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AbstractR be a commutative graded Noetherian ring. It is well-known that Artinian modules
have secondary representations. We prove that the same holds also for any projective R-module.
Then the class graded modules over R which possess a secondary representation is more exten-
sive than the class of Artinian graded modules over R by proving that every Projective module
over R has a secondary representation. The other objective of this paper is to show indecompos-
ability of projective R-module.

1 Introduction

The concept of Projective module over various rings has been studying in ([1], [2], [5], [6],
[8], [9], [10], [11], [12], [14], [15]and [16]). A projective module observes the apprehension
of the independent module. If direct summand of a free module is a projective module over
R, some direct sum ⊕IR. A itself is the direct sum of some facsimiles of R is not intended
axiomatically. An example is given by A is a ring of integer, this is a module over the ring
R = Z⊕Z with respect to the multiplication explained by (b1⊕ b2)y = b1y. Hereinafter, as long
as an independent module is noticeably projective, globally it is not detained by antithetical. It is
true, ifR is a principal ideal domain or a polynomial ring over a field (Quillen and Suslin 1976).
This explain that, for example, Q is a nonprojective Z-module, since this is not independent.

Projective modules is always a direct sum of projective module, but direct products are not
assigned by this stuff. For instance, the uncountable direct product Z⊕Z⊕ ........ is not a projec-
tive Z-module. Endowing to this prime definition, a module A is projective if, at any moment A
is a quotient of a module B, there stands a module X alike the direct sumA⊕X is isomorphic to
B. The purpose of this paper to show the secondary representation of projective module over the
commutative Noetherian graded ring and to study the premises of projective module over graded
ring. And, the class of R modules which acquire a secondary representation is more comprising
than the category of Artinian R-modules by affirming that each projective R-module has a sec-
ondary representation.
Let R = ⊕s>0Rs be a commutative graded ring. Then it is well known, R is a Noetherian ring
if and only if the ringR0 is Noetherian and theR0-algebraR is finitely generated. In this paper,
we would like to enlarge this outcome to the case of more general graded rings. Suppose H is
sum of Abelian groups andR a commutative ring. ThenR is called H-graded if there is given a
family {Rh}h∈H of subgroups of R such that R = ⊕h∈HRh, RgRh ⊂ Rg+h for all h, g ∈ H .
Notice that in case R is H-graded, R0 (resp. RH (h ∈ H) is a subring (resp. a R0-submodule)
of R. We shall convenience the following symbols and terminology. Assume that r is a graded
ideal of R and B is submodule of the R-module.

Definition 1.1. [2] The P is called a projective module over R if it is fulfilled one of the given
statements:

(a) In R- modules A,B and an R-linear onto map α : A → B, the canonical map from β :
HomR(P,A)→ HomR(P,B) sending β to αβ is onto.

(b) In R-module A and a onto R-linear map α : A → P , there is the existence of a R-linear
map γ : P → A s.t. αγ = 1P .

(c) There is the existence of an R-module Q s.t. P ⊕ Q ∼= Rm for few positive integer m,
therefore, P ⊕Q ∼= Rm is free.
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2 Secondary representation for projective module over a graded ring

Lemma 2.1. Assume e is a p-primary graded ideal ofR, and P be a projectiveR- module. Then
(0 :P e), if non zero, is p-secondary.

Proof. Consider r ∈ R. If r ∈ p, then ⊕r ∈ e for non negative integer n, so that ⊕r annihilates
(0 :P e). Differently, if r /∈ p, then we identify that

(0 :P e) = a(0 :P e)
as follows. Let t ∈ (0 :P e). Applying to mark the natural homomorphism fromR toR/e, there
is a homomorphism f : P → R/q for that f(c) = ct for all c ∈ R/t .
As the diagram

P
h

||
f

��
R/e

g
// // R/e // 0

has require row, which is completed with homomorphism h : P → R/e and construct the
enlarged diagram. Thus t = f(1) = h(r1) = rh(1). Hence (since h(1) ∈ (0 :P e)) we
have(0 :P e) = r(0 :P e), and the result follows.

Lemma 2.2. Assume r1, r2 . . . rn are graded ideals of R and P a projective R-module. Then.
n∑
i=1

(0 :P ri) = (0 :P ∩ni=1ri)

Proof. Let t ∈ (0 :P ∩ni=1ri). Let π : R → R/∩ni=1 ri and, for each i = 1, ...., n, πi : R → R/ri,
be the natural homomorphisms. Then the monomorphism is

θ : R/ ∩ni=1 ri → ⊕ni=1(R/ri)

for that θ(π(r)) = π1(r), π2(r) . . . , πn(r) for all r ∈ R. Also , the homomorphism ψ :
mathcalP → R/ ∩ni=1 ri for which φ(π(r)) = rt for all r ∈ R. As P is projective, we may
extend the diagram

P
ψ

ww
φ

��
R/ ∩ni=1 ri

θ // // ⊕ni=1(R/ri) // 0

which has required row by homomorphism φ : P →
⊕n

i=1 (R/ri) and construct the enlarged
diagram commute. Now t = ψ(π(1)) ∈ Im(φ), and it is clear that Im(φ) ⊆ Σni=1(0 :P ri). It
follows that (0 :P ∩ni=1ri) ⊆ Σ(0 :P ri). Since the obverse insertion is clear, and is followed the
result.

Theorem 2.3. The set of a prime graded ideal ofR is denoted by Ass(R)and belong to primary
decomposition of zero graded ideal. Let a projective R-module P contain secondary represen-
tation along AttP ⊆ AssR
Specifically, consider 0 = e1 ∩ e2 ∩ · · · ∩ en be a normal primary decomposition for the zero
graded ideal of R, for i = 1, . . . , n; ei a pi primary graded ideal. Then

P = (0 :P e1) + (0 :P e2) + · · ·+ (0 :P en). (2.1)

Therefore, (i = 1, . . . , n)ei(0 :P ei) is whether zero or pi-secondary. Furthermore, if k is an
integer s.t. 1 ≤ k ≤ n, along

K = {1, . . . , k − 1, k + 1, . . . n},

Hence P = Σi∈K(0 :P ei) iff ∩i∈Kqi annihilates P ; consequently, if P is a projective co genera-
tor ofR, then equation (1) is a minimal secondary representation for P , and Att(P) = Ass(R).
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Proof. Shows that(0 :P ei) is either zero or pi- secondary, by Lemma 2.2 we have P =
(0 :P ∩ni=1ei) = Σ(0 :P ei). Through Lemma 2.2 getting more information about that, if the
integer k satisfies 1 ≤ k ≤ n, then

Σi∈k(0 :P ei) = (0 :P ∩i∈kei);

the final module is clearly equal to P if and only if ∩i∈kei annihilates P .
Now suppose P is a projective co generator ofR. A certain condition to prove final contention of
theorem, for each k = 1, . . . , n. The graded ideal ∩i∈kei does not annihilateP . It is appropriately
acceptable to show that, If s is an erratic non zero ideal ofR, then P is not annihilated by s. For
the end of it, assume z be a non zero element of s. Since P is a projective co generator of R,
there exists a homomorphism η : R → P . such that η(z) 6= 0. Then zη(1) = η(z) 6= 0, so η(1)
is an element of P where z does not annihilates P and it is not annihilated by s.

Theorem 2.4. A projective module P over a ring R is an indecomposable iff P ≡ P(R/I),
where I is an irreducible graded left ideal of R. In this case, for each t 6= 0 ∈ P , O(t) is an
irreducible graded left ideal and P ≡ P(R/O(t)).

Proof. Suppose that i be an irreducible graded left ideal of R, and E,F graded left ideal of R
equivalently E(I ∩ F )I = 0. Thus
E ∩ F = I , and then either E = F or F = I . consequently P(R/I) is indecomposable by ([3],
Proposition-2.2)
Contrariwise, imagine that P is an irreducible, projetcive module, t 6= 0 ∈ P , and I = O(t). By
using the concept of ([3] Proposition-2.2) P = P(Rt); and subsequently Rt ≡ R/I , we have
P = P(R/I). Let I = E∩F be a singular decomposition of I by the left graded idealsE,F . We
secure R/I in B = P(R/E)⊕ P(R/F ), and let C be a projective enclosure of R/I in B. As a
consequence of singularity of I ,R/I ∩R/K 6= 0. Accordingly, by ([3], Lemma 1.1) along with
the indecomposability of C, C assign monomorphically into P (R/E). The reflection of C is a
projective module including R/E = P(R/E). Therefore P(R/E) is indecomposable equally,
P(R/F ) is indecomposable. By using ([3], Theorem 2.3) P(R/I) ≡ P(R/E)⊕ P(R/F ). But
this controverts the indecomposibility of P(R/I), and thus I is irreducible.

Theorem 2.5. Assume R is graded Noetherian ring.

(a) There is a bijective correspondence between the graded prime ideals ofR and isomorphism
types of (non-zero) indecomposable projective R modules given by P (R/p)↔ p.

(b) Every projective R-module can be expressed essentially uniquely as a direct sum of inde-
composable projective R-modules.

Proof. (a) This is distinguishable that a graded prime ideal is irreducible; and then P(R/Q) is
an indecomposable, projective module by Theorem 2.4. Assume that Q1, Q2 are two graded
prime ideals of R equivalently P(R/Q1) ∼= P(R/Q2). We take up that P(R/Q1) secure R/Q1
andR/Q2. Consequently by using ([3], Proposition-2.2)R/Q1

⋂
R/Q2 6= 0. Nonetheless, each

non zero elements of R/Q1 (resp. R/Q2) has align ideal Q1 (resp. Q2). Then Q1 = Q2 and the
mapping Q→ P(R/Q) is one one onto.
(b) Assume that P be any indecomposable, projective r-module. Thus By Theorem 2.4 there is
an irreducible ideal S of R equivalently
P ≡ P(R/S). A unique prime ideal Q associates S which is primary ideal([13], Lemma 1.8.3).
If S = Q, then we are accomplished. Thus, let S 6= Q. In such way, there is minimal integer
m > 1 such that Qm ⊂ S. Now hold x ∈ Qm−1 equivalently, x /∈ S and denote the image of x
in R/S by x. Apparently, O(x) ⊃ Q); in other words if y ∈ O(x, then xy ∈ S, and so y ∈ Q,
presenting that O(x) = Q. Accordingly, there is an element of P(R/S) with align ideal Q, and
then P(R/S) ≡ P(R/Q) by Theorem 2.4.

Theorem 2.6. Let R be graded Noetherian ring, and p a prime ideal of R. Then

(a) Some power of p annihilates each element of P(R/p) .

(b) An automorphism is produced by the multiplication of an element r ∈ R− p

(c) ∩∞j=1p
j is annihilator of P(R/p) where pj indicates the jth prime power of p.
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Proof. (a) Conspicously, Aj is graded submodule of P , along with Aj ⊂ Aj+1. Suppose
t /∈ 0 ∈ P; thus by using ([3] Lemma 3.2(1)) O(t) is a Q-primary ideal. Thus there stands
positive integer j equivalently Qj ⊂ O(t), and so t ∈ Aj . Resultantly P = ∪Aj .

(b) By using ([3], Lemma 3.2(1)) we get ∩x∈Aj
O(t) is the intersection of all irreducible Q-

primary ideals encompassing Qj . It is simply found that this intersection is equal to Qj .

(c) By using part (a) and (b) we get the result of this part.

In the next theorem, we will use the notation occ(P) which is explained in term of projective
R-moduleP . We consider the set (Pα)α∈µ of prime ideals. In the next theorem, occ(P) represent
the projective cover of R module.

Theorem 2.7. Let R be Noetherian graded ring and P a projective R-module. Then

Att(P) = {p′ ∈ Ass(R) : p′ ⊆ p for some p ∈ occ(P)}

Proof. It is known that 0 = e1 ∩ e2 ∩ · · · ∩ en is a normal primary decomposition for the zero
graded ideal of R, for i = 1, . . . , n; ei a pi- secondary.

P = (0 :P e1) + (0 :P e2) + · · ·+ (0 :P en) (2.2)

and (for i = 1, . . . , n), (0 :P ei) is either zero or pi secondary. To carry away any zero term
from the right hand side and remove any oratorical terms then we can get a minimal secondary
representation for P from equation (2). We shall do this theorem in two parts (a) and (b). In part
(a), it will show (0 : Pei) = 0 for any i for which p does not involve pi in occ(P) and in part(b)p
associating with occ(P) involves pk where k is an integer (1 5 k 5 n), then Σi∈k(0 :P ei) 6= P ,
where K = {1, . . . , k− 1, k+ 1, . . . , n} so that (0 : Pei) can not be discarded from equation (2)
at any point of the subtraction measure.
(a). Assume that pi * p for all p ∈ occ(P), for any integer i where (1 5 i 5 n). If the
family of graded prime ideals of R is (pδ)δ∈ϒ for which P ∼= ⊕δ∈ϒP(R/pδ) then (0 :P ei) ∼=⊕

δ∈ϒ
(0 :P (R/pδ)ei). Thus, the purpose (0 :P ei) = 0 is enough to reveal that (0 :P (R/pδ)ei) =

0 for all p ∈ occ(P). Now we know for p , ei * p(for r(ei) = pi) = 0, so assume r ∈ (ei − p).
Using Theorem 2.5(b) an automorphism of P(R/p) is arranged by multiplication of r in P(R/p)
and therefore, (0 :P (R/p)ei) = 0, as needed.
(b). Assume that k is an integer (with 1 5 k 5 n) for which pk ⊆ p for few p ∈ occ(P).
Σi∈k(0 :P ei) 6= P will be shown. Let it not be the case; then by using Theorem 2.3, ak =⋂
i∈k ei annihilates P and so ak annihilates P(R/p). Hence by Theorem 2.5(c), ak ⊆

⋂∞
j=1 p

j .
At this time ak * ek; suppose r ∈ (ak − ek). Then r ∈

⋂∞
j=1 p

j is the kernel of natural ho-
momorphism from R to Rp. Hence there exist b ∈ R − p such that (pk ⊆ p)b ∈ Rpk , this is
contradiction to the fact that ek is pk-primary.

3 Conclusion

In this paper we distressed with conversion of primary decomposition into secondary represen-
tation. And shown the secondary representation of projective module over graded Noetherian
ring.

References
[1] Bell P Jason, Commutative Algebra(Lecture notes), Springer, 29(2010).

[2] Cartan H. and Eilenberg S., Projective Modules.
∮

1.2 in Homological Algebra. Princeton, NJ: Princeton
University Press,(1956), 6-8.

[3] Eben Matlis, Injective Module Over Noetherian Ring, Pacific Journal Of Mathematics, 8(1958), 511-528.

[4] Rodney Y. Sharp, Secondary Representation Of Injective Modules Over a Commutative Noetherian Ring,
Proceedings of the Edinburgh Mathematical Society, 20(1976), 143-151.



Title suppressed due to length
23

[5] Hilton, P. J. and Stammbach U., Free and Projective Modules and Projective Modules over a Principal
Ideal Domain,

∮
4 and

∮
5 in A Course in Homological Algebra, 2nd ed. New York: Springer-Verlag,

(1997), 22-28.

[6] Jacobson N., Projective Modules.
∮

3.10 in Basic Algebra II. San Francisco, CA: W. H. Freeman and
Company, (1980), 148-155.

[7] Kunz E., Projective Modules.
∮

3 in Introduction to Commutative Algebra and Algebraic Geometry.
Boston, MA: Birkhäuser, (1985) 110-112.

[8] Lam, T. Y., Projective Modules.
∮

2 in Lectures on Modules and Rings. New York: Springer-Verlag,
(1999), 21-59.

[9] Leinster Tom, The Bijection Between Projective Indecomposable and Simple Module,
Bull. Belg. Math. Soc. Simon Stevin, 22(2015), 725-735.

[10] Mac Lane S., Free and Projective Modules in Homology. Berlin: Springer-Verlag, (1967), 19-21.

[11] Mishra Kumar Ratnesh, Kumar Datt Shiv, and Behra Srinivas, On Projective Modules and Computation
of Dimension of a Module Over Laurent Polynomial International Scholarly Research Network ISRN
Algebra, (2011), 12.

[12] Mishra Kumar Ratnesh, Kumar Datt Shiv and Sridharan Raja Completion of unimodular row to an invert-
ible matrix, Mitteilungen Klosterneuburg Journal, 64(2014), 12.

[13] Northcott D., Ideal theory, Cambridge University Press, (1953).

[14] Northcott D. G., Projective Modules in An Introduction to Homological Algebra, Cambridge, England:
Cambridge University Press, (1996), 63-67.

[15] Passman, D. S., A Course in Ring Theory. Pacific Grove, CA: Wadsworth and Brooks/Cole, (1991),
18-20.

[16] Rowen, L. H., Projective Modules (An Introduction).
∮

2.8 in Ring Theory, San Diego, CA: Academic
Press, 1(1988), 225-237.

Author information
Ratnesh Kumar Mishra, Pratibha and Rakesh Mohan, Pratibha Department of Applied Sciences, Faculty of
Engineering and Technology, Parul University, Vadodara 391760, Gujarat, India.
E-mail: pratibha.tyagi17542@paruluniversity.ac.in

WARNING: Title too long for running head.
PLEASE supply a shorter form with \headlinetitle


	1 Introduction
	2 Secondary representation for projective module over a graded ring
	3 Conclusion

