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Abstract The paper uses the theory of quasinormal families to study the value distribution
of derivatives of meromorphic functions. Let R be a nonzero rational function, and let f be a
meromorphic function, whose zeros are multiple. We prove that if ρ(f) > 2, then f ′(z) = a(z)
has infinitely many solutions in the complex plane, where a(z) = R(z) tan z or a(z) = R(z)ez .

1 Introduction

Let C be the complex plane andD be a domain on C. For z0 ∈ C and r > 0, we write ∆(z0, r) :=
{z| |z−z0| ≤ r}, ∆(z0, r) := {z| |z−z0| < r}, ∆ := ∆(0, 1) and ∆′(z0, r) := {z| 0 < |z−z0| < r}.
We write fn

χ⇒ f in D to indicate that the sequence {fn} converges to f in the spherical metric
uniformly on compact subsets of D and fn ⇒ f in D if the convergence is in the Euclidean
metric.

For f meromorphic on C and D a domain on C, set

f#(z) :=
|f ′(z)|

1 + |f(z)|2
and S(D, f) :=

1
π

∫∫
D

[f#(z)]2dxdy.

Set S(r, f) := S(∆(0, r), f). The Ahlfors–Shimizu characteristic is defined by T0(r, f) =∫ r
0
S(t,f)
t dt. Let T (r, f) denote the usual Nevanlinna characteristic function. Since T (r, f) −

T0(r, f) is bounded as a function of r, we can replace T0(r, f) with T (r, f) in the sequel.
Recall that a family F of functions meromorphic in D is said to be quasinormal in D if

from each sequence {fn} ⊂ F one can extract a subsequence {fnk
} which converges locally

uniformly with respect to the spherical metric in D \ E, where the set E (which may depend on
{fnk
}) has no accumulation points in D. For further details, please see [1, pp. 131–132].

Our point of departure is the following classical result of Hayman in the value distribution
theory of meromorphic functions.

Theorem 1.1. [2] Let f(z) be a transcendental meromorphic function. If f(z) 6= 0 for each z,
then f ′(z) = 1 has infinitely many solutions in the complex plane.

A meromorphic function a(z) is called a small function with respect to f(z) provided that
T (r, a(z)) = o{T (r, f(z))} as r → ∞ outside of a possible exceptional set of r of finite linear
measure.

We wonder if Theorem 1.1 still holds provided that the constant 1 is replaced by a small
function a(z) with respect to f(z).

In 2008, Pang et al. gave a generalized version of Theorem 1.1.

Theorem 1.2. [3] Let α(z) be a nonzero rational function, and let f(z) be a transcendental mero-
morphic function, whose zeros are multiple. Then f ′(z) = α(z) has infinitely many solutions in
the complex plane.
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In 2013, Yang and Nevo [4] proved the following result.

Theorem 1.3. Let f(z) be a meromorphic function in the complex plane, whose zeros are mul-
tiple, and let α(z) be a nonconstant elliptic function such that T (r, α) = o{T (r, f)} as r → ∞.
Then f ′(z) = α(z) has infinitely many solutions in the complex plane.

In 2017, Yang et al. obtained the following result.

Theorem 1.4. [5] Let f(z) be a meromorphic function in the complex plane, whose poles are
multiple and whose zeros have multiplicity at least 3. Let α(z) := β(z) exp (γ(z)), where β(z)
is a nonconstant elliptic function and γ(z) is an entire function. If σ(f(z)) > σ(α(z)), then
f ′(z) = α(z) has infinitely many solutions in the complex plane.

In this paper, we continue to consider the value distribution of derivatives of meromorphic
functions.

2 Lemmas

Lemma 2.1. Let F be a family of meromorphic functions in D, and suppose that there exists
M ≥ 1 such that |f ′(z)| ≤M whenever f(z) = 0. Then if F is not normal at z0, there exist, for
each 0 ≤ α ≤ 1,

(a) points zn, zn → z0,

(b) functions fn ∈ F , and

(c) positive numbers ρn → 0

such that ρ−αn fn(zn + ρnζ) = gn(ζ)
χ⇒ g(ζ) on C, where g is a nonconstant meromorphic

function on C such that g#(ζ) ≤ g#(0) =M + 1. In particular, g has order at most 2.

This is the local version of [6, Lemma 2] (cf. [7, Lemma 1]; [8, pp. 216-217]). The proof
consists of a simple change of variable in the result cited from [6]; cf. [9, pp. 299-300]. For a
thorough discussion of related issues, see [10].

Lemma 2.2. [4, Lemma 3.9] Let {fn} be a family of meromorphic functions in D, all of whose
zeros are multiple, and let {ψn} be a sequence of meromorphic functions in D such that ψn

χ⇒ ψ
in D, where ψ(z) 6≡ 0,∞ in D. If for each n ∈ N, f ′n(z) 6= ψn(z) for all z ∈ D, then {fn} is
quasinormal in D.

Lemma 2.3. [11, Lemma 17] Let {fn} be a family of meromorphic functions in D, whose zeros
are multiple. Let {ψn} be a sequence of meromorphic functions in D such that ψn(z)

χ⇒ ψ(z)
in D, where ψ is a nonzero holomorphic function in D. Let E ⊂ D be a set which has no
accumulation points in D. Assume that

(a) ψ and ψn have the same zeros with the same multiplicity;

(b) for each n ∈ N and each z ∈ D, f ′n(z) 6= ψn(z);

(c) for each a∗ ∈ E, no subsequence of {fn} is normal at a∗;

(d) fn(z)
χ⇒ f(z) in D \ E.

Then

(e) for each a∗ ∈ E, there exist ra∗ > 0 and Na > 0 such that for sufficiently large n,
n(∆(a∗, ra∗),

1
fn
) < Na∗ , where ra∗ and Na∗ only depend on a∗;

(f) for each a∗ ∈ E, f(z) =
∫ z
a∗
ψ(ζ)dζ in D \ E.

Lemma 2.4. [12, Lemma 2.5] Let {fn} be a family of meromorphic functions in ∆(z0, r). Sup-
pose that

(a) there exists M0 > 0 such that n
(
∆(z0, r),

1
fn

)
≤M0 for sufficiently large n, and

(b) fn
χ

=⇒ f in ∆′(z0, r), where f(6≡ 0) may be∞ identically.
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Then there exists M > 0 such that S
(
∆(z0, r/4), fn

)
< M for sufficiently large n.

Lemma 2.5. Let f(z) be a meromorphic function of order ρ(f) > 2 in C. Then there exist
αn →∞ and δn → 0 such that f#(αn)→∞ and S(∆(αn, δn), f)→∞ as n→∞.

Remark 2.6. From the process of proof of Lemma 10 in [13] (see [13, p.12]), it is easy to see
that Lemma 2.5 holds. A full and complete proof of Lemma 2.5 is given in [14, p.1278].

Lemma 2.7. Let d be an integer, and let f be a transcendental meromorphic function, all but
finite many of whose zeros are multiple. Set g(z) := f(z)

zd
. If ρ(f) > 2, then there exist αn →∞

and δn → 0 such that

f(αn)

αdn
→ 0 ,

f ′(αn)

αdn
→∞ and S(∆(αn, δn), g)→∞ as n→∞.

Proof. Clearly, ρ(g) > 2. By Lemma 2.5, there exist βn → ∞ and εn → 0 such that g#(βn) →
∞ and S(∆(βn, εn), g)→∞ as n→∞.

Set gn(z) := g(z + βn) for z ∈ ∆. Clearly, g#
n(0) = g#(βn) → ∞ and hence {gn} is not

normal at 0. It is also clear that all zeros of gn(z) are multiple for sufficiently large n in ∆. Using
Lemma 2.1 for α = 1/2, there exist points zn → 0, positive numbers ρn → 0 and a subsequence
of {gn} (still denoted by {gn}) such that

Gn(ζ) =
gn(zn + ρnζ)

ρ
1/2
n

χ
=⇒ G(ζ) in C,

where G is a nonconstant meromorphic function in C, all of whose zeros are multiple.
Set αn := βn + zn + ρnζ0, where ζ0 is not a zero or pole of G′(ζ) (In fact, G′(ζ) is not a

constant function. Otherwise, either G is a constant function, or G has a simple zero). Noting
that

g(αn)

ρ
1/2
n

=
gn(zn + ρnζ0)

ρ
1/2
n

= Gn(ζ0)→ G(ζ0),

ρ1/2
n g′(αn) = ρ1/2

n g′n(zn + ρnζ0) = G′n(ζ0)→ G′(ζ0),

we have
αn →∞, g(αn)→ 0 and g′(αn)→∞.

A simple calculation shows that
f(αn)

αdn
= g(αn)→ 0,

f ′(αn)

αdn
=

(
zdg(z)

)′
αdn

∣∣∣∣∣
z=αn

=
d

αn
· g(αn) + g′(αn)→∞.

Set δn := εn+ |αn−βn| = εn+ |zn+ρnζ0|. Obviously, δn → 0 and ∆(βn, εn) ⊂ ∆(αn, δn),
and hence S(∆(αn, δn), g)→∞ as n→∞.

Lemma 2.8. Let d be an integer, and let f be a transcendental meromorphic function, all but
finite many of whose zeros are multiple. Set g(z) := f(z)

zdez . If ρ(f) > 2, then there exist αn →∞
and δn → 0 such that

f(αn)

αdneαn
→ 0 ,

f ′(αn)

αdneαn
→∞ and S(∆(αn, δn), g)→∞ as n→∞.

Proof. Since ρ(zdez) = 1, we have ρ(g) > 2. Set gn(z) := g(z + βn) for z ∈ ∆.
Using the same argument as in Lemma 2.7, we can show that

αn →∞, g(αn)→ 0 and g′(αn)→∞,

where αn has the same definition as in Lemma 2.7. A simple calculation shows that

f(αn)

αdneαn
= g(αn)→ 0,
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f ′(αn)

αdn eαn
=

(
zd ezg(z)

)′
αdneαn

∣∣∣∣∣
z=αn

=

(
1 +

d

αn

)
g(αn) + g′(αn)→∞.

Set δn := εn + |αn − βn|. Then we also have δn → 0 and S(∆(αn, δn), g)→∞.

3 Main results

Theorem 3.1. Let R be a nonzero rational function, and let f be a meromorphic function, all but
finite many of whose zeros are multiple. If ρ(f) > 2, then f ′(z) = R(z) tan z has infinitely many
solutions in the complex plane (including the possibility of infinitely many common poles of f
and tan z).

Remark 3.2. Theorem 3.1 still holds provided that tan z is replaced by cot z.

Proof. We present the proof of Theorem 3.1 using reduction to absurdity.
Now let us assume that f ′(z) = R(z) tan z has finitely many solutions in the complex plane.

Let R(z) ∼ czd as z →∞, where c is a finite nonzero complex number and d is an integer.
Set g(z) := f(z)

zd
. Clearly, ρ(g) > 2. By Lemma 2.7, there exist αn → ∞ and δn → 0 such

that
S(∆(αn, δn), g)→∞ as n→∞, (3.1)

f(αn)

αdn
→ 0 and

f ′(αn)

αdn
→∞ as n→∞. (3.2)

Write αn := xn + iyn. Taking a subsequence and renumbering if necessary, we may assume
that yn → y∗ as z →∞.

We consider the following two cases.
Case 1 y∗ 6= ±∞.
There exist integers jn and points x̂n ∈ (−π2 ,

π
2 ] such that x̂n = xn − πjn. Taking a

suitable subsequence and renumbering if necessary, we may assume that x̂n → x∗. Clearly,
x∗ ∈ [−π2 ,

π
2 ].

Set β∗ = x∗ + iy∗, βn := β∗ + πjn and σn := |αn − βn|+ δn. Then we have

βn →∞, σn → 0 and S
(
∆(βn, σn), g

)
→∞. (3.3)

In fact, a simple calculation shows that

|αn − βn| = |(x̂n − x∗) + i(yn − y∗)| ≤ |x̂n − x∗|+ |yn − y∗| → 0, (3.4)

σn = |αn − βn|+ δn → 0.

It is easy to see that ∆(αn, δn) ⊂ ∆(βn, σn) and hence S
(
∆(βn, σn), g

)
→∞.

Set

gn(z) := g(z + βn) and fn(z) :=
f(z + βn)

βdn
for z ∈ ∆.

Then we see that
S
(
∆(0, σn), gn

)
= S

(
∆(βn, σn), g

)
→∞, (3.5)

gn(z) =
βdn

(z + βn)d
· fn(z) and

βdn
(z + βn)d

⇒ 1 in ∆. (3.6)

By (3.2), we have

fn(αn − βn) =
f(αn)

αdn
· α

d
n

βdn
→ 0 and f ′n(αn − βn) =

f ′(αn)

αdn
· α

d
n

βdn
→∞. (3.7)

Then, (3.4) and (3.7) imply that no subsequence of {fn} is normal at z = 0.
Now, we have, for sufficiently large n,
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(a1) all zeros of fn are multiple in ∆,

(a2) f ′n(z) 6= ψn in ∆, where ψn = R(z+βn)
βd
n

tan(z + βn)
χ⇒ c tan(z + β∗) in ∆.

By Lemma 2.2, {fn} is quasinormal in ∆. Thus there exist a subsequence of {fn} (still denoted
by {fn}) and δ ∈ (0, 1) such that

(b1) no subsequence of {fn} is normal at 0,

(b2) fn
χ⇒ f∗ in ∆′(0, δ), where f∗ is meromorphic or identically infinite there.

By Lemma 2.3, we have

(c1) there exist r0 ∈ (0, δ) and N0 > 0 such that n
(
∆(0, r0), 1/fn

)
< N0 for sufficiently large n,

(c2) f∗(z) =
∫ z

0 c tan(ζ + β∗) dζ in ∆′(0, δ).

Since f∗(z) is a single-valued meromorphic function,
∫ z

0 c tan(ζ + β∗) dζ must also be a single-
valued meromorphic function, and hence tan(ζ+β∗) must be holomorphic in ∆′(0, δ). It follows
from (3.6), (c1) and (c2) that

(d1) n
(
∆(0, r0), 1/gn

)
< N0 for sufficiently large n,

(d2) gn(z)⇒
∫ z

0 c tan(ζ + β∗) dζ in ∆′(0, r0).

By Lemma 2.4, there exists M > 0 such that S
(
∆(0, r0/4), gn

)
< M for sufficiently large n.

This contradicts (3.5).
Case 2 y∗ = +∞ or y∗ = −∞.
Without loss of generality, we may assume that y∗ = +∞.
Set

gn(z) := g(z + αn) and fn(z) :=
f(z + αn)

αdn
for z ∈ ∆.

Then we see that
S
(
∆(0, δn), gn

)
= S

(
∆(αn, δn), g

)
→∞, (3.8)

gn(z) =
αdn

(z + αn)d
· fn(z) and

αdn
(z + αn)d

⇒ 1 in ∆. (3.9)

It follows from (3.2) that

fn(0) =
f(αn)

αdn
→ 0 and f ′n(0) =

f ′(αn)

αdn
→∞.

Then, no subsequence of {fn} is normal at z = 0.
Now, we have, for sufficiently large n,

(A1) all zeros of fn are multiple in ∆,

(A2) f ′n(z) 6= ψn in ∆, where ψn = R(z+αn)
αd

n
tan(z + αn)⇒ c i in ∆.

(A note: tan z = 1
i

eiz−e−iz

eiz+e−iz → i as Im(z)→∞.)

By Lemma 2.2, {fn} is quasinormal in ∆. Thus there exist a subsequence of {fn} (still denoted
by {fn}) and δ ∈ (0, 1) such that

(B1) no subsequence of {fn} is normal at 0,

(B2) fn
χ⇒ f∗ in ∆′(0, δ), where f∗ is meromorphic or identically infinite there.

By Lemma 2.3, we have

(C1) there exist r0 ∈ (0, δ) and N0 > 0 such that n
(
∆(0, r0), 1/fn

)
< N0 for sufficiently large n,

(C2) f∗(z) =
∫ z

0 c i dζ = c iz in ∆′(0, δ).

It follows from (3.9), (C1) and (C2) that

(D1) n
(
∆(0, r0), 1/gn

)
< N0 for sufficiently large n,

(D2) gn(z)⇒ c iz in ∆′(0, r0).
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By Lemma 2.4, there exists M > 0 such that S
(
∆(0, r0/4), gn

)
< M for sufficiently large n.

This contradicts (3.8).

Theorem 3.3. Let R be a nonzero rational function, and let f be a meromorphic function, all but
finite many of whose zeros are multiple. If ρ(f) > 2, then f ′(z) = R(z)ez has infinitely many
solutions in the complex plane.

Proof. We assume that f ′(z) = R(z)ez has at most finitely many zeros and derive a contra-
diction. Let R(z) ∼ czd as z → ∞, where c is a finite nonzero complex number and d is an
integer.

Set g(z) := f(z)
zdez . By Lemma 2.8, there exists a sequence αn →∞ and δn → 0 such that

S(∆(αn, δn), g)→∞ as n→∞,

f(αn)

αdneαn
→ 0 and

f ′(αn)

αdneαn
→∞ as n→∞. (3.10)

Set

gn(z) := g(z + αn) and fn(z) :=
f(z + αn)

αdneαn
for z ∈ ∆.

Then we see that
S
(
∆(0, δn), gn

)
= S

(
∆(αn, δn), g

)
→∞,

gn(z) =
αdneαn

(z + αn)d ez+αn
· fn(z) and

αdneαn

(z + αn)d ez+αn
⇒ e−z in ∆.

It follows from (3.10) that

fn(0) =
f(αn)

αdneαn
→ 0 and f ′n(0) =

f ′(αn)

αdneαn
→∞.

Then, no subsequence of {fn} is normal at z = 0.
The rest of the proof is similar to the proof of Theorem 3.1 in case 2 and we omit the details

here.
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