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Abstract The primary objective of this paper is to investigate σ-centralizing mappings within
σ-prime rings and assess the commutativity of σ-prime rings with involution that satisfy specific
identities in derivations. Finally, we will furnish examples to demonstrate the necessity of these
assumptions.

1 Introduction

Throughout this paper, we will use the symbol R to denote an associative ring and Z(R) will rep-
resent the centre of the ring R. For any x1, x2 ∈ R, the notation [x1, x2] illustrate the commutator
x1x2−x2x1, and R is called 2-torsion free if 2x1 = 0 =⇒ x1 = 0 for x1 ∈ R. We use this basic
identity [x1x2, z] = x1[x2, z] + [x1, z]x2, [x1, x2z] = [x1, x2]z + x2[x1, z] for all x1, x2, z ∈ R
as and when required. Remember that an involution is defined as an anti-automorphism of or-
der 2. A ring R is designated as a σ-prime ring if the conditions aRb = aRσ(b) = (0) or
σ(a)Rb = aRb = (0) imply that either a = 0 or b = 0. It’s important to note that while every
prime ring with involution is a σ-prime ring, the converse may not hold true in all cases. For
example: Consider the set S, defined as S = R×R0, where R0 represents the opposite ring of
R. We introduce a mapping σ on S defined as σ(x, y) = (y, x). Consequently, S qualifies as a
σ-prime ring; however, it does not meet the criteria for being a prime ring. We establish the terms
hermitian for an element x1 ∈ R when σ(x1) = x1, and skew-hermitian when σ(x1) = −x1.
The assemblage of hermitian elements and skew-hermitian elements in R is denoted by JH and
JS , respectively. In the case where R is 2-torsion free, each element x1 ∈ R can be uniquely ex-
pressed as 2x1 = h+ k, where h belongs to JH (the set of hermitian elements), and k belongs to
JS (the set of skew-hermitian elements). The involution σ is classified as first kind if the centre
of R, denoted as Z(R), is contained within JH . If Z(R) is not a subset of JH , σ is referred to as
second kind. It’s important to note that when σ is of the second kind, it implies that JS ∩ Z(R).
An element x1 ∈ R that satisfies the condition x1σ(x1) = σ(x1)x1 is termed a normal element.
If all elements in R meet this condition, then R is labeled as a normal ring. For an example of a
normal ring, refer to [5].

A mapping ψ applied to R is referred to as a derivation on R if it satisfies the conditions
ψ(x1+x2) = ψ(x1)+ψ(x2) and ψ(x1x2) = ψ(x1)x2+x1ψ(x2) for all x1, x2 ∈ R. A map f that
operates from R into itself is termed a centralizing map on R if the condition [f(x1), x1] ∈ Z(R)
holds for all x1 ∈ R. Specifically, if [f(x1), x1] = 0 holds for all x1 ∈ R, it is referred to as a
commuting map. Inspired by the concept of a centralizing map, a map f that operates from R
into itself is denoted as σ-centralizing if it adheres to the condition [f(x1), σ(x1)] ∈ Z(R) for all
x1 ∈ R. Similarly, it is termed σ-commuting if [f(x1), σ(x1)] = 0 for all x1 ∈ R. Therefore, it
is reasonable to investigate the aforementioned mappings in the context of prime rings, σ-prime
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rings and semi-prime rings with involution.

Posner previously demonstrated that in the presence of a nonzero centralizing derivation within a
prime ring, the prime ring must necessarily be commutative. In recent years, several algebraists
have established the commutativity theorem for prime and semi-prime rings by incorporating
automorphisms and derivations into their investigations for detail see [1, 3, 4, 7, 8]. In 2014, S.
Ali and colleagues, as documented in [2], initiated an investigation into the σ-version of Posner’s
theorem. They established that if R is a prime ring with involution σ, and the characteristic of
R is not equal to 2, and if ψ is a non-zero derivation of R satisfying the condition[ψ(x), σ(x)] ∈
Z(R) and ψ(JS ∩ Z(R)) 6= 0 for all x ∈ R, then R is proven to be commutative. The primary
objective of this paper is to investigate the σ-version of Posner’s theorem as it pertains to σ-prime
rings. Furthermore, we have also established the commutativity of σ-prime rings by considering
differential identities.

2 MAIN RESULTS

Lemma 2.1. Consider R as a σ-prime ring with the involution σ, and let ψ be a derivation on
R that commutes with σ. For any element a in R, if aψ(x1) = 0 for all x1 ∈ R, then it follows
that a must be 0, or ψ is the zero derivation.

Proof. We have give that aψ(x1) = 0 for all x1 ∈ R, on replacing x1 by x1x2, we obtain
ax1ψ(x2) = 0 for all x1, x2 ∈ R. On changing x2 by σ(x2), we get ax1ψ(σ(x2)) = 0 for all
x1, x2 ∈ R, then we have aRψ(x2) = aRψ(σ(x2))=(0), by the definition of σ-prime rings we
have either a = 0 or ψ(x2) = 0 for all x2 ∈ R, implies ψ = 0.

Lemma 2.2. Let R be a σ-prime rings, with involution σ and I 6= (0) be a right ideal in R. If ψ
be a derivation on R which is zero on I and commutes with σ, then ψ is zero on R.

Proof. As we have that, ψ(I) = 0 implies 0 = ψ(IR) = ψ(I)R + Iψ(R) = Iψ(R), so by
Lemma 2.1, we have ψ(R) = (0) implies ψ = 0.

Lemma 2.3. Let R is σ-prime rings with involution σ contains a commutative non-zero right
ideal I and σ commutes with derivation on R, then R is commutative.

Proof. For x1 ∈ I , we have [x1, I] = (0) = Ix1(I) so by Lemma 2.1, we have Ix1 = (0) on R
gives us, x1 ∈ Z(R) implies [x1,R] = (0) for all x1 ∈ I , [a, I] = (0) = Ia(I) for all a ∈ R,
using Lemma 2.1, we have Ia = 0 for all a ∈ R implies a ∈ Z(R) for all a ∈ R, yields the
desired result.

Lemma 2.4. Let b and ab, is in the centre of σ-prime ring R and σ commutes with ψ, if b 6= 0,
then a must be in Z(R).

Proof. Since b and ab is in Z(R), then 0 = [ab, r] = [a, r]b for all a ∈ R, further implies
Ia(r)b = 0, applying Lemma 2.1, we get either b = 0 or Ia = 0, since b 6= 0 then later case
implies that a ∈ Z(R).

Lemma 2.5. Let R be a σ-prime ring of characteristics different from 2, then R is 2-torsion free.

Proof. Assume x1 ∈ R and 2x1 = 0 implies, 2x1rs = 0 for all r, s ∈ R and x1R(2s) = (0) for
all s ∈ R. Since characteristics of R is different from 2 and R 6= (0), this gives us s 6= 0 ∈ R
satisfying 2s 6= 0, gives us (0) = x1R(2s) = x1Rσ(2s), by the definition of σ-prime rings we
obtain x1 = 0, hence R is 2-torsion free.

Lemma 2.6. Let R be a 2-torsion free semi prime ring. If b ∈ R commutes with all of its
commutator [b, x1] for all x1 ∈ R, then b ∈ Z(R).

Lemma 2.7. For σ-prime ring JH ∩ Z(R) and JS ∩ Z(R), are free from zero-divisor.

Proof. Let a, b ∈ Z(R) ∩ JH and ab = 0, implies abr = 0 for all r ∈ R gives us (0) = aRb =
aRσ(b), by definition of σ-prime ring, we have a = 0 or b = 0, which completes the proof of
Lemma.
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Proposition 2.8. ([2], Proposition 2.2) Let (R, σ) be a 2-torsion free semiprime ring. If f :
R → R is an additive mapping and satisfying [f(x1), σ(x1)] ∈ Z(R) for all x1 ∈ R, then
[f(x1), σ(x1)] = 0 for all x1 ∈ R.

Lemma 2.9. Let R be a σ-prime ring of characteristics different from 2, where involution σ is of
the second kind and if R is normal, then R is commutative.

Proof. Given that R is normal, it follows that hk = kh where h ∈ JH and k ∈ JS . For any
x1 ∈ R, we have x1 − σ(x1) ∈ JS

h(x1 − σ(x1)) = (x1 − σ(x1))h. (2.1)

Since σ is of the second kind then we have 0 6= s ∈ JS ∩ Z(R) and s(x1 + σ(x1)) ∈ JS for all
x1 ∈ R, using normality of rings R we have, hs(x1 + σ(x1)) = s(x1 + σ(x1))h for all x1 ∈ R,
where h ∈ JH , therefore last relation further implies

s{h(x1 + σ(x1))− (x1 + σ(x1))h} = 0 (2.2)

for all x1 ∈ R. Applying Lemma 2.7, we find that either s = 0 or h(x1+σ(x1)) = (x1+σ(x1))h.
First case is not possible by our supposition and later case together with (2.1), gives hx1 = x1h
for all x1 ∈ R. On changing x1 by x2 for any x2 ∈ R, we obtain

hx2 = x2h. (2.3)

In view of the fact that x1 + σ(x1) ∈ JH , replacing h by x1 + σ(x1) in (2.3), we get

{x1 + σ(x1)}x2 = x2{x1 + σ(x1)} (2.4)

for all x1, x2 ∈ R. Now, we take 0 6= s ∈ JS ∩ Z(R), then s(x1 − σ(x1)) ∈ JH and equation
(2.3) implies that, s{(x1 − σ(x1))x2 − x2(x1 − σ(x1))} = 0 for all x1, x2 ∈ R. Using Lemma
2.7, we obtain

(x1 − σ(x1))x2 = x2(x1 − σ(x1)). (2.5)

Last equation together with (2.4), gives us x1x2 = x2x1 for all x1, x2 ∈ R. Accordingly, we
reach the prescribed result.

Lemma 2.10. Let R be a σ-prime ring with involution σ, which is of the second kind, if σ is
centralizing then R is commutative.

Proof. Based on the given criterion. For all x1 ∈ R, we have

[x1, σ(x1)] ∈ Z(R). (2.6)

Linearizing (2.6), we get
[x1, σ(x2)] + [x2, σ(x1)] ∈ Z(R). (2.7)

For all x1, x2 ∈ R. Last relation further implies that

[[x1, x2], x1] + [[σ(x2), σ(x1)], x1] = 0. (2.8)

Replacing x2 by x2x1 in (2.8), we get

[[x1, x2], x1]x1 + σ(x1)[[σ(x2), σ(x1)], x1] + [σ(x1), x1][σ(x2), σ(x1)] = 0 (2.9)

for all x1, x2 ∈ R. Combining (2.8) and (2.9), we obtain

[[x1, x2], x1]x1 − σ(x1)[[x2, x1], x1] + [σ(x1), x1][σ(x2), σ(x1)] = 0. (2.10)

Taking x2x1 in place of x2 in the above equation, we obtain

[[x1, x2], x1]x
2
1 − σ(x1)[[x2, x1], x1]x1 + [σ(x1), x1]σ(x1)[σ(x2), σ(x1)] = 0 (2.11)
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for all x1, x2 ∈ R. Using equations (2.10) and (2.11) and substituting σ(x1) for x1 and σ(x2) for
x2, we obtain

[x1, σ(x1)]{x1[x2, x1]− [x2, x1]σ(x1)} = 0. (2.12)

For all x1, x2 ∈ R. Replacing x2 by x2x1 in (2.12), we attain

[x1, σ(x1)]{x1[x2, x1]x1 − [x2, x1]x1σ(x1)} = 0 (2.13)

for all x1, x2 ∈ R. When (2.12) is utilized in (2.13), it yields

[x1, σ(x1)][x2, x1]{−x1σ(x1) + σ(x1)x1} = 0. (2.14)

For all x1, x2 ∈ R. In such a way that we obtain

[x1, σ(x1)]
2R[x2, x1] = 0. (2.15)

For all x1, x2 ∈ R. Replacing x1 by σ(x1) and x2 by σ(x2) in the above equation, we obtain

(0) = [x1, σ(x1)]
2R[x2, x1] = [x1, σ(x1)]

2R σ{[x2, x1]}. (2.16)

For all x1, x2 ∈ R. Accordingly, with the definition of a σ-prime ring, we get

either [x1, σ(x1)]
2 = 0, or [x1, x2] = 0. (2.17)

For all x1, x2 ∈ R. Later case implies that R is commutative, first case implies that

[x1, σ(x1)]
2 = 0. (2.18)

With the help of Lemma 2.7, we obtain

[x1, σ(x1)] = 0. (2.19)

For all x1 ∈ R. Hence we obtain R is normal. Using Lemma 2.9, the desired conclusion is
achieved.

Theorem 2.11. Let R be a 2-torsion free σ-prime ring, and ψ 6= 0 be a derivation on R com-
mutes with σ. If for any a ∈ R satisfying aψ(x1) = ψ(x1)a for all x1 ∈ R, then a ∈ Z(R).

Proof. Let on contrary a 6∈ Z(R) and we have [a, ψ(x1)] = 0 for all x1 ∈ R. Putting x1x2 in
place of x1, we obtain

[a, x1]ψ(x2) + ψ(x1)[a, x2]. (2.20)

For all x1, x2 ∈ R and assume that x2 ∈ R commutes with a, we have

CR(a) = {x2 ∈ R | ax2 = x2a}. (2.21)

Invoking last relation in (2.20), we get

[a, x1]ψ(x2) = 0. (2.22)

For all x1, x2 ∈ R, when we substitute rx1 for x1 in (2.22), we acquire

[a, r]Rψ(x2) = 0. (2.23)

For all r, x2 ∈ R. Since, by assumption x2 commutes with a i.e., [a, x2] = 0, for any a ∈ R, we
can write 2a = h+ k where h ∈ JH and k ∈ JS . Therefore we obtain

[h+ k, x2] = 0 where, h ∈ JH , k ∈ JS and x2 ∈ CR(a). (2.24)

Taking involution σ both side, we get

[h− k, σ(x2)] = 0 where, k ∈ JS , h ∈ JH and x2 ∈ CR(a). (2.25)
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Using (2.24) and (2.25), we get

[h, x2 + σ(x2)] = 0 where, k ∈ JS , h ∈ JH and x2 ∈ CR(a). (2.26)

Again using (2.24) and (2.25), we get

[k, x2 − σ(x2)] = 0 where, k ∈ S(R), h ∈ JH and x2 ∈ CR(a). (2.27)

Taking involution σ both side, yields

[k, σ(x2)− x2] = 0 where k ∈ JS and x2 ∈ CR(a). (2.28)

Using (2.26) and (2.28) and char(R) 6= 2, we obtain

[h+ k, σ(x2)] = 0 where k ∈ JS , h ∈ JH and x2 ∈ CR(a). (2.29)

Finally, we have
[a, σ(x2)] = 0 where, x2 ∈ CR(a) and a ∈ R. (2.30)

Implies that
σ(x2) ∈ CR(a), for x2 ∈ CR(a). (2.31)

Replacing x2 by σ(x2) in (2.23), we obtain

[a, r]Rψ(σ(x2)) = (0) for x2 ∈ CR(a) and a ∈ R. (2.32)

By utilizing the condition that σ commutes with ψ, we deduce

[a, r]Rψ(x2) = [a, r]Rσ(ψ(x2)) = (0) for x2 ∈ CR(a) and a ∈ R. (2.33)

Now, based on the definition of a σ-prime ring, we derive ψ(x2) = 0 or [a, r] = 0 for all r ∈ R.
The latter case is not valid according to our assumption, leaving us with the first case ψ(x2)=0
for x2 ∈ CR(a). That implies ψ vanishes on the element of CR(a) and ψ(x1) ∈ CR(a) for all
x1 ∈ R, certainly, we can obtain ψ2(x1) = 0 for all x1 ∈ R. According to Lemma 2.6, we
deduce that ψ = 0. This contradicts our initial assumption. Thus a ∈ Z(R).

Theorem 2.12. Let R be a σ-prime ring of characteristics different from 2 and ψ 6= 0 be a
derivation on R commutes with σ. If [ψ(x1), σ(x1)] = 0 for all x1 ∈ R and ψ(Z(R)) 6= {0},
then R is commutative.

Proof. In accordance with our assumption.

[ψ(x1), σ(x1)] = 0. (2.34)

Linearizing (2.34), results in the following.

[ψ(x1), σ(x2)] + [ψ(x2), σ(x1)] = 0. (2.35)

For all x1, x2 ∈ R. In accordance with our assumption there exists 0 6= z ∈ Z(R) such that
ψ(z) 6= 0. Replacing x2 by x2z, we obtain

[ψ(x1), σ(x2)]σ(z) + [ψ(x2), σ(x1)]z + [x2, σ(x1)]ψ(z) = 0. (2.36)

For all x1, x2 ∈ R and z ∈ Z(R). Invoking (2.35) in (2.36), yields

[ψ(x2), σ(x1)](z − σ(z)) + [x2, σ(x1)]ψ(z) = 0. (2.37)

Case(1): Let σ is of the first kind i.e., σ(z) = z for all z ∈ Z(R), we get

[x2, σ(x1)]ψ(z) = 0 for all x1, x2 ∈ R and z ∈ Z(R). (2.38)

Given that σ and ψ commutes, thus ψ(z) ∈ JH ∩ Z(R) and using Lemma 2.7, we obtain either
ψ(z) = 0 or [x2, σ(x1)] = 0. By given condition ψ(z) = 0 is not possible, therefore latter case
implies

[x2, σ(x1)] = 0. (2.39)
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For all x1, x2 ∈ R replacing x2 by σ(x2) in the above equation, we obtain

[x2, x1] = 0 for all x1, x2 ∈ R. (2.40)

Thus R is commutative.

Case(2): When σ is of the second kind, replacing x1 by x1z in (2.34), where 0 6= z ∈ Z(R).

[ψ(x1), σ(x1)]zσ(z) + [x1, σ(x1)]σ(z)ψ(z) = 0. (2.41)

For all x1 ∈ R. Using (2.34) in the above equation, we have

[x1, σ(x1)]σ(z)ψ(z) = 0 for all x1 ∈ R and z ∈ Z(R). (2.42)

In particular, taking z ∈ Z(R) ∩ JS , above equation reduces to

[x1, σ(x1)]σ(z)ψ(z) = 0 for all x1 ∈ R, for all z ∈ Z(R) ∩ JS . (2.43)

Since σ commutes with ψ, therefore ψ(z)σ(z) ∈ JH ∩ Z(R) and using Lemma 2.7, we obtain
either, ψ(z)σ(z) = 0 or [x1, σ(x1)] = 0. By employing the given condition we can say that
ψ(z)σ(z) = 0 is not possible and later case implies

[x1, σ(x1)] = 0 (2.44)

for all x1 ∈ R. Hence R is normal, on using the Lemma 2.9, commutativity of R holds.

Theorem 2.13. Let R be a σ-prime ring of characteristics different from 2 and ψ 6= 0 be a
derivation on R commutes with σ. If [ψ(x1), σ(x1)] ∈ Z(R) for all x1 ∈ R and ψ(Z(R)) 6= {0},
then R is commutative.

Proof. By the given condition, we have [ψ(x1), σ(x1)] ∈ Z(R) for all x1 ∈ R. Using Proposition
2.8, gives that [ψ(x1), σ(x1)] = 0 for all x1 ∈ R. Now applying Theorem 2.12, we infer that, R
is commutative.

Theorem 2.14. Let R be a 2-torsion free σ-prime ring with involution σ of the second kind and
ψ 6= 0 be a derivation on R which commute with σ. If ψ([x1, σ(x1)]) = 0 for all x1 ∈ R, then
R is commutative.

Proof. By the given condition, we have

ψ([x1, σ(x1)]) = 0 forall x1 ∈ R. (2.45)

Linearization of (2.45), gives us

ψ([x1, σ(x2)]) + ψ([x2, σ(x1)]) = 0. (2.46)

For all x1, x2 ∈ R. Replacing x2 by x2h where h ∈ JH ∩ Z(R), we obtain

{ψ([x1, σ(x2)]) + ψ([x2, σ(x1)])}h+ {[x1, σ(x2)] + [x2, σ(x1)]}ψ(h) = 0 (2.47)

for all x1, x2 ∈ R. Invoking (2.46) in (2.47), yields

{[x1, σ(x2)] + [x2, σ(x1)]}ψ(h) = 0. (2.48)

Since σ and ψ commute with each other so ψ(h) ∈ JH ∩Z(R), using Lemma 2.7, we have either
ψ(h) = 0 or [x1, σ(x2)] + [x2, σ(x1)] = 0. But ψ(h) = 0 is not possible because σ is of the
second kind. Thus we have

[x1, σ(x2)] + [x2, σ(x1)] = 0. (2.49)

For all x1, x2 ∈ R. Replacing x2 by x1 and using char(R) 6= 2, we get

[x1, σ(x1)] = 0 for all x1 ∈ R. (2.50)

Hence R is normal. Invoking Lemma 2.9, we get our required result.
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Theorem 2.15. Let R be a 2-torsion σ-prime rings with involution σ which is of the second kind
and ψ be a nonzero derivation on R, which commutes with σ. If ψ([x1, σ(x1)]) ∈ Z(R) for all
x1 ∈ R. Then R is commutative.

Proof. By the assumption, we have

ψ([x1, σ(x1)]) ∈ Z(R) for all x1 ∈ R. (2.51)

Linearizing above equation, we find that

ψ([x1, σ(x2)]) + ψ([x2, σ(x1)]) ∈ Z(R) for all x1, x2 ∈ R. (2.52)

Replacing x2 by x2h where h ∈ JH ∩ Z(R), we obtain

{ψ([x1, σ(x2)]) + ψ([x2, σ(x1)])}h+ {[x1, σ(x2)] + [x2, σ(x1)]}ψ(h) ∈ Z(R). (2.53)

For all x1, x2 ∈ R. Invoking (2.52) in (2.53), yields

{[x1, σ(x2)] + [x2, σ(x1)]}ψ(h) ∈ Z(R) for all x1, x2 ∈ R and h ∈ Z(R) ∩ JH . (2.54)

Implies that

{[x1, σ(x2)] + [x2, σ(x1), r]}ψ(h) = 0 for all r, x1, x2 ∈ R. (2.55)

As σ and ψ commutes. Hence ψ(h) ∈ JH ∩ Z(R) and in σ-prime ring JH ∩ Z(R) is free from
zero divisor, we have either ψ(h) = 0 or [x1, σ(x2)] + [x2, σ(x1)] ∈ Z(R). But ψ(h) = 0 is not
possible because σ is of the second kind. Thus, we have

[x1, σ(x2)] + [x2, σ(x1)] ∈ Z(R). (2.56)

For all x1, x2 ∈ R. Replacing x2 by x1 and using char(R) 6= 2, we obtain

[x1, σ(x1)] ∈ Z(R). (2.57)

Applying Lemma 2.10, we can establish that R is a commutative ring.

The example below illustrates that the condition requiring σ to be of the second kind is
essential in Theorems 2.14 and 2.15.

Example 2.16. Let us take R =

{[
a b

c d

] ∣∣∣a, b, c, d ∈ Z
}

, define σ on R in such away,

σ

([
a b

c d

])
=

[
d −b
−c a

]
and set ψ 6= 0 as follows ψ

([
a b

c d

])
=

[
0 b

0 0

]
. It

is straightforward to verify that R is a σ-prime ring with the first kind of involution, ψ is non
zero derivation fulfilling the condition of Theorems 2.14 and 2.15, however R is not commuta-
tive.

It is a widely recognized that zero-divisors cannot exist in the centre of a prime ring. However,
in σ-prime rings, it’s important to note that the centre may not be devoid of zero-divisors. The
follwing example explain the above Lemma.

Example 2.17. Let us consider R =

{[
a 0
0 b

] ∣∣∣a, b,∈ Z
}

, define σ on R in such away,

σ

([
a 0
0 b

])
=

[
b 0
0 a

]
. It is easy to verify that R is σ-prime ring. For any non-zero

a,

[
a 0
0 0

]
∈ Z(R) and for any non-zero b,

[
0 0
0 b

]
∈ R and

[
a 0
0 0

][
0 0
0 b

]
=[

0 0
0 0

]
. This shows the Lemma.
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