PRINCIPALLY QUASI DUAL-BAER MODULES

Shiv Kumar and A.J. Gupta

MSC 2010 Classifications: Primary 16D10, 16D60; Secondary 16E50.

Keywords and phrases: PQ dual-Baer module, endomorphism ring, quasi-Baer ring.

Abstract In this paper, we generalize quasi dual-Baer module to principally quasi dual-Baer (PQ dual-Baer) module. A module M is said to be PQ dual-Baer if for each cyclic submodule X of M, $D_{\mathbf{E}}(X) = \{f \in \mathbf{E} : Im(f) \subseteq X\}$ is a direct summand of $\mathbf{E} = End(M)$. We study some properties of PQ dual-Baer modules. We find some conditions for which the direct sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer. We also study the ring of endomorphisms of PQ dual-Baer modules.

1 Introduction

All over the article we consider the ring R to be associative ring with identity element and module M to be unital. A ring R, in which annihilator of each right ideal (ideal) in R is a direct summand of R is known as Baer (quasi-Baer) ring ([4], [5], [7]). Baer ring is an attractive topic for researchers because it has a connection to functional analysis ([2], [4], [7]). A principally quasi-Baer (in short, PQ Baer) ring was defined by Birkenmeier et al. [3], which was actually a generalization of quasi-Baer ring. In theory, the ring R is described as PQ Baer if right annihilator of every principal ideal of R in R is a direct summand of R. Rizvi and Roman in [10], defined Baer like properties for an *R*-module *M* and called a module *M* Baer (quasi-Baer) if the left annihilator of every submodule (fully invariant) of M in $\mathbf{E} = End(M)$ is a direct summand of \mathbf{E} ([4], [10]). Motivated by this nice structure of Baer module much more work have been done by many authors in literature (see, [1], [4], [6], [8], [10], [12], [13]). In [13], Ungor et al. introduced PQ-Baer modules and Dana et al. [6] and G. Lee [13] also studied PQ-Baer modules in different aspects. According to them the left annihilator of $\mathbf{E}m$ (or cyclic submodule of M) in $\mathbf{E} = End_{R}(M)$ for every $m \in M$ must be a direct summand of \mathbf{E} for a module M to be PQ-Baer. The dual concept of Baer modules is being considered for extending the theory of Baer modules. In [12], Tutuncu et al. presented the idea of dual notion of Baer modules and termed a module M to be dual-Baer if for every submodule X of M, $D_{\mathbf{E}}(X) = \{ \alpha \in \mathbf{E} : Im(\alpha) \subseteq X \} = \mathbf{E}e$ for some $e^2 = e \in \mathbf{E} = End_R(M)$. The dual-Baer module have some nice connections with semisimple ring, Harada ring and lifting module (see [12]). Dual concept of Baer modules also have an attraction for further study. So in [11], Tribek et al. introduced quasi dual-Baer module and they defined a module M as quasi dual-Baer if for every ideal T of $\mathbf{E} = End_R(M)$, $E_M(\mathbf{T}) = \Sigma_{f \in \mathbf{T}} Im(f)$ is a direct summand of M.

Motivated by above generalizations of Baer modules, we introduce the class of principally quasi (in short, PQ) dual-Baer modules which properly contain the class of quasi dual-Baer modules. We define the module M to be PQ dual-Baer if for all $m \in M$, $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}f$ for some $f^2 = f \in \mathbf{E} = End_R(M)$.

In section 2, we define and study PQ dual-Baer modules. By providing an example we show that a PQ dual-Baer module need not be a quasi dual-Baer module (see Example 2.9). While a PQ dual-Baer module whose ring of endomorphisms has FI-GSSP is a quasi dual-Baer module (see Proposition 2.10). It is proved in (Proposition 2.12) that inheritance of PQ dual-Baer properties occur through direct summand of PQ dual-Baer modules. We characterize regular (von Neumann) and semisimple Artinian ring in terms of the PQ dual-Baer module (see Proposition 2.13 and Proposition 2.14). We find conditions over which the direct sum of PQ dual-Baer modules is PQ dual-Baer (see Proposition 2.18 and Theorem 2.19). In the last section, we study the endomorphism ring of PQ dual-Baer modules. It is shown that the ring of endomorphisms of a PQ dual-Baer module generally is a PQ-Baer ring (see Proposition 3.1) while it is not in

general, PQ dual-Baer ring. By taking the class of finitely generated PQ dual-Baer modules, we prove that the ring of endomorphisms $\mathbf{E} = End_R(M)$ of M is PQ dual-Baer if $\mathbf{E}\mathbf{E}$ has SSP (see Proposition 3.2).

The notations $\subseteq, \leq, \leq^{\oplus}, \leq^{e}$ and \leq will be fixed to denote a subset, a submodule, a direct summand, an essential submodule and a submodule invariant by endomorphism (or an ideal) respectively. For right *R*-module *X*, $r_X(\mathbf{T}) = \{x \in X : \mathbf{T}(x) = 0\}$ and $l_{\mathbf{E}}(Y) = \{\alpha \in \mathbf{E} : \alpha(Y) = 0\}$ where $\mathbf{T} \leq {}_{\mathbf{E}}\mathbf{E}$ and $Y \leq X$, will denote right annihilator in *X* of **T** and left annihilator in **E** of *Y* respectively. We also denote $D_{\mathbf{E}}(Y) = \{\alpha \in \mathbf{E} : Im(\alpha) \subseteq Y\}$ for $Y \subseteq X$ and $E_X(\mathbf{T}) = \sum_{\alpha \in \mathbf{T}} Im(\alpha)$ for $\mathbf{T} \subseteq \mathbf{E}$ and $\mathbf{E} = End_R(M)$ (ring of endomorphisms of an *R*-module *M*).

2 Principally quasi dual-Baer module

Definition 2.1. We define a module M principally quasi (in short, PQ) dual-Baer if for each cyclic submodule X of M, $D_{\mathbf{E}}(X)$ is a direct summand of \mathbf{E} .

In other words the module M is PQ dual-Baer if for every $m \in M$ there is a $f^2 = f \in \mathbf{E}$ such that $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}f$. Generally we say a ring R right PQ dual-Baer if R_R is a PQ dual-Baer right R-module.

Example 2.2. (i) The \mathbb{Z} -modules \mathbb{Q} and $\mathbb{Z}_{p^{\infty}}$ are PQ dual-Baer.

- (ii) An injective indecomposable module is PQ dual-Baer module.
- (iii) Every dual-Baer is a PQ dual-Baer module.
- (iv) R_R is a PQ dual-Baer right *R*-module if *R* is a right regular ring.
- (v) Every PQ dual-Baer module is dual-Rickart.

Let M be an R-module and $\mathbf{E} = End_R(M)$. An idempotent $f^2 = f \in \mathbf{E}$ is right (left) semicentral if fg = fgf (gf = fgf) for each $g \in \mathbf{E}$. We fix the set $\mathbb{S}_r(\mathbf{E})$ to denote idempotent elements of \mathbf{E} which are right semicentral also.

Lemma 2.3. If M is a PQ dual-Baer module with $\mathbf{E} = End_R(M)$ then for $m \in M$, there is a $f \in \mathbb{S}_r(\mathbf{E})$ such that $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}f$.

Proof. Let M be a PQ dual-Baer module and $m \in M$. Then there exists $f^2 = f \in \mathbf{E}$ such that $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}f$. Since $\mathbf{E}f\phi(\mathbf{E}m) \subseteq \mathbf{E}f(\mathbf{E}m) \subseteq \mathbf{E}m$, for every $\phi \in \mathbf{E}$. Therefore $\mathbf{E}f\phi \subseteq D_{\mathbf{E}}(\mathbf{E}m)$, which implies that $f\phi = f\phi f$. Hence $f \in \mathbb{S}_r(\mathbf{E})$.

Remark 2.4. From Lemma 2.3 it is clear, if M is PQ dual-Baer module then the idempotent $f \in \mathbf{E} = End_R(M)$ such that $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}f$ is right semicentral.

A module X has summand sum property (SSP) (generalised summand sum property (GSSP)), if sum of finitely (resp. infinitely) many summands of X is also a summand of X. Furthermore a ring E of endomorphisms has SSP (GSSP) if E-module E_E has SSP (GSSP). While X has FI-SSP (FI-GSSP) if sum of summands which are fully invariant as well in X, is also a summand of X.

The following proposition shows when finitely generated modules are PQ dual-Baer.

Proposition 2.5. If a module M is PQ dual-Baer with endomorphism ring $\mathbf{E} = End_R(M)$ and $\mathbf{E}\mathbf{E}$ has SSP then $D_{\mathbf{E}}(X)$ is a direct summand of \mathbf{E} , for every submodule $X = \langle x_1, x_2, ..., x_n \rangle$ of M.

Proof. Let $X = \sum_{i=1}^{n} \mathbf{E}x_i$ be a submodule generated by $x_i \in M$ where $(1 \leq i \leq n)$ and $(n \in \mathbb{N})$. It is routine to check that $D_{\mathbf{E}}(X) = D_{\mathbf{E}}(\sum_{i=1}^{n} \mathbf{E}x_i) = \sum_{i=1}^{n} D_{\mathbf{E}}(\mathbf{E}x_i)$. Since M is PQ dual-Baer therefore from Lemma 2.3, there exists $e_i^2 = e_i \in \mathbb{S}_r(\mathbf{E})$ such that $D_{\mathbf{E}}(\mathbf{E}x_i) = \mathbf{E}e_i$ for every $1 \leq i \leq n$. Thus $D_{\mathbf{E}}(X) = \sum_{i=1}^{n} \mathbf{E}e_i$. Since \mathbf{E} has SSP, $\sum_{i=1}^{n} \mathbf{E}e_i$ is also a direct summand of \mathbf{E} .

Proposition 2.6. For a module M the following conditions are equivalent

- (a) M is a PQ dual-Baer module;
- (b) For any cyclic submodule $P \leq M$, there is a decomposition $M = P_1 \oplus P_2$ with $P_1 \leq^{\oplus} P$ and $Hom(M, P \cap P_2) = 0$.

Proof. (a) \Rightarrow (b). Let P be a cyclic submodule of M and $\mathbf{E} = End_R(M)$. Then by (a), there must be an element $f^2 = f \in \mathbf{E}$, for which $D_{\mathbf{E}}(P) = \mathbf{E}f$. Suppose that $P_1 = fM$ and $P_2 = (1-f)M$ which implies $M = P_1 \oplus P_2$. Also $E_M(D_{\mathbf{E}}(P)) = E_M(\mathbf{E}f) = fM = P_1 \leq^{\oplus} P$, therefore $P = P_1 \oplus (P \cap P_2)$. Now take, $g \in \mathbf{E}$ be such that $g(M) \subseteq P \cap P_2$ which implies that $g \in D_{\mathbf{E}}(P)$. So there exists $h \in \mathbf{E}$ such that g = hf. Thus $g(M) \subseteq P_1$. Since $g(M) \subseteq P_2$ which yields that g = 0. Hence $Hom_R(M, P \cap P_2) = 0$.

 $(b) \Rightarrow (a.)$ Let $\mathbf{E} = End(M)$ and $P = \mathbf{E}m$ where $m \in M$. Clearly P is cyclic submodule of M so by condition (b), there is a decoposition of M such that $P_1 \oplus P_2 = M$, $P_1 \subseteq P$ and $Hom(M, P \cap P_2) = 0$. Let $P_1 = fM$ for some idempotent $f^2 = f \in \mathbf{E}$. Then it is clear that $\mathbf{E}f \subseteq D_{\mathbf{E}}(P)$. Let $g \in D_{\mathbf{E}}(P)$ and π be a projection map from P to $P \cap P_2$. Then $\pi\phi = 0$ which implies that $g(M) \subseteq f(M)$. Thus $g(1 - f) = 0 \Rightarrow g = gf \in \mathbf{E}f$ which gives $D_{\mathbf{E}}(P) \subseteq \mathbf{E}f$. Therefore $D_{\mathbf{E}}(P) = \mathbf{E}f$. Hence M is PQ dual-Baer module.

Corollary 2.7. If all the cyclic submodules of M are direct summands of M then M is a PQ dual-Baer module.

Corollary 2.8. In the case of an indecomposable module X, the following are equivalent

- (1) X is PQ dual-Baer module;
- (2) Hom(X, Y) = 0, for every cyclic submodule Y of X.

Proof. (1) \Rightarrow (2) easily seen from Proposition 2.6. (2) \Rightarrow (1) Let P be a cyclic submodule of M and $\mathbf{E} = End_R(M)$. Since M is indecomposable and Hom(MP) = 0, $D_{\mathbf{E}}(M) = \mathbf{E}$ and $D_{\mathbf{E}}(P) = 0$. Hence $D_{\mathbf{E}}(P) \leq^{\oplus} \mathbf{E}$ which proves that M is PQ dual-Baer module.

It is clear from the definition that the following hierarchy is true in general. Dual-Baer \Rightarrow Quasi dual-Baer \Rightarrow PQ dual-Baer.

We provide some examples that show the converse of the above implications need not be true.

Example 2.9. (i) Consider the ring $R = \begin{pmatrix} J & K/J \\ 0 & J \end{pmatrix}$, where J is a simple domain that is not

a division ring and K is the ring of quotients of J. Then the R-module $M = \begin{pmatrix} J & K/J \\ 0 & 0 \end{pmatrix}$ is a quasi dual-Baer module from [11, Example 2.9(iii)], but it is not dual-Baer.

(ii) Let $A = \mathbb{Z}$ and $M = \prod_p \mathbb{Z}_p$ (p be a prime) be an A-module. The evidence is clear that M a PQ dual-Baer A-module, while from [11, Example 3.4], M is not a quasi dual-Baer module.

Proposition 2.10. A module M is a quasi dual-Baer if and only if M is a PQ dual-Baer and $_{\mathbf{E}}\mathbf{E}$ has FI-GSSP, where $\mathbf{E} = End_R(M)$.

Proof. The module M is PQ dual-Baer because it is a quasi dual-Baer module so for sufficient condition, it only remains to prove that left E-module $_{\mathbf{E}}\mathbf{E}$ has FI-GSSP. For it, let $T = \Sigma_{i \in \Lambda} \mathbf{E} e_i$ and each $e_i \in \mathbb{S}_r(\mathbf{E})$. Then $\Sigma_{i \in \Lambda} \mathbf{E} e_i = \Sigma_{i \in \Lambda} D_{\mathbf{E}}(e_i M) = D_{\mathbf{E}}(\Sigma_{i \in \Lambda} e_i M) = \mathbf{E} e$ for some $e \in \mathbb{S}_r(\mathbf{E})$. Therefore E-module $_{\mathbf{E}}\mathbf{E}$ has FI-GSSP.

Conversely, let $N \leq M$. Since $D_{\mathbf{E}}(N) = \sum_{n \in N} D_{\mathbf{E}}(\mathbf{E}n)$ and M is PQ dual-Baer module, there is an $e_i \in \mathbb{S}_r(\mathbf{E})$ for each i such that $D_{\mathbf{E}}(\mathbf{E}n) = \mathbf{E}e_i$. By hypothesis, $\mathbf{E}\mathbf{E}$ has FI-GSSP, therefore $D_{\mathbf{E}}(N) = \sum_{i \in \Lambda} \mathbf{E}e_i \leq^{\oplus} \mathbf{E}$. Hence M is a quasi dual-Baer module.

Proposition 2.11. If the module M is finitely generated and \mathbf{E} is a principal ideal domain with SSP, then the following statements are equivalent:

(1) M is a dual-Baer;

- (2) M is a quasi dual-Baer;
- (3) M is a PQ dual-Baer.

Proof. It follows from Proposition 2.5.

In the following proposition we show that direct summand is inherited for PQ dual-Baer modules.

Proposition 2.12. Let X be a direct summand of a module M. Then X is PQ dual-Baer if M is PQ dual-Baer.

Proof. Let $\mathbf{E} = End_R(M)$, $X \leq^{\oplus} M$ and $x \in X$. So we have $f^2 = f \in \mathbf{E}$ such that X = fMand $T = End(X) \cong f\mathbf{E}f$. Since M is a PQ dual-Baer module, there exists a $g \in \mathbb{S}_r(\mathbf{E})$ such that $I = D_{\mathbf{E}}(\mathbf{E}x) = \mathbf{E}g$. Since by Lemma 1.3 of [1], $I \trianglelefteq \mathbf{E}$, therefore $fIf = f\mathbf{E}f \cap I$. Since $g \in \mathbb{S}_r(\mathbf{E})$, gf = gfg. Therefore $fIf = f\mathbf{E}gf = f\mathbf{E}gfg = (f\mathbf{E}gf)(fg)$ which implies $fIf \leq^{\oplus} f\mathbf{E}f$. Now we claim that $D_T(Tx) = fIf$. For it, let $h \in I$, fhf(M) = fh(fM) = $fh(X) \subseteq f(\mathbf{E}x) \subseteq (f\mathbf{E}f)x = Tx$ which yields $fhf(M) \in D_T(Tx)$. Thus $fIf \subseteq D_T(Tx)$. Now assume that $0 \neq f\phi f \in f\mathbf{E}f$ such that $f\phi f(X) \subseteq Tx$ where $\phi \in \mathbf{E}$. Since X = fM, $fhf(M) = f\phi f(X) \subseteq Tx \subseteq \mathbf{E}x$, so $f\phi f \in D_{\mathbf{E}}(\mathbf{E}x) = I$. But $f\phi f = ff\phi ff = f(f\phi f)f \in$ fIf. Therefore $D_T(Tx) = fIf$ for all $x \in X$. Hence X is a PQ dual-Baer module.

Proposition 2.13. The following assumptions are equivalent for a module M:

- (1) Every S-module is PQ dual-Baer;
- (2) Every projective S-module is PQ dual-Baer;
- (3) The free module $S^{(S)}$ is PQ dual-Baer;
- (4) The S is semisimple and Artinian ring.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are easy to verify. (3) \Rightarrow (4) For every right ideal J of S, there must be a free module K_S and an epimorphism π for which $\pi(K) = J$. Since $K \leq^{\oplus} S^{(S)}$, K_S is PQ dual-Baer. Thus $\pi K_S = J \leq^{\oplus} K_S$ which implies that $J \leq^{\oplus} S_S$. Hence ring S is semisimple and Artinian. (4) \Rightarrow (1) It follows easily.

Now we characterize PQ dual-Baer module over regular ring.

Proposition 2.14. The following conditions are equivalent:

- (a) Each finitely generated free S-module is PQ dual-Baer;
- (b) The free S-module $S^{(n)}$ is PQ dual-Baer where $n \in \mathbb{N}$;
- (c) S is regular ring.

Proof. $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$ are trivial. $(c) \Rightarrow (a)$. It is obvious to have that $End(S^{(n)}) \cong Mat_n(R)$ for every $n \in \mathbb{N}$. Since ring S is regular, so $Mat_n(S)$ is also regular ring. Hence $S^{(n)}$ is PQ dual-Baer R-module.

Proposition 2.15. If a ring S is regular which is neither semisimple nor Artinian. Then each free S-module is PQ dual-Baer while it is not dual-Baer.

Proof. From proposition 2.14, every free module M which is finitely generated over the ring S is a PQ dual-Baer. Since S is not semisimple, by [12, Corollary 2.10], module M is not PQ dual-Baer.

Example 2.16. The ring $J = \prod_{i=1}^{\infty} \mathbb{Z}_p$ (where p is a prime) is regular which is clearly neither semisimple nor Artinian. Hence from Proposition 2.15, every finitely generated free *J*-module *M* is a PQ dual-Baer module but *M* is not dual-Baer.

Now we provide an example which shows that direct sum of PQ dual-Baer modules, generally need not be a PQ dual-Baer module.

Example 2.17. If $A = \mathbb{Z}$, $P = \mathbb{Z}_{p^{\infty}}$ and $Q = \mathbb{Z}_p$ (*p* is any prime). Then *P* and *Q* are PQ dual-Baer *A*-modules. While by [9, Example 2.10], $P \oplus Q$ is not an *A* dual-Rickart module. Hence $P \oplus Q$ can not be a PQ dual-Baer *A*-module.

We discuss in the following proposition, when direct sum of two PQ dual-Baer modules is PQ dual-Baer.

Proposition 2.18. If M_1 and M_2 are PQ dual-Baer modules such that $Hom(M_{\alpha}, M_{\beta}) = 0$ for every $\alpha \neq \beta$, $\alpha, \beta = 1, 2$, then $M_1 \oplus M_2$ is a PQ dual-Baer module.

Proof. Let $M = M_1 \oplus M_2$ with $\mathbf{E}_1 = End(M_1)$ and $\mathbf{E}_2 = End(M_2)$. Since $Hom(M_{\alpha}M_{\beta}) = 0$ for every $\alpha \neq \beta$, $\mathbf{E} = End(M) = \mathbf{E}_1 \oplus \mathbf{E}_2$. Therefore, for every $m = (m_1, m_2) \in M$, $D_{\mathbf{E}}(\mathbf{E}m) = D_{\mathbf{E}_1}(\mathbf{E}_1m_1) \oplus D_{\mathbf{E}_2}(\mathbf{E}_2m_2)$. From hypothesis M_i is PQ dual-Baer module, so there exists $e_i^2 = e_i \in \mathbf{E}_i$ such that $D_{\mathbf{E}_i}(\mathbf{E}_im_i) = \mathbf{E}e_i$ for each i = 1, 2. Thus $D_{\mathbf{E}}(\mathbf{E}m) = \mathbf{E}_1e_1 \oplus$ $\mathbf{E}_2e_2 \leq \oplus \mathbf{E}$. Hence M is a PQ dual-Baer module.

In the following result we study when direct sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer.

Theorem 2.19. Let M be a PQ dual-Baer module with ring of endomorphisms \mathbf{E} of M. Then $\bigoplus_{i \in \mathbf{I}} M_i$ where $M_i = M$ for each $i \in \mathbf{I}$, is PQ dual-Baer if $\mathbf{E}\mathbf{E}$ has generalized summand sum property (GSSP).

Proof. Let module *M* be PQ dual-Baer and $M^{(I)} = \bigoplus_{i \in I} M_i$ where $M_i = M$ for each $i \in I$ and I is an arbitrary index set. First we assume $I = \mathbb{N}$. Let $m = (m_i)_{i \in I} \in M^{(I)}$ and E_{ij} denote a $(I \times I)$ matrix of $H = End(M^{(I)})$ with 1_E (identity element of E) at (i, j)th position and 0 on remaining places. Clearly, $E_{ij}(m) \in M^{(I)}$ such that m_j at *i*-th position and 0 elsewhere. So there is a $n \in \mathbb{N}$ such that for each l > n, $m_l = 0$, that means $E_{ll}(m) = 0$, which implies $m = \sum_{i=1}^{n} E_{ii}(m)$. Then from the claim of [8, Theorem 3.8], we get $H(m) = \bigoplus_{j \in I} (\sum_{i=1}^{n} E_{ji}(m_i))$, where $E_{ji} = Hom(M_i, M_j) = E$. Consider $X_j = \sum_{i=1}^{n} D_E(E_{ji}(m_i))$ for every $j \in I$. It is routine to check that $D_E(X_j) = D_E(\sum_{i=1}^{n} E_{ji}(m_j)) = \sum_{i=1}^{n} D_E(E_{ji}(m_j))$. Since *M* is PQ dual-Baer module and $_EE$ has GSSP, from Proposition 2.5, $D_E(X_j) = Ee$ for some $e^2 = e \in E$. Let 1_H be the identity of H and take $e1_H \in H$ which is a diagonal matrix having *e* at diagonals. Then $e1_H$ is an idempotent element of H. Since $e1_H(\bigoplus_{j \in I} X_j)$, then $\psi(\bigoplus_{j \in I} X_j) \subseteq \bigoplus_{j \in I} X_j$ which implies that $\psi_{kj}(X_j) \subseteq X_j$ for all $j, k \in I$. So $\psi_{kj} \in D_E(X_j) = Ee$ for some idempotent $e \in E$ because *M* is PQ dual-Baer module. Therefore $\psi_{kj} = \psi_{kj}e$ for all $j, k \in I$. Hence $D_H(\bigoplus_{j \in I} X_j) \subseteq He1_H$. So we get $D_H(\bigoplus_{j \in I} X_j) = He1_H$. Thus $D_H(Hm) = He1_H$. By following the similar steps it is easy to prove the theorem when I is an arbitrary index set. □

3 Endomorphism ring of PQ dual-Baer modules

This section is devoted for study of ring of endomorphisms of a PQ dual-Baer module. Following proposition suggests that ring of endomorphisms of a PQ dual-Baer module is PQ Baer.

Proposition 3.1. Let M be a module and \mathbf{E} be its endomorphism ring. Then \mathbf{E} is PQ Baer ring if M is PQ dual-Baer module.

Proof. Let M be a PQ dual-Baer module, $m \in M$ and T be a principal ideal of \mathbf{E} . Then there exists $f^2 = f \in \mathbf{E}$ such that $D_{\mathbf{E}}(Tm) = \mathbf{E}f$. For every $g \in T$, $Im(g) \subseteq \sum_{g \in D_{\mathbf{E}}(Tm)} Im(g) = \sum_{g \in \mathbf{E}f} Im(g) = E_M(\mathbf{E}f) = fM$. So for every $g \in T$, $(1 - f)\phi M = 0$ which implies that (1 - f)g = 0. Therefore $(1 - f) \in l_{\mathbf{E}}(T)$. For \mathbf{E} to be a PQ Baer ring, it is enough to prove that $l_{\mathbf{E}}(T) = \mathbf{E}(1 - f)$. For it let, $h \in l_{\mathbf{E}}(T)$ then $h(D_{\mathbf{E}}(Tm)) = 0 \Rightarrow h(\mathbf{E}f) = 0 \Rightarrow hf = 0$. Therefore $h = h(1 - f) \in \mathbf{E}(1 - f)$. Thus $l_{\mathbf{E}}(T) \subseteq \mathbf{E}(1 - f)$. Now assume that $h \in \mathbf{E}(1 - f)$ then for every $m \in M$, $hT(m) = h(1 - f)T(m) \subseteq h(1 - f)(fM)$ because for every $h \in T$, $Im(h) \in fM$. So hT(m) = 0 for every $m \in M \Rightarrow hT = 0 \Rightarrow h \in l_{\mathbf{E}}(T)$. Hence \mathbf{E} is PQ Baer ring.

It is not necessary for the converse of the above proposition to be true. In fact, the \mathbb{Z} -module \mathbb{Z} is not a PQ dual-Baer while $End_{\mathbb{Z}}\mathbb{Z} \simeq \mathbb{Z}$ is a PQ Baer ring.

In the next proposition we find the condition under which endomorphism ring of PQ dual-Baer module is a PQ dual-Baer.

Proposition 3.2. Let M be a finitely generated PQ dual-Baer module with $\mathbf{E} = End_R(M)$ and $\mathbf{E}\mathbf{E}$ has SSP, then endomorphism ring of M is PQ dual-Baer.

Proof. Let *M* is PQ dual-Baer module with $f \in \mathbf{E}$. Assume that *M* is generated by $m_1, m_2, ..., m_n$ where each $m_i \in M$ and $n \in \mathbb{N}$. For every $\psi \in D_{\mathbf{E}}(\mathbf{E}\phi)$, $\psi(\mathbf{E}\phi) \subseteq \mathbf{E}\phi$ and $\psi((\mathbf{E}\phi)M) \subseteq (\mathbf{E}\phi)M$. Thus $\psi((\mathbf{E}\phi)(m_i)) \subseteq (\mathbf{E}\phi)(m_i)$ for all $1 \leq i \leq n$. Therefore $\psi \in D_{\mathbf{E}}(\mathbf{E}(\phi(m_i)))$ for each *i*. Since *M* is PQ dual-Baer module, there exist $e_i \in \mathbb{S}_r(\mathbf{E})$ such that $D_{\mathbf{E}}(\mathbf{E}(\phi(m_i))) = \mathbf{E}e_i$ for all $1 \leq i \leq n$. Hence $\psi \in \sum_{i=1}^n \mathbf{E}e_i$ and so $D_{\mathbf{E}}(\mathbf{E}\phi) \subseteq \sum_{i=1}^n \mathbf{E}e_i$. Now let $f \in \sum_{i=1}^n \mathbf{E}e_i$ and $m \in M$ be arbitrary. Then for $r_i \in R$ $(1 \leq i \leq n)$, $f(\mathbf{E}\phi(m)) = f(\sum_{i=1}^n \mathbf{E}\phi(m_i r_i)) =$ $f(\sum_{i=1}^n (\mathbf{E}\phi(m_i)r_i))$. Clearly $\sum_{i=1}^n (\mathbf{E}\phi(m_i))r_i$ is finitely generated submodule of *M*. Since *M* is PQ dual-Baer module and $\mathbf{E}\mathbf{E}$ has SSP so by proposition 2.5, $f(\sum_{i=1}^n (\mathbf{E}\phi(m_i)r_i)) \subseteq$ $\sum_{i=1}^n (\mathbf{E}\phi(m_i))r_i$. Thus $f(\mathbf{E}\phi) \subseteq \mathbf{E}\phi$ that implies $f \in D_{\mathbf{E}}(\mathbf{E}\phi)$. Hence $\sum_{i=1}^n \mathbf{E}e_i = D_{\mathbf{E}}(\mathbf{E}\phi)$. Since $\mathbf{E}\mathbf{E}$ has SSP, $D_{\mathbf{E}}(\mathbf{E}\phi) \leq \oplus$ **E**. Hence **E** is a PQ dual-Baer ring. \Box

Proposition 3.3. If $X = \bigoplus_{\lambda \in \mathbf{I}} M_{\lambda}$ where $M_{\lambda} = M$ for each $\lambda \in \mathbf{I}$. If the endomorphism ring of X is a PQ dual-Baer ring then $\mathbf{E} = End_R(M)$ is a quasi dual-Baer ring.

Proof. Let M be a PQ dual-Baer module with $\mathbf{E} = End(M)$ and $T \leq \mathbf{E}$. Consider $\mathbf{I} = |T|$ and $\mathbf{H} = End(X)$. Clearly $CFM_{\mathbf{E}} \subseteq \mathbf{H} \subseteq Mat_{\mathbf{I}}(\mathbf{E})$. Set $\psi = diag[\psi_1, \psi_2, ..., \psi_i, ...]_{i \in \mathbf{I}} \in \mathbf{H}$. We claim that $D_{\mathbf{H}}(\mathbf{H}\psi) = \mathbf{H} \cap Mat_{\mathbf{I}}(\Sigma_{\psi_i \in T} D_{\mathbf{E}}(\mathbf{E}\psi_i))$. For it let $\phi = [\phi_{ij}] \in D_{\mathbf{H}}(\mathbf{H}\psi)$ be arbitrary. Then $\phi(\mathbf{H}\psi) \subseteq \mathbf{H}\psi$. Denote by E_{ii} a matrix in \mathbf{H} with $\mathbf{I}_{\mathbf{E}}$ at (i, i)-th position and 0 on remaining places. Then $E_{ii}\phi E_{ji}(\mathbf{H}E_{kk}\psi E_{kk}) \subseteq \mathbf{H}E_{kk}\psi E_{kk} \Rightarrow \phi_{ij}(\mathbf{E}\psi_k) \subseteq \mathbf{E}\psi_k$ for each $i, j, k \in \mathbf{I}$. Thus $\phi_{ij} \in \Sigma_{\psi_k \in T} D_{\mathbf{E}}(\mathbf{E}\psi_k)$ for every $i, j \in \mathbf{I}$. Therefore $\phi \in \mathbf{H} \cap$ $Mat_{\mathbf{I}}(\Sigma_{\psi_k \in T} D_{\mathbf{E}}(\mathbf{E}\psi_k))$. For the reverse inclusion, let $\theta = [\theta_{ij}] \in \mathbf{H} \cap Mat_{\mathbf{I}}(\Sigma_{\psi_k \in T} D_{\mathbf{E}}(\mathbf{E}\psi_k))$ be arbitrary. Then $\theta_{ij} \in \Sigma_{\psi_k \in T} D_{\mathbf{E}}(\mathbf{E}\psi_k)$ for every $i, j \in \mathbf{I}$. Thus $\theta_{ij}(\mathbf{E}\psi_k) \subseteq \mathbf{E}\psi_k$ for all $i, j, k \in \mathbf{I}$. Therefore $\theta(\mathbf{H}\psi) \subseteq \mathbf{H}\psi$. Hence, $\theta \in D_{\mathbf{H}}(\mathbf{H}\psi)$ which proves our claim. Now assume that $P = \Sigma_{\psi_k \in T} D_{\mathbf{E}}(\mathbf{E}\psi_k)$. So from our claim $\mathbf{H} \cap Mat_{\mathbf{I}}(P) = D_{\mathbf{H}}(\mathbf{H}\psi)$. Since from assumption H is PQ dual-Baer ring, there must exist $F^2 = F = [F_{ij}] \in H$ for that $D_{\mathbf{H}}(\mathbf{H}\psi) = \mathbf{H}F$. It clearly follows that $E_{ii}FE_{ii} = F_{ii}E_{ii}$ is a right semicentral idempotent of $E_{ii}\mathbf{H}E_{ii}$. Thus $PE_{ii} = E_{ii}(\mathbf{H} \cap Mat_{\mathbf{I}}(P))E_{ii} = E_{ii}\mathbf{H}FE_{ii} = E_{ii}\mathbf{H}FE_{ii}FE_{ii}$. Thus $P = PF_{ii} \subseteq \mathbf{E}E_{ii}$ for all $i \in \mathbf{I}$. Since $\mathbf{H}F = \mathbf{H} + Mat_{\mathbf{I}}(P)$, $\mathbf{E}F_{ii} \subseteq P$. Hence $P = \mathbf{E}E_{ii}$ with $F_{ii} \in \mathbf{E}$. Therefore, **E** is quasi dual-Baer ring.

References

- T. Amouzegar and Y. Talebi, On Quasi dual-Baer modules, TWMS Journal of Pure and Appllied Mathematics, 4(1) (2013), 78-86.
- [2] S. K. Berberian, Baer *-Rings, Berlin-Heidelberg-New York: Springer-Verlag, (1972).
- [3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, *Principally quasi-Baer rings*, Communications in Algebra, 29(2) (2001), 638–660.
- [4] G. F. Birkenmeier and J. K. Park and S. T. Rizvi, *Extensions of rings and modules*, New York: Birkhäuser, (2013).
- [5] W. E. Clark, Twisted matrix units semigroup algebras, Duke Mathematical Journal. 34 (1967), 417-424.
- [6] P. A. Dana, and A. Moussavi, *Endo-principally quasi-Baer modules*, Journal of Algebra and Its Applications, 15(02) (2016), 1550132.
- [7] I. Kaplansky, Rings of Operators, Mathematics Lecture Note Series, New York: W. A. Benjamin, (1968).
- [8] G. Lee, Principally quasi-Baer modules and their generalizations, Communications in Algebra, 47(10) (2019), 4077-4094.
- [9] G. Lee, S. T. Rizvi and C. S. Roman, *Dual-Rickart modules*, Communications in algebra, 39(11) (2011), 4036-4058.
- [10] S. T. Rizvi and C. S. Roman, *Baer and quasi-Baer modules*, Communications in Algebra, 32(1) (2004), 103-123.

- [11] R. Tribak, Y. Talebi and M. Hosseinpour, *Quasi dual-Baer modules*, Arabian Journal of Mathematics, 10 (2021), 497-504.
- [12] D. K. Tutuncu and R. Tribak, On dual-Baer modules, Glasgow Mathematical Journal, 52(2) (2010), 261-269.
- [13] B. Ungor, N. Agayev, S. Halicioglu, and A. Harmanci, *On principally quasi-Baer modules*, Albanian Journal of Mathematics, 5(3) (2011), 165-173.

Author information

Shiv Kumar and A.J. Gupta, Department of Mathematical Sciences, IIT(B.H.U.), Varanasi-221005, *India*. E-mail: shivkumar.rs.mat17@itbhu.ac.in and agupta.apm@itbhu.ac.in