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Abstract In this paper, we introduce the notion of a generalized state derivationD on a state residuated
lattices, determined by a derivation d and a state operator τ . Also, we discuss some related properties of
isotone (resp. strong) generalized derivations and give some characterization of (good) ideal generalized
derivations. Moreover, we obtain that the fixed point set of ideal generalized derivations in a Heyting
algebra is a residuated lattice.

1 Introduction
States on MV-algebras were introduced by Mundici [17] with the intent of measuring the average truth-
value of propositions in Łukasiewicz logic, which is a generalization of probability measures on Boolean
algebras. From then on, the notion of states has been deeply investigated in other logical algebras and many
profound results have been achieved, Such as BL-algebras, MTL-algebras, and residuated lattices [12].

The notion of derivation is a very interesting and important area of research, also helpful for studying
structures and properties in algebraic systems. In 1957, Posner [15] introduced the notion of derivation in a
prim ring (R,+, .). In 2004, Jun and Xin [10] applied the notion of derivations to BCI-algebras. In 2005,
Zhan and Liu [20] introduced the notion of f-derivation of BCI-algebras. In 2008, Xin et al. [23] proposed
the concept of a derivation on a lattice (L,∧,∨). In the same year, Çeven and Özturk [24] introduced
the notion of an f-derivation on a lattice. In 2016, He et al. [7] introduced the concept of derivation in a
residuated lattice, and they characterized some special types of residuated lattices in terms of derivations.
In 2018, Rachunek and Salunova [19] introduced the concept of derivations and a complete description of
all derivations on a non-commutative generalization of MV-algebras. In the same year, Liang et al. [13]
presented the notions of derivations on EQ-algebras and obtained many special types of them. In addi-
tion, Wang et al. [26] introduced the notion of derivations of commutative multiplicative semilattices, they
investigated the related properties of some special derivations and gave some characterizations. In 2019,
Wang et al. [27] gave some representations of MV-algebras in terms of derivations. Rasheed and Majeed
[18] studied some results of (α, β)-derivations on prime seeding. Dey et al. [5] considered generalized
orthogonal derivations of semiprimary rings. Ciungu [4] studied the properties of implicit derivations in
pseudo-BCI-algebras. Chaudhuri [3] discussed (σ, τ)-derivations of group rings. In 2020, Guven [6] pro-
posed the notion of (σ, τ)-derivations generalized on rings and discussed some related aspects. Hosseini
and Fosner [9] studied the image of left Jordan derivations on algebras. Ali and Rahaman [1] studied a pair
of generalized derivations in rings. Zhu et al. [21] introduced the notion of a generalized derivation and
investigated some related properties of them. In 2021, Ling and Zhu [14] proposed a generalization of a
derivation in a residuated lattice and some related properties were investigated.

This paper aims to combine derivations, state operators, and residuated lattices. The notion of gen-
eralized derivation on a state residuated lattices D from L to L is introduced, determined by a deriva-
tion d and state operator τ . More precisely, for any x, y ∈ L, we propose the following formula:
D(x ⊗ y) = (D(x) ⊗ τ(y)) ∨ (τ(x) ⊗ d(y)). Meanwhile, we discuss and investigate some related
properties.

This paper is organized as follows. In section 2, we recall some concepts and results on residuated
lattices, state operators, and derivations. In section 3, we propose the notion of generalized derivation on
a state residuated lattices (L, τ) and investigate some related properties of isotone, strong, ideal, and good
ideal generalized derivations. Also, we define the notion of fixed point. In particular, we obtain that the
fixed point set in a Heyting algebra is still a residuated lattice.

2 Preliminaries
We assume that the reader is familiar with the classical results concerning residuated lattices, but to make
this work more self-contained, we briefly introduce some basic notions used in the rest of the work.

Definition 2.1. [25] An algebraic structure (L,∧,∨,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a bounded
commutative residuated lattice (simply called a residuated lattice) if:
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(i) (L,∧,∨, 0, 1) is a bounded lattice;

(ii) (L,⊗, 1) is a monoid with unit element 1;

(iii) For all x, y, z ∈ L, x⊗ y ≤ z if and only if x ≤ y → z.

We denote by L a residuated lattice (L,∧,∨,⊗,→, 0, 1).
For any x ∈ L and a natural number n, we define x

′
= x → 0, which is a negation in a sense.

x
′′
= (x

′
)
′
, x0 = 1, xn = xn−1 ⊗ x for all n ≥ 1.

Proposition 2.2. [25] For all x, y, z, w ∈ L, we have:

(i) 1→ x = x, x→ 1 = 1;

(ii) x ≤ y if and only if x→ y = 1;

(iii) If x ≤ y, then z → x ≤ z → y and y → z ≤ x→ z;

(iv) If x ≤ y and z ≤ w then x⊗ z ≤ y ⊗ w;

(v) x⊗ y ≤ x ∧ y, x⊗ x′
= 0;

(vi) 0
′
= 1, 1

′
= 0, x ≤ x′′

;

(vii) x⊗ y = 0 if and only if x ≤ y′ ;

(viii) x⊗ (y ∨ z) = (x⊗ y) ∨ (x⊗ z);
(ix) x→ (y → z) = (x⊗ y)→ z = y → (x→ z).

The notion of a state BL-algebra was introduced by Ciungu. In 2015, as a generalization of the notion
of a state BL-algebra, He et al. [8] introduced the notion of a state residuated lattice as follows.

Definition 2.3. [8] A mapping: τ : L −→ L is called a state operator on L if it satisfies the following
conditions, for all x, y, z ∈ L,

(i) τ(0) = 0;

(ii) x→ y = 1 implies τ(x)→ τ(y) = 1;

(iii) τ(x→ y) = τ(x)→ τ(x ∧ y);
(iv) τ(x⊗ y) = τ(x)⊗ τ(x→ (x⊗ y));
(v) τ(τ(x)⊗ τ(y)) = τ(x)⊗ τ(y);

(vi) τ(τ(x)→ τ(y)) = τ(x)→ τ(y);

(vii) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y);
(viii) τ(τ(x) ∧ τ(y)) = τ(x) ∧ τ(y).

In what follows, we denote by (L, τ) a state residuated lattice.

Example 2.4. [8] Let L = [0, 1] be a reel unit interval. For all x, y ∈ L, we define x ⊗ y = min{x, y}
and

x −→ y =

{
1, x ≤ y,
y, otherwise.

Then (L,min,max,⊗,−→, 0, 1) becomes a residuated lattice, which is called Gödel structure. Now,
for any a ∈ L, we define a map τa on L as follows:

τa(x) =

{
x, x ≤ a,
1, otherwise.

One can check that τa is a state operator on L. Therefore, (L, τa) is a state residuated lattice.

Next, we present some properties of state operators on residuated lattices.

Proposition 2.5. [8] Let (L, τ) be a state residuated lattice. Then, for all x, y, z ∈ L, the following
properties hold.

(i) τ(1) = 1, τ(x
′
) = τ(x)

′
, τ(τ(x)) = τ(x);

(ii) If x ≤ y, then τ(x) ≤ τ(y);

Definition 2.6. A mapping f : L −→ L is called a homomorphism if it satisfies the following conditions:

(i) f(1) = 1, f(0) = 0;

(ii) f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ L and ∗ ∈ {∧,∨,⊗,−→}.

Next, we recall a class of residuated lattices, which are Heyting algebras.

Definition 2.7. [2] A lattice (L,∨,∧) is called to be a Heyting algebra if for any x, y ∈ L, there exists
x→ y ∈ L such that z ≤ x→ y if and only if z ∧ x ≤ y for all z ∈ L.

We have the following characterization for Heyting algebras.
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Theorem 2.8. [16] Let (L,∨,∧,⊗, 0, 1) be a residuated lattice. Then, the following statements are equiv-
alent:

(i) L is a Heyting algebra;

(ii) x⊗ y = x ∧ y = x⊗ (x→ y) for all x, y ∈ L.

An element x ∈ L is called complemented if there exists an element y ∈ L such that x ∧ y = 0 and
x ∨ y = 1. By B(L), we mean the set of all complemented elements of L, i.e.,

B(L) = {x ∈ L : ∃y ∈ L, x ∧ y = 0, x ∨ y = 1}.

Proposition 2.9. [11] For a residuated lattice L we have

(i) x ∈ B(L) if and only if x ∨ x′
= 1;

(ii) If x ∈ B(L), then x ∧ y = x⊗ y for all y ∈ L;

(iii) If x ∈ B(L), then x⊗ x = x.

At the end of this section, we give the notion of derivation in a residuated lattice L as follows.

Definition 2.10. [7] A mapping d: L −→ L is called a multiplicative derivation on L if it satisfies the
following conditions: for any x, y ∈ L,

d(x⊗ y) = (d(x)⊗ y) ∨ (x⊗ d(y)).

3 Generalized derivations of a state Residuated Lattices
In this section, we give the notion of generalized derivations on state Residuated Lattices (L, τ). then, we
study some properties of those generalized derivations.

Definition 3.1. Let (L, τ) be a state residuated lattice and d : L −→ L a derivations on L. A mapping D:
L −→ L is called a generalized derivation determined by d if

D(x⊗ y) = (D(x)⊗ τ(y)) ∨ (τ(x)⊗ d(y))

for any x, y ∈ L.

Now, we present some examples for generalized derivations on state residuated lattice (L, τ).

Example 3.2. Let (L, τ) be a state residuated lattice and d a zero derivation. Define a map D : L −→ L
byD(x) = 0 for all x ∈ L, thenD is a generalized derivation on (L, τ), which is called a zero generalized
derivation.

Moreover, we define a map D : L −→ L by D(x) = x for all x ∈ L, τ : L −→ L by τ(x) = x for
all x ∈ L and d an identity derivation on L. Then D is a generalized derivation on (L, τ), which is called
an identity generalized derivation on (L, τ).

If D(x) = d(x) for all x ∈ L, and τ a state operator on L. Then, D is a generalized derivation on
(L, τ).

Example 3.3. Let L = {0, a, b, 1} be a chain and the operations ⊗,→ be defined as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then it is easy to verify that L = {0, a, b, 1} is a residuated lattice, where x ∧ y = min{x, y} and
x ∨ y = max{x, y}.

We define a mapping τ : L −→ L as follows: for all x ∈ L,

τ(x) =


0, x = 0,
a, x = a,

1, x = b, 1.

It is easy to see that (L, τ) is a state residuated lattice. Moreover, we define a mapping d : L −→ L as
follows: for all x ∈ L,

d(x) =

{
0, x = 0, a,
a, x = b, 1.

One can check that d is a derivation of L. Based on d, we define a mapping D : L −→ L as follows:
for all x ∈ L,

D(x) =


0, x = 0,
a, x = a,

1, x = b, 1.

We can see that D is a generalized state derivation on (L, τ).
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Now, we show some properties of generalized derivation on state residuated lattices (L, τ).

Proposition 3.4. Let D be a generalized derivation on (L, τ) determined by a derivation d, then the fol-
lowing statements hold:

(i) D(0) = 0;

(ii) D(1)⊗ τ(x) ≤ D(x) and d(x) ≤ D(x) for all x ∈ L;

(iii) d(1)⊗ τ(x) ≤ D(x) for all x ∈ L;

(iv) D(x) ≤ τ(x)′′ and d(x
′
) ≤ τ(x′

) ≤ (D(x))
′

for all x ∈ L;

(v) D(x)⊗ τ(xn−1) ≤ D(xn) and τ(x)n−1 ⊗ d(x) ≤ D(xn) for all x ∈ L, n ≥ 1;

(vi) if x ≤ y′ , then D(x) ≤ τ(y)′ and d(y) ≤ τ(x)′ for all x, y ∈ L.

Proof. (1) It follows from definition that D(0) = d(0 ⊗ 0) = (D(0) ⊗ τ(0)) ∨ (τ(0) ⊗ d(0)) =
(0⊗ 0) ∨ (0⊗ 0) = (0⊗ 0) = 0, i.e. D(0) = 0.

(2) Let x ∈ L. ThenD(x) = D(1⊗x) = (D(1)⊗ τ(x))∨ (τ(1)⊗d(x)) = (D(1)⊗ τ(x))∨d(x).
Hence, D(1)⊗ τ(x) ≤ D(x) and d(x) ≤ D(x).

(3) Let x ∈ L. ThenD(x) = D(x⊗ 1) = (D(x)⊗ τ(1))∨ (τ(x)⊗d(1)) = D(x)∨ (τ(x)⊗d(1)).
Hence, d(1)⊗ τ(x) ≤ D(x).

(4) Let x ∈ L. Since x⊗ x′
= 0. Then,

D(0) = D(x⊗ x
′
)

= (D(x)⊗ τ(x
′
)) ∨ (τ(x)⊗ d(x

′
))

= 0,

which implies D(x) ⊗ τ(x′
) = D(x) ⊗ τ(x)′ = 0 and τ(x) ⊗ d(x′

) = 0, then D(x) ≤ τ(x)
′′

and
d(x

′
) ≤ τ(x′

) ≤ (D(x))
′
.

(5) It follows from Definition 3.1 that D(x2) = D(x ⊗ x) = (D(x) ⊗ τ(x)) ∨ (τ(x) ⊗ d(x)) for
all x ∈ L, which implies D(x) ⊗ τ(x) ≤ D(x2) and τ(x) ⊗ d(x) ≤ D(x2). By induction, we can
obtain D(x) ⊗ τ(xn−1) ≤ D(xn) and τ(x) ⊗ d(xn−1) = τ(x) ⊗ τ(xn−2) ⊗ d(x) ≤ D(xn). Since
τ(x)n−2 ≤ τ(xn−2) we have τ(x)n−1 ⊗ d(x) ≤ D(xn) for all n ≥ 1.

(6) Let x, y ∈ L and x ≤ y′ . Then, x⊗y = 0. Thus,D(x⊗y) = (D(x)⊗τ(y))∨(τ(x)⊗d(y)) = 0,
which implies D(x)⊗ τ(y) = 0 and τ(x)⊗ d(y) = 0. Therefore, D(x) ≤ τ(y)′ and d(y) ≤ τ(x)′ .

In what follows, we introduce ideal generalized derivations in a state residuated lattice and investigate
some related properties of them.

Definition 3.5. Let (L, τ) be a state residuated lattice and D be a generalized derivation on (L, τ).
(i) D is called an isotone generalized derivation provided that x ≤ y implies D(x) ≤ D(y) for all

x, y ∈ L;

(ii) D is called a strong generalized derivation provided that D(x) ≤ τ(x) for all x ∈ L.
In particular, if D is both isotone and strong, we call D an ideal generalized derivation on (L, τ).

Example 3.6. Let L and τ in the example Defined in example 3.3, and a derivation d : L −→ L by
d(x) = o for all x ∈ L. Let k ∈ L. We define a mapping D : L −→ L by d(x) = k ⊗ τ(x) for all
x ∈ L. We can check that D is an ideal generalized derivation on (L, τ).

Proposition 3.7. Let D be a generalized derivation on (L, τ). If D is strong and τ(x) ≤ x for all x ∈ L,
then d is contractive (i.e, d(x) ≤ x for all x ∈ L).

Proof. We know that d(x) ≤ D(x) for all x ∈ L. Since D is strong (i.e., D(x) ≤ τ(x) for all x ∈ L), it
holds that d(x) ≤ τ(x) ≤ x for all x ∈ L. Thus, d is contractive.

Proposition 3.8. Let D be a generalized derivation on (L, τ). If d is isotone, then D is isotone.

Proof. Assume that d is isotone and let x, y ∈ L such that x ≤ y, then d(x) ≤ d(y) and τ(x) ≤ τ(y).
Thus, D(x) = (D(1)⊗ τ(x)) ∨ d(x) ≤ (D(1)⊗ τ(y)) ∨ d(y) = d(y). Consequently, D is isotone.

Proposition 3.9. LetD be an isotone generalized derivation on (L, τ). Then the following statements hold:

(i) If z ≤ x→ y, then τ(z) ≤ D(x)→ D(y) and τ(x) ≤ d(z)→ D(y) for all x, y, z ∈ L;

(ii) τ(x→ y) ≤ D(x)→ D(y) and d(x→ y) ≤ τ(x)→ D(y) for all x, y ∈ L;

(iii) τ(x) ≤ d(y)→ D(x) for all x, y ∈ L.

Proof. (1) Let x, y, z ∈ L and z ≤ x → y. Then x ⊗ z ≤ y. Since D is an isotone generalized
derivation on (L, τ), we have (D(x)⊗ τ(z)) ∨ (τ(x)⊗ d(z)) ≤ D(y), then D(x)⊗ τ(z) ≤ D(y) and
τ(x)⊗ d(z) ≤ D(y). Therefore τ(z) ≤ D(x)→ D(y) and τ(x) ≤ d(z)→ D(y).

(2) Since x⊗(x→ y) ≤ y, we haveD(x⊗(x→ y)) ≤ D(y). It follows that (D(x)⊗τ(x→ y))∨
(τ(x)⊗ d(x→ y)) ≤ D(y), which implies D(x)⊗ τ(x→ y) ≤ D(y) and τ(x)⊗ d(x→ y) ≤ D(y),
Therefore τ(x→ y) ≤ D(x)→ D(y) and d(x→ y) ≤ τ(x)→ D(y) for all x, y ∈ L.

(3) Since x⊗ y ≤ x for all x, y ∈ L, we have D(x⊗ y) ≤ D(x). It follows that (D(x)⊗ τ(y)) ∨
(τ(x)⊗ d(y)) ≤ D(x). Thus, τ(x)⊗ d(y) ≤ D(x). Therefore, τ(x) ≤ d(y)→ D(x).
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Proposition 3.10. Let D be a strong generalized derivation on (L, τ). Then the following statements hold:

(i) D(x)⊗ d(y) ≤ D(x⊗ y) ≤ D(x) ∨D(y) for all x, y ∈ L;

(ii) D(1) = 1 if and only if D(x) = τ(x) for all x ∈ L.

Proof. (1) Let x, y ∈ L. Since D is a strong generalized derivation on (L, τ), we have D(x) ⊗ d(y) ≤
τ(x)⊗d(y) andD(x)⊗d(y) ≤ D(x)⊗D(y) ≤ D(x)⊗ τ(y). Then,D(x)⊗d(y) ≤ (D(x)⊗ τ(y))∨
(τ(x)⊗ d(y)) = D(x⊗ y). On the other hand, since D(x)⊗ τ(y) ≤ D(x) and τ(x)⊗ d(y) ≤ d(y) ≤
D(y), we have D(x⊗ y) ≤ D(x) ∨D(y). Therefore, D(x)⊗ d(y) ≤ D(x⊗ y) ≤ D(x) ∨D(y).

(2) Let x ∈ L. From proposition 3.4, we have D(1) ⊗ τ(x) ≤ D(x) for all x ∈ L, then τ(x) =
D(1)⊗τ(x) ≤ D(x) ≤ τ(x). Therefore,D(x) = τ(x) for all x ∈ L. On the other hand, ifD(x) = τ(x)
for all x ∈ L, then D(1) = τ(1) = 1.

Proposition 3.11. Let D be an ideal generalized derivation on (L, τ), then: d(x → y) ≤ D(x) →
D(y)) ≤ D(x)→ τ(y) for all x, y ∈ L.

Proof. Let x, y ∈ L. Since x⊗ (x→ y) ≤ y and D is isotone, we have D(x⊗ (x→ y)) ≤ D(y), and
from statement (1) of proposition 3.10, we have D(x) ⊗ d(x → y) ≤ D(x ⊗ (x → y)), which implies
D(x)⊗ d(x→ y) ≤ D(y), then d(x→ y) ≤ D(x)→ D(y). On the other hand, since D is strong, we
have D(y) ≤ τ(y), then D(x) → D(y) ≤ D(x) → τ(y). Therefore, d(x → y) ≤ D(x) → D(y)) ≤
D(x)→ τ(y).

Theorem 3.12. Let D be a generalized derivation on (L, τ). Then the following statements hold:

(i) If D(x) → D(y) = D(x) → τ(y), for all x, y ∈ L, then D is an ideal generalized derivation on
(L, τ);

(ii) The converse holds if we assume that D(1) = 1.

Proof. (1) Assume that D(x) → D(y) = D(x) → τ(y) for all x, y ∈ L. Since D(x) ⊗ 1 ≤ D(x),
we have 1 ≤ D(x) → D(x) = D(x) → τ(x), then D(x) = D(x) ⊗ 1 ≤ τ(x) for all x ∈ L, which
implies D is strong. Moreover, for all x, y ∈ L, let x ≤ y, we have τ(x) ≤ τ(y). Thus, D(x) ⊗ 1 ≤
D(x) ≤ τ(x) ≤ τ(y), i.e., D(x)⊗ 1 ≤ τ(y), which implies 1 ≤ D(x)→ τ(y) = D(x)→ D(y), that
is, D(x) ≤ D(y). Hence, D is isotone. Therefore, D is an ideal generalized derivation on (L, τ).

(2) Let x, y ∈ L andD be an ideal generalized derivation on (L, τ). SinceD(y) ≤ τ(y), it holds that
D(x) → D(y) ≤ D(x) → τ(y). On the other hand, if D(1) = 1 then, τ(y) = D(1) ⊗ τ(y) ≤ D(y),
which implies that D(x) → τ(y) ≤ D(x) → D(y). Therefore, we obtain D(x) → D(y) = D(x) →
τ(y), for all x, y ∈ L.

Theorem 3.13. Let (L, τ) be a state-morphism residuated lattice andD be a strong generalized derivation
on (L, τ). If D(1) ∈ B(L), then the following statements are equivalent: for all x, y ∈ L,

(i) D is an ideal generalized derivation on (L, τ);

(ii) D(x) ≤ D(1);

(iii) D(x) = D(1)⊗ τ(x);
(iv) D(x ∧ y) = D(x) ∧D(y);

(v) D(x ∨ y) = D(x) ∨D(y);

(vi) D(x⊗ y) = D(x)⊗D(y).

Proof. (1)⇒ (2) Let x ∈ L. Since x ≤ 1, and D is isotone, then D(x) ≤ D(1).
(2) ⇒ (3) Suppose that D(x) ≤ D(1) for all x ∈ L. Notice that D(1) ∈ B(L), we obtain D(x) =
D(1) ∧ D(x) = D(1) ⊗ D(x) ≤ D(1) ⊗ τ(x). On the other hand, since D(1) ⊗ τ(x) ≤ D(x). We
obtain, D(x) = D(1)⊗ τ(x) for all x ∈ L.
(3)⇒ (4) Let D(x) = D(1)⊗ τ(x) for all x ∈ L. Then, for all x, y ∈ L, it holds that

D(x ∧ y) = D(1)⊗ τ(x ∧ y)

= D(1) ∧ τ(x ∧ y)

= D(1) ∧ (τ(x) ∧ τ(y))

= (D(1) ∧ τ(x)) ∧ (D(1) ∧ τ(y))

= (D(1)⊗ τ(x)) ∧ (D(1)⊗ τ(y))

= D(x) ∧D(y).

(4) ⇒ (1) Assume that x ≤ y, then, x ∧ y = x. An consequence of (4) is that D(x) = D(x ∧ y) =
D(x) ∧D(y), which implies D(x) ≤ D(y) for all x, y ∈ L. Thus, D is an ideal generalized derivation
on (L, τ).
(3)⇒ (5) For all x, y ∈ L, it follows from (3) that

D(x ∨ y) = D(1)⊗ τ(x ∨ y)

= D(1)⊗ (τ(x) ∨ τ(y))

= (D(1)⊗ τ(x)) ∨ (D(1)⊗ τ(y))

= D(x) ∨D(y).



Generalized Derivations on State Residuated Lattices 97

(5) ⇒ (1) Let x, y ∈ L such that x ≤ y. It follows from (5) that D(y) = D(x ∨ y) = D(x) ∨ D(y).
Then we conclude that D(x) ≤ D(y) for all x, y ∈ L. Therefore, D is an ideal generalized derivation on
(L, τ).
(3)⇒ (6) For all x, y ∈ L, it follows from (3) that

D(x⊗ y) = D(1)⊗ τ(x⊗ y)

= D(1)⊗ (τ(x)⊗ τ(y))

= (D(1)⊗ τ(x))⊗ (D(1)⊗ τ(y))

= D(x)⊗D(y).

(6)⇒ (2) Let x ∈ L. Then it holds that

D(x) = D(x⊗ 1)

= D(x)⊗D(1)

= D(x) ∧D(1).

Thus, D(x) ≤ D(1) for all x ∈ L.

An ideal generalized derivation is said to be good if D(1) ∈ B(L).

Proposition 3.14. Let D be a good ideal generalized derivation on (L, τ), then:
D(x) = τ(x)⊗D(1) for all x ∈ L.

Proof. Let x ∈ L. We have τ(x) ⊗ D(1) ≤ D(x). On the other hand, since D(x) ≤ D(1) and
D(x) ≤ τ(x), we have D(x) ≤ D(1) ∧ τ(x) = D(1)⊗ τ(x), which implies D(x) = τ(x)⊗D(1).

Let (L, τ) be a state-morphism residuated lattice and a ∈ L. We define a map Da : L −→ L as
follows: Da(x) = a ⊗ τ(x) for all x ∈ L, determined by a state derivation da(x) = a ⊗ τ(x) for all
x ∈ L [22].

Proposition 3.15. Let (L, τ) be a state-morphism residuated lattice and a ∈ L. Then the map Da is an
ideal generalized derivation on (L, τ), which is called a principal ideal generalized derivation.

Proof. Let x, y ∈ L, then

Da(x⊗ y) = a⊗ τ(x⊗ y)

= (a⊗ τ(x⊗ y)) ∨ (a⊗ τ(x⊗ y))

= (a⊗ τ(x)⊗ τ(y)) ∨ (a⊗ τ(x)⊗ τ(y))

= (Da(x)⊗ τ(y)) ∨ (τ(x)⊗ da(y)).

Then, Da is a generalized derivation.
For all x, y ∈ L, let x ≤ y, we have τ(x) ≤ τ(y). Thus, Da(x) = a⊗ τ(x) ≤ a⊗ τ(y) = Da(y),

that is Da is isotone. Moreover, since a ≤ 1, we have Da(x) = a ⊗ τ(x) ≤ τ(x) for all x ∈ L, which
implies that Da is strong. Therefore, Da is an ideal generalized derivation on (L, τ).

Next, we discuss the structures and properties of the fixed point set of ideal generalized derivation.
Firstly, we give the concept of the fixed point set of a generalized derivation in a state residuated lattice
(L, τ) as follows.

Definition 3.16. Let D be an ideal generalized derivation on (L, τ). Define a set FixD(L) = {x ∈ L :
D(x) = x}. FixD(L) is called the set of fixed elements of L for D.

Now, we investigate some operations of FixD(L).

Proposition 3.17. Let D be an ideal generalized derivation on (L, τ) and τ(x) ≤ x for all x ∈ L. Then
we have:

for all x, y ∈ FixD(L): x⊗ y, x ∨ y ∈ FixD(L).

Proof. Let x, y ∈ FixD(L), we have D(x) = x and D(y) = y. Then, x ⊗ y = D(x) ⊗ D(y) ≤
D(x) ⊗ τ(y) ≤ D(x ⊗ y). On the other hand, since D is an ideal generalized derivation on (L, τ), we
have D(x⊗ y) ≤ τ(x⊗ y) ≤ x⊗ y, which implies D(x⊗ y) = x⊗ y. Therefore, x⊗ y ∈ FixD(L).
Moreover, since D is an ideal generalized derivation on (L, τ), we have x ∨ y = D(x) ∨ D(y) ≤
D(x∨y) ≤ τ(x∨y) ≤ x∨y, then we haveD(x∨y) = x∨y, which implies that x∨y ∈ FixD(L).

Theorem 3.18. Let L be a Heyting algebra, D an ideal generalized derivation on (L, τ) and τ(x) ≤ x for
all x ∈ L. Then (FixD(L),∧,∨,⊗, 7−→, 0, 1) is a residuated lattice, where x 7−→ y = D(x −→ y)

and 1 = D(1) for all x, y ∈ L.
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Proof. We complete the proof by three steps.
1. First, we show that (FixD(L),∧,∨,⊗, 7−→, 0, 1) is a bounded lattice with 0 as the smallest ele-

ment and 1 as the greatest element. From Proposition 3.17 and Theorem 2.8, we have FixD(L) is closed
under ∨ and ∧. Therefore, (FixD(L),∧,∨) is a lattice. Let x ∈ FixD(L), we have, x ∧ 0 = 0 and

x ∨D(1) = D(x) ∨D(1)

= D(x ∨ 1)

= D(1).

Therefore, 0 the smallest element and 1 = D(1) is the greatest element in FixD(L).
2. Next,we prove that (FixD(L),⊗, 1) is a commutative monoid with 1 = D(1) as neutral element.

It follows from Proposition 3.17 that (FixD(L),⊗) is closed under ⊗, and easy to show that it satisfies
associative laws. Thus, (FixD(L),⊗) is a commutative semigroup. Let x ∈ FixD(L),

x⊗ 1 = D(x)⊗D(1)

= D(x⊗ 1)

= D(x)

= x,

which implies 1 = D(1) is a neutral element.
3. Finally, we show that x ⊗ y ≤ z if and only if y ≤ x 7→ z for all x, y ∈ FixD(L). We have for

all x, y, z ∈ FixD(L)

x⊗ y ≤ z ⇔ y ≤ x→ z

⇔ D(y) ≤ D(x→ z)

⇔ D(y) ≤ x 7→ z

⇔ y ≤ x 7→ z.

Therefore, (FixD(L),∧,∨,⊗, 7−→, 0, 1) is a residuated lattice.
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