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Abstract In this work, we explore some beautiful properties of FI−semi injective modules
and FI−self-p-injective ring as a generalization of semi injective module and self-principally
injective ring respectively. We also discuss various characterizations of FI−semi injective mod-
ules in terms of their endomorphism rings. Finally, we prove that the property of being FI−semi
injective of a module is Morita invariant.

In this paper, R is considered to be an associative ring with unity and the modules considered
are unital right modules over R. For a module M , if a submodule K has a non-trivial intersec-
tion with each non-trivial submodule of M , K is said to be a large submodule or an essential
submodule. In this case we shall denote it by K ⊆e M . If we can get an onto homomorphism
M (I) → K for some index set I , we say the module K is M−generated. K is termed as finitely
M−generated if this happens for a finite index set I . More specifically, if there is an isomor-
phism between a submodule K of an R−module M and M/N , for some submodule N of M , or
equivalently, if K = f(M) for some endomorphism f of MR, then K is known as an M−cyclic
submodule of M . If f(U) is included in U for all f ∈ End(MR) for a submodule U of M , then
U is fully invariant. It is easy to establish that 0 and M are trivial examples of submodules of
M that are fully invariant, for a R−module M . It is worth noting that the submodules of RR
that are fully invariant, are the two-sided ideals of R. If all of the submodules of a module M
are fully invariant, the module is called a duo. In the context of rings, a ring R is known to
be a duo if it is a duo module when viewed as a module over itself. Some clear examples of
duo rings are commutative rings and division rings. On the other hand, any matrix ring of order
2, over commutative rings or division rings, is not a duo ring. A module that generate all its
submodules is called a self generator module.The Jacobson radical of a ring R is denoted by the
symbol J(R). l(K) and r(K) denote the left and right annihilators of any subset K of a module
M , respectively. Z(RR) and Z(RR) will be used to denote the singular ideals, the kernel and
image of an R−homomorphism f by ker(f) and im(f) respectively.

Lately, properties and characterizations related to principally injective rings and principally
injective modules are being studied by several authors ([8], [11]). A principally injective ring
R is one in which any homomorphism from a right ideal of R that is also principal to R can
be expressed as a left-hand multiplication by an element of R. In the context of a module
M , if each homomorphism f : aR → M, a ∈ R is extendable to R, then M is known as
principally injective. This concept was extended to modules by Sanh et. al. in [13]. They
generalized the idea to M−principal injective from that of principal injective, for some mod-
ule M . If every homomorphism from f(M) to N is extendable to some homomorphism from
M to N , N is termed an M−principally injective module for modules M and N . If a module
M is such that it is M−principally injective, then it is called semi-injective (refer [10], [13],
[16]). In this paper, fully invariant M−cyclic submodules, f(M) of M where f is an endomor-
phism of MR, are considered instead of just M -cyclic submodules of M . This gives the idea
of FI−semi-injective modules as an extension of semi-injective modules. By generalising the
notions of M−principally injective and semi-injective modules, we introduce some concepts of
FI −M−principally injective and FI−semi-injective modules. As a result, we can deduce the
following conclusion:
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Quasi-injective⇒ Semi-injective⇒ FI−semi-injective module .
For usual definitions and standard notations, we refer to [1], [7] and [15]

1 FI−M− Principal Injectivity

If there is an extended homomorphism from M to K for every homomorphism from s(M) to
K, s ∈ End(MR) and s(M) is an M−cyclic submodule of M that is fully invariant, then K
is termed fully invariant−M−principally injective (briefly, FI − M−principally injective or
FI −M−p-injective).

O s(M) M

K

i

f g

In other words, K is FI −M−p-injective, if s(M) is an M−cyclic submodule of M which
is also fully invariant, every homomorphism f : s(M) → K, can be splitted as f = g ◦ i,
where the homomorphism from M to K is denoted by g and the inclusion map to M from s(M)
is denoted by i. If K is FI − R−principally injective then K is called FI−principally injec-
tive. For examples, we may take Z4 and Z6 as modules over Z. It can be verified that Z4 is
FI − Z6−p-injective and Z6 is FI − Z4−p-injective. If M is FI − M−p-injective, then M
is called FI−semi-injective. For a ring R, if RR is FI − R−p-injective then R is called right
FI−self-p-injective. As examples, we can see that Z4 and Z6, considered as modules over Z, are
FI−semi-injective modules, whereas Z is not FI−semi-injective over itself. In fact, examples
of FI− semi-injective modules consists of modules that are simple, semisimple, semi-injective,
quasi-injective, FI−self-p-injective rings and direct summands of these.

We discuss some properties and characterizations in the following propositions.

Proposition 1.1. The following statements are identical for two modules A and B:

(i) B is FI −A−principally injective.

(ii) For any A−cyclic submodule M of A, B is FI −M−principally injective .

(iii) For anyA−cyclic submoduleM ofA andN a direct summand ofB,N is FI−M−principally
injective.

Proof. (i) ⇒ (ii) If an M−cyclic submodule K of M is fully invariant, then K is also a fully
invariant A−cyclic submodule of A, according to Lemma 1.1 (iii) of [9]. Since, B is FI −
A−principally injective, by restricting the existing homomorphism on M , we get the proof.
(ii) ⇒ (iii) Suppose f : K → N is any homomorphism. Consider the embedding j1 : N →
B, the projection π1 : B → N and the inclusion map i : K → M . The existence of an
R−homomorphism g : M → B is guaranteed by B being FI −M−principally injective, such
that j1f = gi ⇒ π1j1f = π1gi ⇒ If = hi where I = π1j1 and h = π1g, which is an
R−homomorphism to N from M . Hence, we get, f = hi. Thus, N is FI −M−p-injective.
(iii)⇒ (i) This follows by exchanging the roles of B with N and A with M .

Corollary 1.2. If there are two modules A and B, with B being a FI −A−principally injective
module. Consider direct summands M of A and N of B with M being fully invariant, then we
have:

(i) B is FI −M−p-injective module.

(ii) N is FI −A−p-injective module.

(iii) N is FI −M−p-injective module.

A homomorphism f from M to N , such that f(M) is a fully invariant submodule of N , will
be termed as a fully invariant homomorphism. We shall discuss some properties of FI−semi
injective modules and FI−self-p-injective rings below.



Characterizations of FI-semi injective modules 15

Proposition 1.3. The following assertions are equivalent if S = End(MR) and M is duo
R−module:

(i) M is FI−semi injective.

(ii) lS(ker(f)) = Sf ,∀f ∈ S.

(iii) If ker(g) ⊆ ker(f), then Sf ⊆ Sg,∀f, g ∈ S.

(iv) lS [im(g) ∩ ker(f)] = lS(im(g)) + Sf ,∀f, g ∈ S.

Proof. (i)⇒ (ii) SupposeM is an FI−semi-injective module. We shall show that lS(ker(f)) ⊆
Sf and Sf ⊆ lS(ker(f)). Let g ∈ lS(ker(f)), we have g(ker(f)) = 0⇒ ker(f) ⊆ ker(g). Let
f ′ : M → f(M) and g′ : M → g(M) be induced R−homomorphisms from f and g : M → M
respectively and consider the embeddings i1 : f(M) → M and i2 : g(M) → M . As f ′ is
an epimorphism, we obtain an R−homomorphism α : f(M) → g(M) satisfying αf ′ = g′.
Hence, there is an R− homomorphism β ∈ End(MR) satisfying βi1 = i2α, because M is
FI−semi injective. Therefore, g = βf ⇒ g ∈ Sf i.e., lS(ker(f)) ⊆ Sf . For the other part,
since f ∈ lS(ker(f)), we get Sf ⊆ lS(ker(f)). Thus combining these two parts, we have,
lS(ker(f)) = Sf .
(ii)⇒ (iii) Assume that lS(ker(f)) = Sf . If ker(g) is contained in ker(f), then lS(ker(f)) ⊆
lS(ker(g))⇒ Sf ⊆ Sg by our assumption.
(iii)⇒ (iv) Assume that, ker(g) ⊆ ker(f)⇒ Sf ⊆ Sg. We shall show that lS [im(g) ∩ ker(f)]
is in lS(im(g))+Sf and also lS(im(g))+Sf is in lS [im(g)∩ker(f)]. If α ∈ lS [im(g)∩ker(f)],
then α(im(g) ∩ ker(f)) = 0. Let x ∈ ker(fg) ⇒ (fg)(x) = 0 ⇒ im(g) ⊆ ker(f) ⇒
(im(g)) = 0 ⇒ x ∈ ker(αg), because α(im(g) ∩ ker(f)) = 0. Thus showing that ker(fg)
is a subset of ker(αg). Hence, by our assumption Sαg ⊆ Sfg ⇒ αg = βfg for some β ∈ S.
This implies that g(α − βf) = 0 ⇒ (α − βf) ∈ lS(im(g)), i.e.,α ∈ lS(im(g)) + Sf . Thus
lS [im(g) ∩ ker(f)] ⊆ lS(im(g)) + Sf .
Conversely, let y ∈ lS(im(g)) + Sf ⇒ y = p+ q, where p[im(g)] = 0 and q[ker(f)] = 0. This
asserts that y ∈ lS [im(g) ∩ ker(f)]. Thus lS(im(g)) + Sf ⊆ lS [im(g) ∩ ker(f)].
Combining these two parts we get the required result.
(iv)⇒ (ii) This part follows by taking g = IM , we get lS(ker(f)) = Sf .
(iii) ⇒ (i) Assume that ker(g) ⊆ ker(f), then Sf ⊆ Sg, let f ∈ S induce a map f ′ : M →
f(M) and consider the embedding i1 : f(M) → M . Let φ : f(M) → M where f(M) is an
M−cyclic submodule of M that is fully invariant. Then φf ′ is an R−endomorphism of M with
ker(f) ⊆ ker(φf ′) ⇒ Sφf ′ ⊆ Sf ⇒ φf ′ = θf for some θ ∈ S. Thus showing M to be an
FI−semi-injective module.

Corollary 1.4. The following assertions are equivalent for a commutative ring R:

(i) R is right FI−self-p-injective.

(ii) lr(u) = Ru for all u in R.

(iii) r(v) ⊆ r(u) for u, v ∈ R⇒ Ru ⊆ Rv.

(iv) l(vR ∩ r(u)) = l(vR) +Ru for all u, v ∈ R.

Proposition 1.5. For a duo FI−semi-injective module M and f, g ∈ S = End(MR), we have:

(i) Let α : f(M)→ g(M) be monomorphism, then there exist an epimorphism β : Sg → Sf .

(ii) Let α : f(M)→ g(M) be epimorphism, then there exist monomorphism β : Sg → Sf .

(iii) Let f(M) be isomorphic to g(M), then Sf is isomorphic to Sg.

Proof. (i) If α : f(M) → g(M) is an injective homomorphism and i1 : f(M) → M and
i2 : g(M) → M are embeddings, Then f ∈ S induces a map f ′ : M → f(M) (i.e., i1f ′ = f ).
Because M is FI−semi injective, an endomorphism α′ : M → M exists which extends the
homomorphism i2α : f(M) → M such that α′i1 = i2α. Now define S−homomorphism β :
Sg → Sf as β(sg) = sα′f , for all s ∈ S. Since im(α′f) ⊆ f(M) ⊆ g(M) = im(g) implying
that β is well defined, also in other way if s1g = s2g ⇒ s1α

′f = s2α
′f ⇒ β(s1g) = β(s2g). For

any t ∈ S, homomorphism ti1 : f(M)→M is extendable to an R−homomorphism θ ∈ S, such
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that θi2α = ti1. Consequently, we have β(θg) = θα′f = θα′i1f
′ = θi2αf

′ = ti1f
′ = tf . Thus

showing that β : Sg → Sf is an onto homomorphism.
(ii) Adopting the same notations used in proving (i) except that we let α : f(M)→ g(M) to be
an onto homomorphism instead of an injective homomorphism. Since, M is FI−semi injective,
i2α : f(M)→ M is extendable to α′ ∈ S such that α′i1 = i2α. Now define S−homomorphism
β : Sg → Sf as β(sg) = sα′f , for all s ∈ S. Since im(α′f) = im(g), β is properly defined and
it is clearly seen that β is an S−homomorphism which is injective. Thus, Sg can be embedded
into Sf .
(iii) This immediately follows from the above two statements.

Corollary 1.6. For any u, v ∈ R, where R is a commutative FI−self-p-injective ring, the fol-
lowing statements holds:

(i) Ru can be embedded into Rv if uR is an image of vR.

(ii) Rv is an image of Ru if vR is embedded in uR.

(iii) Ru ∼= Rv if vR ∼= uR.

If a module M generates all its submodules, then it is called a self-generator module [15]. Let
M be self-generator, then for every m ∈ M , we have mR = Σs∈Is(M) for some I ⊆ S. Let
∆ = {s ∈ S|ker(s) ⊆e M}, a generalization of Theorem 2.13 [13] is provided in the theorem
below.

Theorem 1.7. For a self-generator FI−semi injective module ∆ = J(S).

Proof. We shall establish this result by proving that ∆ and J(S) are contained in each other. So,
for any f ∈ ∆, ker(f) ∩ ker(1 − f) = 0 implies that ker(1 − f) = 0. Thus by Proposition
1.3 (ii), S = lS(ker(1 − f)) = S(1 − f). Thus f ∈ J(S). this proves that ∆ ⊆ J(S). For
other direction, let f ∈ J(S), if g(M) ∩ ker(f) = 0 for some g ∈ S, then g = 0. We have
S = lS [im(g) ∩ ker(f)] = lS(im(g)) + Sf by Proposition 1.3(iv). Hence, lS(im(g)) = S, i.e.,
g = 0. Since by hypothesis, M is self generator, we have mR = Σg∈Ig(M) for some I ⊆ S and
for any m ∈M . If ker(f)∩mR = 0, then ker(f)∩ g(M) = 0 for all g ∈ I and hence, mR = 0.
Thus showing that ker(f) ⊆e M , i.e., f ∈ ∆ implying J(S) is contained in ∆. Thus proving that
J(S) = ∆.

Corollary 1.8. If R is an FI−self-p-injective commutative ring, then Z(RR) = J(R). Conse-
quently, if R is both sided FI−self-p-injective ring, then Z(RR) = Z(RR).

Theorem 1.9. If M is FI−semi-injective module and si ∈ S = End(MR), (1 ≤ i ≤ n), where
si’s are fully invariant endomorphisms, such that Σni=1Ssi is direct, then any homomorphism
φ : Σni=1Si(M)→M is extendable to a homomorphism θ ∈ S.

Proof. Since each si’s are fully invariant endomorphisms, for each i = 1, 2, ..., n, si(M) are
M−cyclic and fully invariant submodules of M . Since, M is FI−semi injective, homomor-
phism θi : M → M exists such that θisi = φsi. It follows that Σni=1θisi = Σni=1φsi. Since
(Σni=1si)(M) ⊆ Σni=1si(M), φ is extendable to θ ∈ SM such that, for anym ∈M, θ(Σni=1si)(m) =
φ(Σni=1si)(m), i.e.,Σni=1θsi = Σni=1φsi. Thus, Σni=1θsi = Σni=1θisi. From ΣSsi being direct,
θsi = θisi for all i = 1, 2, ..., n. Hence, for any x ∈ Σni=1Si(M), we get φ(x) = θ(x), complet-
ing the proof.

Corollary 1.10. If R is a right FI−self-p-injective ring, the sum Σni=1Rxi is direct and xiR is
fully invariant ideal for all xi ∈ R, then any linear map φ : Σni=1xiR → R is extendable to
θ : R→ R.

If there is an isomorphism from a module M to every submodule of M , then it is called a self-
similar module [12].

Proposition 1.11. The following assertions are equivalent for a duo self-similar module M :
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(i) M is FI−semi-injective module.

(ii) M is semisimple.

Proof. Proof is straightforward.

Corollary 1.12. RR being semisimple and RR being FI−semi-injective coincide whenever RR
is duo self-similar.

Thus by the above corollary, it can be concluded that the R is commutative FI−self-p-injective
ring if RR is duo self-similar and semisimple.

For Morita equivalent rings R and S, the property P of a module M in modR is called Morita
invariant if, wheneverM has P , α(M) has P , for every additive equivalence α : modR→ modS.

Proposition 1.13. The property of being FI − N−principally injective of a module is Morita
invariant.

Proof. For Morita equivalent rings R and S, with equivalence α : modR → modS and β :
modS → modR, with natural isomorphism σ : β◦α→ 1modR and σ−1 : α◦β → 1modS , letM ∈
modR be FI−N−principally injective. We claim that α(M) is FI−α(N)−principally injective
object inmodS. TakingN ′S to be α(N)− cyclic submodule of α(N) inmodS, that is fully invari-
ant, and i : N ′S → α(N) be the injective homomorphism. For α(M) is FI − α(N)−principally
injective, any S−morphism f : N ′S → α(M) is extendable to an S−morphism g : α(N) →
α(M) such that g ◦ i = f . Since any category equivalence preserve injective homomorphism
and fully invariant properties, applying β implies β(i) is injective homomorphism. So, there
exist h : N → M such that h ◦ σN ◦ β(i) = σM ◦ β(f). We claim that g = α(h) satisfies
f = α(h) ◦ i. Since β is faithful, it suffices to show that β(f) = β ◦ α(h) ◦ β(i). However,
β ◦ α(h) = σ−1

M ◦ h ◦ σN because σ is natural, which gives β(f) = σ−1
M ◦ h ◦ σN ◦ β(i), which

shows that M is FI −N−principally injective. It follows since for some R−module MR, every
S−submodule is isomorphic to α(M).

Corollary 1.14. The property of being FI−semi injective of a module is Morita invariant.
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