathbf{e}^{z+\alpha_n}} \Rightarrow \mathbf{e}^{-z} \text{ in } \Delta.$$

It follows from (3.10) that

$$f_n(0) = rac{f(lpha_n)}{lpha_n^d \mathbf{e}^{lpha_n}} o 0 ext{ and } f'_n(0) = rac{f'(lpha_n)}{lpha_n^d \mathbf{e}^{lpha_n}} o \infty.$$

Then, no subsequence of $\{f_n\}$ is normal at z = 0.

The rest of the proof is similar to the proof of Theorem 3.1 in case 2 and we omit the details here. \Box

References

- [1] C. T. Chuang, Normal Families of Meromorphic Functions, Singapore: World Scientific, (1993).
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70(1), 9–42, (1959).
- [3] X. C. Pang, S. Nevo, L. Zalcman, Derivatives of meromorphic functions with multiple zeros and rational functions, Comput. Methods Funct. Theory, 8(2), 483–491, (2008).
- [4] P. Yang, S. Nevo, Derivatives of meromorphic functions with multiple zeros and elliptic functions, Acta. Math. Sin. (Engl. Ser.), 29(7), 1257–1278, (2013).
- [5] P. Yang, P. Y. Niu, X. C. Pang, A Picard type theorem concerning meromorphic functions of hyperorder(in Chinese), Sci Sin Math, 47(3), 357–370, (2017).
- [6] X. C. Pang, L. Zalcman, Normal families and shared values, Bull. Lond. Math. Soc., 32(3), 325–331, (2000).
- [7] S. Nevo, On theorems of Yang and Schwick, Complex Var. Elliptic Equ., 46(4), 315–321, (2001).
- [8] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc., 35(3), 215–230, (1998).
- [9] S. Nevo, Applications of Zalcman's lemma to Qm-normal families, Analysis (Munich), 21, 289–325, (2001).
- [10] W. Bergweiler, Bloch's principle, Comput, Methods Funct. Theory, 6, 77–108, (2006).
- [11] P. Yang, P. Y. Niu, Derivatives of Meromorphic Functions with Multiple Zeros and Small Functions, Abstr. Appl. Anal., vol. 2014, Article ID 310251, 1–10(2014).
- [12] P. Yang, X. J. Liu, X. C. Pang, Derivatives of meromorphic functions and sine function, Proc. Japan Acad. Ser. A Math. Sci., 91(9), 129–134, (2015).

- [13] S. Nevo, X. C. Pang, L. Zalcman, *Quasinormality and meromorphic functions with multiple zeros*, J. Anal. Math., **101**(1), 1–23, (2007).
- [14] P. Yang, L. Qiao, *Picard type theorems concerning certain small functions*, Acta Math. Sin. (Engl. Ser.), 33(9), 1275–1286, (2017).

Author information

Pai Yang, College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China.

E-mail: yangpai2009@foxmail.com

Zhiju Jiang, College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China.

E-mail: 2398583308@qq.com

Song Deng, College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China. E-mail: 1275884639@qq. com

Jinhua Yang, School of Mathematical Sciences, Xinjiang Normal University, Urumqi Xinjiang 830054, China. E-mail: 1511337295@qq.com

Received: 2022-01-06 Accepted: 2023-08-28