PRINCIPALLY QUASI DUAL-BAER MODULES

Shiv Kumar and A.J. Gupta

MSC 2010 Classifications: Primary 16D10, 16D60; Secondary 16E50.
Keywords and phrases: PQ dual-Baer module, endomorphism ring, quasi-Baer ring.

Abstract

In this paper, we generalize quasi dual-Baer module to principally quasi dual-Baer (PQ dual-Baer) module. A module M is said to be PQ dual-Baer if for each cyclic submodule X of $M, D_{\mathbf{E}}(X)=\{f \in \mathbf{E}: \operatorname{Im}(f) \subseteq X\}$ is a direct summand of $\mathbf{E}=\operatorname{End}(M)$. We study some properties of PQ dual-Baer modules. We find some conditions for which the direct sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer. We also study the ring of endomorphisms of PQ dual-Baer modules.

1 Introduction

All over the article we consider the ring R to be associative ring with identity element and module M to be unital. A ring R, in which annihilator of each right ideal (ideal) in R is a direct summand of R is known as Baer (quasi-Baer) ring ([4], [5], [7]). Baer ring is an attractive topic for researchers because it has a connection to functional analysis ([2], [4], [7]). A principally quasi-Baer (in short, PQ Baer) ring was defined by Birkenmeier et al. [3], which was actually a generalization of quasi-Baer ring. In theory, the ring R is described as PQ Baer if right annihilator of every principal ideal of R in R is a direct summand of R. Rizvi and Roman in [10], defined Baer like properties for an R-module M and called a module M Baer (quasi-Baer) if the left annihilator of every submodule (fully invariant) of M in $\mathbf{E}=\operatorname{End}(M)$ is a direct summand of \mathbf{E} ([4], [10]). Motivated by this nice structure of Baer module much more work have been done by many authors in literature (see, [1], [4], [6], [8], [10], [12], [13]). In [13], Ungor et al. introduced PQ-Baer modules and Dana et al. [6] and G. Lee [13] also studied PQ-Baer modules in different aspects. According to them the left annihilator of $\mathbf{E} m$ (or cyclic submodule of M) in $\mathbf{E}=\operatorname{End}_{R}(M)$ for every $m \in M$ must be a direct summand of \mathbf{E} for a module M to be PQ-Baer. The dual concept of Baer modules is being considered for extending the theory of Baer modules. In [12], Tutuncu et al. presented the idea of dual notion of Baer modules and termed a module M to be dual-Baer if for every submodule X of $M, D_{\mathbf{E}}(X)=\{\alpha \in \mathbf{E}: \operatorname{Im}(\alpha) \subseteq X\}=\mathbf{E} e$ for some $e^{2}=e \in \mathbf{E}=\operatorname{End}_{R}(M)$. The dual-Baer module have some nice connections with semisimple ring, Harada ring and lifting module (see [12]). Dual concept of Baer modules also have an attraction for further study. So in [11], Tribek et al. introduced quasi dual-Baer module and they defined a module M as quasi dual-Baer if for every ideal \mathbf{T} of $\mathbf{E}=\operatorname{End}_{R}(M)$, $E_{M}(\mathbf{T})=\Sigma_{f \in \mathbf{T}} \operatorname{Im}(f)$ is a direct summand of M.
Motivated by above generalizations of Baer modules, we introduce the class of principally quasi (in short, PQ) dual-Baer modules which properly contain the class of quasi dual-Baer modules. We define the module M to be PQ dual-Baer if for all $m \in M, D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E} f$ for some $f^{2}=f \in \mathbf{E}=\operatorname{End}_{R}(M)$.
In section 2, we define and study PQ dual-Baer modules. By providing an example we show that a PQ dual-Baer module need not be a quasi dual-Baer module (see Example 2.9). While a PQ dual-Baer module whose ring of endomorphisms has FI-GSSP is a quasi dual-Baer module (see Proposition 2.10). It is proved in (Proposition 2.12) that inheritance of PQ dual-Baer properties occur through direct summand of PQ dual-Baer modules. We characterize regular (von Neumann) and semisimple Artinian ring in terms of the PQ dual-Baer module (see Proposition 2.13 and Proposition 2.14). We find conditions over which the direct sum of PQ dual-Baer modules is PQ dual-Baer (see Proposition 2.18 and Theorem 2.19). In the last section, we study the endomorphism ring of PQ dual-Baer modules. It is shown that the ring of endomorphisms of a PQ dual-Baer module generally is a PQ-Baer ring (see Proposition 3.1) while it is not in
general, PQ dual-Baer ring. By taking the class of finitely generated PQ dual-Baer modules, we prove that the ring of endomorphisms $\mathbf{E}=\operatorname{End}_{R}(M)$ of M is PQ dual-Baer if $\mathbf{E}_{\mathbf{E}} \mathbf{E}$ has SSP (see Proposition 3.2).
The notations $\subseteq, \leq, \leq^{\oplus}, \leq^{e}$ and \unlhd will be fixed to denote a subset, a submodule, a direct summand, an essential submodule and a submodule invariant by endomorphism (or an ideal) respectively. For right R-module $X, r_{X}(\mathbf{T})=\{x \in X: \mathbf{T}(x)=0\}$ and $l_{\mathbf{E}}(Y)=\{\alpha \in \mathbf{E}: \alpha(Y)=0\}$ where $\mathbf{T} \leq{ }_{\mathbf{E}} \mathbf{E}$ and $Y \leq X$, will denote right annihilator in X of \mathbf{T} and left annihilator in \mathbf{E} of Y respectively. We also denote $D_{\mathbf{E}}(Y)=\{\alpha \in \mathbf{E}: \operatorname{Im}(\alpha) \subseteq Y\}$ for $Y \subseteq X$ and $E_{X}(\mathbf{T})=\sum_{\alpha \in \mathbf{T}} I m(\alpha)$ for $\mathbf{T} \subseteq \mathbf{E}$ and $\mathbf{E}=\operatorname{End}_{R}(M)$ (ring of endomorphisms of an $R-$ module M).

2 Principally quasi dual-Baer module

Definition 2.1. We define a module M principally quasi (in short, PQ) dual-Baer if for each cyclic submodule X of $M, D_{\mathbf{E}}(X)$ is a direct summand of \mathbf{E}.
In other words the module M is PQ dual-Baer if for every $m \in M$ there is a $f^{2}=f \in \mathbf{E}$ such that $D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E} f$. Generally we say a ring R right PQ dual-Baer if R_{R} is a PQ dual-Baer right R-module.

Example 2.2. (i) The \mathbb{Z}-modules \mathbb{Q} and $\mathbb{Z}_{p \infty}$ are PQ dual-Baer.
(ii) An injective indecomposable module is PQ dual-Baer module.
(iii) Every dual-Baer is a PQ dual-Baer module.
(iv) R_{R} is a PQ dual-Baer right R-module if R is a right regular ring.
(v) Every PQ dual-Baer module is dual-Rickart.

Let M be an R-module and $\mathbf{E}=\operatorname{End}_{R}(M)$. An idempotent $f^{2}=f \in \mathbf{E}$ is right (left) semicentral if $f g=f g f(g f=f g f)$ for each $g \in \mathbf{E}$. We fix the set $\mathbb{S}_{r}(\mathbf{E})$ to denote idempotent elements of \mathbf{E} which are right semicentral also.

Lemma 2.3. If M is a $P Q$ dual-Baer module with $\mathbf{E}=\operatorname{End}_{R}(M)$ then for $m \in M$, there is a $f \in \mathbb{S}_{r}(\mathbf{E})$ such that $D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E} f$.
Proof. Let M be a PQ dual-Baer module and $m \in M$. Then there exists $f^{2}=f \in \mathbf{E}$ such that $D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E} f$. Since $\mathbf{E} f \phi(\mathbf{E} m) \subseteq \mathbf{E} f(\mathbf{E} m) \subseteq \mathbf{E} m$, for every $\phi \in \mathbf{E}$. Therefore $\mathbf{E} f \phi \subseteq D_{\mathbf{E}}(\mathbf{E} m)$, which implies that $f \phi=f \phi f$. Hence $f \in \mathbb{S}_{r}(\mathbf{E})$.

Remark 2.4. From Lemma 2.3 it is clear, if M is PQ dual-Baer module then the idempotent $f \in \mathbf{E}=\operatorname{End}_{R}(M)$ such that $D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E} f$ is right semicentral.

A module X has summand sum property (SSP) (generalised summand sum property (GSSP)), if sum of finitely (resp. infinitely) many summands of X is also a summand of X. Furthermore a ring \mathbf{E} of endomorphisms has SSP (GSSP) if \mathbf{E}-module $\mathbf{E}_{\mathbf{E}}$ has SSP (GSSP). While X has FISSP (FI-GSSP) if sum of summands which are fully invariant as well in X, is also a summand of X.
The following proposition shows when finitely generated modules are PQ dual-Baer.
Proposition 2.5. If a module M is $P Q$ dual-Baer with endomorphism ring $\mathbf{E}=\operatorname{End}_{R}(M)$ and ${ }_{\mathbf{E}} \mathbf{E}$ has SSP then $D_{\mathbf{E}}(X)$ is a direct summand of \mathbf{E}, for every submodule $X=<x_{1}, x_{2}, \ldots, x_{n}>$ of M.

Proof. Let $X=\sum_{i=1}^{n} \mathbf{E} x_{i}$ be a submodule generated by $x_{i} \in M$ where $(1 \leqslant i \leqslant n)$ and $(n \in \mathbb{N})$. It is routine to check that $D_{\mathbf{E}}(X)=D_{\mathbf{E}}\left(\sum_{i=1}^{n} \mathbf{E} x_{i}\right)=\sum_{i=1}^{n} D_{\mathbf{E}}\left(\mathbf{E} x_{i}\right)$. Since M is PQ dual-Baer therefore from Lemma 2.3, there exists $e_{i}^{2}=e_{i} \in \mathbb{S}_{r}(\mathbf{E})$ such that $D_{\mathbf{E}}\left(\mathbf{E} x_{i}\right)=\mathbf{E} e_{i}$ for every $1 \leqslant i \leqslant n$. Thus $D_{\mathbf{E}}(X)=\sum_{i=1}^{n} \mathbf{E} e_{i}$. Since ${ }_{\mathbf{E}} \mathbf{E}$ has $\operatorname{SSP}, \sum_{i=1}^{n} \mathbf{E} e_{i}$ is also a direct summand of \mathbf{E}.

Proposition 2.6. For a module M the following conditions are equivalent
(a) M is a PQ dual-Baer module;
(b) For any cyclic submodule $P \leq M$, there is a decomposition $M=P_{1} \oplus P_{2}$ with $P_{1} \leq{ }^{\oplus} P$ and $\operatorname{Hom}\left(M, P \cap P_{2}\right)=0$.

Proof. $(a) \Rightarrow(b)$. Let P be a cyclic submodule of M and $\mathbf{E}=\operatorname{End}_{R}(M)$. Then by (a), there must be an element $f^{2}=f \in \mathbf{E}$, for which $D_{\mathbf{E}}(P)=\mathbf{E} f$. Suppose that $P_{1}=f M$ and $P_{2}=(1-f) M$ which implies $M=P_{1} \oplus P_{2}$. Also $E_{M}\left(D_{\mathbf{E}}(P)\right)=E_{M}(\mathbf{E} f)=f M=P_{1} \leq{ }^{\oplus} P$, therefore $P=P_{1} \oplus\left(P \cap P_{2}\right)$. Now take, $g \in \mathbf{E}$ be such that $g(M) \subseteq P \cap P_{2}$ which implies that $g \in D_{\mathbf{E}}(P)$. So there exists $h \in \mathbf{E}$ such that $g=h f$. Thus $g(M) \subseteq P_{1}$. Since $g(M) \subseteq P_{2}$ which yields that $g=0$. Hence $\operatorname{Hom}_{R}\left(M, P \cap P_{2}\right)=0$.
$(b) \Rightarrow(a$. Let $\mathbf{E}=\operatorname{End}(M)$ and $P=\mathbf{E} m$ where $m \in M$. Clearly P is cyclic submodule of M so by condition (b), there is a decoposition of M such that $P_{1} \oplus P_{2}=M, P_{1} \subseteq P$ and $\operatorname{Hom}\left(M, P \cap P_{2}\right)=0$. Let $P_{1}=f M$ for some idempotent $f^{2}=f \in \mathbf{E}$. Then it is clear that $\mathbf{E} f \subseteq D_{\mathbf{E}}(P)$. Let $g \in D_{\mathbf{E}}(P)$ and π be a projection map from P to $P \cap P_{2}$. Then $\pi \phi=0$ which implies that $g(M) \subseteq f(M)$. Thus $g(1-f)=0 \Rightarrow g=g f \in \mathbf{E} f$ which gives $D_{\mathbf{E}}(P) \subseteq \mathbf{E} f$. Therefore $D_{\mathbf{E}}(P)=\mathbf{E} f$. Hence M is PQ dual-Baer module.

Corollary 2.7. If all the cyclic submodules of M are direct summands of M then M is a $P Q$ dual-Baer module.

Corollary 2.8. In the case of an indecomposable module X, the following are equivalent
(1) X is PQ dual-Baer module;
(2) $\operatorname{Hom}(X, Y)=0$, for every cyclic submodule Y of X.

Proof. (1) \Rightarrow (2) easily seen from Proposition 2.6.
$(2) \Rightarrow(1)$ Let P be a cyclic submodule of M and $\mathbf{E}=\operatorname{End}_{R}(M)$. Since M is indecomposable and $\operatorname{Hom}(M P)=0, D_{\mathbf{E}}(M)=\mathbf{E}$ and $D_{\mathbf{E}}(P)=0$. Hence $D_{\mathbf{E}}(P) \leq{ }^{\oplus} \mathbf{E}$ which proves that M is PQ dual-Baer module.

It is clear from the definition that the following hierarchy is true in general.
Dual-Baer \Rightarrow Quasi dual-Baer $\Rightarrow \mathrm{PQ}$ dual-Baer.
We provide some examples that show the converse of the above implications need not be true.
Example 2.9. (i) Consider the ring $R=\left(\begin{array}{cc}J & K / J \\ 0 & J\end{array}\right)$, where J is a simple domain that is not a division ring and K is the ring of quotients of J. Then the R-module $M=\left(\begin{array}{cc}J & K / J \\ 0 & 0\end{array}\right)$ is a quasi dual-Baer module from [11, Example 2.9(iii)], but it is not dual-Baer.
(ii) Let $A=\mathbb{Z}$ and $M=\prod_{p} \mathbb{Z}_{p}$ (p be a prime) be an A-module. The evidence is clear that M a PQ dual-Baer A-module, while from [11, Example 3.4], M is not a quasi dual-Baer module.

Proposition 2.10. A module M is a quasi dual-Baer if and only if M is a $P Q$ dual-Baer and $\mathbf{E}_{\mathbf{E}}$ has FI-GSSP, where $\mathbf{E}=\operatorname{End}_{R}(M)$.

Proof. The module M is PQ dual-Baer because it is a quasi dual-Baer module so for sufficient condition, it only remains to prove that left \mathbf{E}-module $\mathbf{E}_{\mathbf{E}} \mathbf{E}$ has FI-GSSP. For it, let $T=\Sigma_{i \in \Lambda} \mathbf{E} e_{i}$ and each $e_{i} \in \mathbb{S}_{r}(\mathbf{E})$. Then $\Sigma_{i \in \Lambda} \mathbf{E} e_{i}=\Sigma_{i \in \Lambda} D_{\mathbf{E}}\left(e_{i} M\right)=D_{\mathbf{E}}\left(\Sigma_{i \in \Lambda} e_{i} M\right)=\mathbf{E} e$ for some $e \in \mathbb{S}_{r}(\mathbf{E})$. Therefore \mathbf{E}-module $\mathbf{E}_{\mathbf{E}} \mathbf{E}$ has FI-GSSP.
Conversely, let $N \unlhd M$. Since $D_{\mathbf{E}}(N)=\Sigma_{n \in N} D_{\mathbf{E}}(\mathbf{E} n)$ and M is PQ dual-Baer module, there is an $e_{i} \in \mathbb{S}_{r}(\mathbf{E})$ for each i such that $D_{\mathbf{E}}(\mathbf{E} n)=\mathbf{E} e_{i}$. By hypothesis, $\mathbf{E} \mathbf{E}$ has FI-GSSP, therefore $D_{\mathbf{E}}(N)=\Sigma_{i \in \Lambda} \mathbf{E} e_{i} \leq{ }^{\oplus} \mathbf{E}$. Hence M is a quasi dual-Baer module.

Proposition 2.11. If the module M is finitely generated and \mathbf{E} is a principal ideal domain with SSP, then the following statements are equivalent:
(1) M is a dual-Baer;
(2) M is a quasi dual-Baer;
(3) M is a PQ dual-Baer.

Proof. It follows from Proposition 2.5.
In the following proposition we show that direct summand is inherited for PQ dual-Baer modules.

Proposition 2.12. Let X be a direct summand of a module M. Then X is $P Q$ dual-Baer if M is PQ dual-Baer.

Proof. Let $\mathbf{E}=\operatorname{End}_{R}(M), X \leq{ }^{\oplus} M$ and $x \in X$. So we have $f^{2}=f \in \mathbf{E}$ such that $X=f M$ and $T=\operatorname{End}(X) \cong f \mathbf{E} f$. Since M is a PQ dual-Baer module, there exists a $g \in \mathbb{S}_{r}(\mathbf{E})$ such that $I=D_{\mathbf{E}}(\mathbf{E} x)=\mathbf{E} g$. Since by Lemma 1.3 of $[1], I \unlhd \mathbf{E}$, therefore $f I f=f \mathbf{E} f \cap I$. Since $g \in \mathbb{S}_{r}(\mathbf{E}), g f=g f g$. Therefore $f I f=f \mathbf{E} g f=f \mathbf{E} g f g=(f \mathbf{E} g f)(f g)$ which implies $f I f \leq^{\oplus} f \mathbf{E} f$. Now we claim that $D_{T}(T x)=f I f$. For it, let $h \in I, f h f(M)=f h(f M)=$ $f h(X) \subseteq f(\mathbf{E} x) \subseteq(f \mathbf{E} f) x=T x$ which yields $f h f(M) \in D_{T}(T x)$. Thus $f I f \subseteq D_{T}(T x)$. Now assume that $0 \neq f \phi f \in f \mathbf{E} f$ such that $f \phi f(X) \subseteq T x$ where $\phi \in \mathbf{E}$. Since $X=f M$, $f h f(M)=f \phi f(X) \subseteq T x \subseteq \mathbf{E} x$, so $f \phi f \in D_{\mathbf{E}}(\mathbf{E} x)=I$. But $f \phi f=f f \phi f f=f(f \phi f) f \in$ $f I f$. Therefore $D_{T}(T x)=f I f$ for all $x \in X$. Hence X is a PQ dual-Baer module.

Proposition 2.13. The following assumptions are equivalent for a module M :
(1) Every S-module is PQ dual-Baer;
(2) Every projective S-module is PQ dual-Baer;
(3) The free module $S^{(S)}$ is $P Q$ dual-Baer;
(4) The S is semisimple and Artinian ring.

Proof. The implications $(1) \Rightarrow(2) \Rightarrow(3)$ are easy to verify.
$(3) \Rightarrow(4)$ For every right ideal J of S, there must be a free module K_{S} and an epimorphism π for which $\pi(K)=J$. Since $K \leq{ }^{\oplus} S^{(S)}, K_{S}$ is PQ dual-Baer.
Thus $\pi K_{S}=J \leq{ }^{\oplus} K_{S}$ which implies that $J \leq^{\oplus} S_{S}$. Hence ring S is semisimple and Artinian.
(4) $\Rightarrow(1)$ It follows easily.

Now we characterize PQ dual-Baer module over regular ring.
Proposition 2.14. The following conditions are equivalent:
(a) Each finitely generated free S-module is $P Q$ dual-Baer;
(b) The free S-module $S^{(n)}$ is $P Q$ dual-Baer where $n \in \mathbb{N}$;
(c) S is regular ring.

Proof. $(a) \Rightarrow(b)$ and $(b) \Rightarrow(c)$ are trivial.
$(c) \Rightarrow(a)$. It is obvious to have that $\operatorname{End}\left(S^{(n)}\right) \cong \operatorname{Mat}_{n}(R)$ for every $n \in \mathbb{N}$. Since ring S is regular, so $M a t_{n}(S)$ is also regular ring. Hence $S^{(n)}$ is PQ dual-Baer R-module.

Proposition 2.15. If a ring S is regular which is neither semisimple nor Artinian. Then each free S-module is PQ dual-Baer while it is not dual-Baer.

Proof. From proposition 2.14, every free module M which is finitely generated over the ring S is a PQ dual-Baer. Since S is not semisimple, by [12, Corollary 2.10], module M is not PQ dual-Baer.

Example 2.16. The ring $J=\Pi_{i=1}^{\infty} \mathbb{Z}_{p}$ (where p is a prime) is regular which is clearly neither semisimple nor Artinian. Hence from Proposition 2.15 , every finitely generated free J-module M is a PQ dual-Baer module but M is not dual-Baer.

Now we provide an example which shows that direct sum of PQ dual-Baer modules, generally need not be a PQ dual-Baer module.

Example 2.17. If $A=\mathbb{Z}, P=\mathbb{Z}_{p^{\infty}}$ and $Q=\mathbb{Z}_{p}$ (p is any prime). Then P and Q are PQ dualBaer A-modules. While by [9, Example 2.10], $P \oplus Q$ is not an A dual-Rickart module. Hence $P \oplus Q$ can not be a PQ dual-Baer A-module.

We discuss in the following proposition, when direct sum of two PQ dual-Baer modules is PQ dual-Baer.

Proposition 2.18. If M_{1} and M_{2} are $P Q$ dual-Baer modules such that $\operatorname{Hom}\left(M_{\alpha}, M_{\beta}\right)=0$ for every $\alpha \neq \beta, \alpha, \beta=1,2$, then $M_{1} \oplus M_{2}$ is a $P Q$ dual-Baer module.

Proof. Let $M=M_{1} \oplus M_{2}$ with $\mathbf{E}_{1}=\operatorname{End}\left(M_{1}\right)$ and $\mathbf{E}_{2}=\operatorname{End}\left(M_{2}\right)$. Since $\operatorname{Hom}\left(M_{\alpha} M_{\beta}\right)=0$ for every $\alpha \neq \beta, \mathbf{E}=\operatorname{End}(M)=\mathbf{E}_{1} \oplus \mathbf{E}_{2}$. Therefore, for every $m=\left(m_{1}, m_{2}\right) \in M$, $D_{\mathbf{E}}(\mathbf{E} m)=D_{\mathbf{E}_{1}}\left(\mathbf{E}_{1} m_{1}\right) \oplus D_{\mathbf{E}_{2}}\left(\mathbf{E}_{2} m_{2}\right)$. From hypothesis M_{i} is PQ dual-Baer module, so there exists $e_{i}^{2}=e_{i} \in \mathbf{E}_{i}$ such that $D_{\mathbf{E}_{i}}\left(\mathbf{E}_{i} m_{i}\right)=\mathbf{E} e_{i}$ for each $i=1,2$. Thus $D_{\mathbf{E}}(\mathbf{E} m)=\mathbf{E}_{1} e_{1} \oplus$ $\mathbf{E}_{2} e_{2} \leq{ }^{\oplus} \mathbf{E}$. Hence M is a PQ dual-Baer module.

In the following result we study when direct sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer.

Theorem 2.19. Let M be a PQ dual-Baer module with ring of endomorphisms \mathbf{E} of M. Then $\bigoplus_{i \in \mathbf{I}} M_{i}$ where $M_{i}=M$ for each $i \in \mathbf{I}$, is $P Q$ dual-Baer if $\mathbf{E} \mathbf{E}$ has generalized summand sum property (GSSP).

Proof. Let module M be PQ dual-Baer and $M^{(\mathbf{I})}=\bigoplus_{i \in \mathbf{I}} M_{i}$ where $M_{i}=M$ for each $i \in \mathbf{I}$ and \mathbf{I} is an arbitrary index set. First we assume $\mathbf{I}=\mathbb{N}$. Let $m=\left(m_{i}\right)_{i \in \mathbf{I}} \in M^{(\mathbf{I})}$ and $E_{i j}$ denote a $(\mathbf{I} \times \mathbf{I})$ matrix of $\mathbf{H}=\operatorname{End}\left(M^{(\mathbf{I})}\right)$ with $1_{\mathbf{E}}$ (identity element of \mathbf{E}) at (i, j) th position and 0 on remaining places. Clearly, $E_{i j}(m) \in M^{(\mathbf{I})}$ such that m_{j} at i-th position and 0 elsewhere. So there is a $n \in \mathbb{N}$ such that for each $l>n, m_{l}=0$, that means $E_{l l}(m)=0$, which implies $m=$ $\Sigma_{i=1}^{n} E_{i i}(m)$. Then from the claim of [8, Theorem 3.8], we get $\mathbf{H}(m)=\bigoplus_{j \in \mathbf{I}}\left(\sum_{i=1}^{n} \mathbf{E}_{j i}\left(m_{i}\right)\right)$, where $\mathbf{E}_{j i}=\operatorname{Hom}\left(M_{i}, M_{j}\right)=\mathbf{E}$. Consider $X_{j}=\Sigma_{i=1}^{n} \mathbf{E}_{j i}\left(m_{i}\right)$ for every $j \in \mathbf{I}$. It is routine to check that $D_{\mathbf{E}}\left(X_{j}\right)=D_{\mathbf{E}}\left(\sum_{i=1}^{n} \mathbf{E}_{j i}\left(m_{j}\right)\right)=\sum_{i=1}^{n} D_{\mathbf{E}}\left(\mathbf{E}_{j i}\left(m_{j}\right)\right)$. Since M is PQ dual-Baer module and $\mathbf{E}_{\mathbf{E}}$ has GSSP, from Proposition $2.5, D_{\mathbf{E}}\left(X_{j}\right)=\mathbf{E} e$ for some $e^{2}=e \in \mathbf{E}$. Let $1_{\mathbf{H}}$ be the identity of \mathbf{H} and take $e 1_{\mathbf{H}} \in \mathbf{H}$ which is a diagonal matrix having e at diagonals. Then $e 1_{\mathbf{H}}$ is an idempotent element of \mathbf{H}. Since $e 1_{\mathbf{H}}\left(\bigoplus_{j \in \mathbf{I}}\left(X_{j}\right)\right)=\bigoplus_{j \in \mathbf{I}} e\left(X_{j}\right) \subseteq \bigoplus_{j \in \mathbf{I}}\left(X_{j}\right)$, $\mathbf{H} e 1_{\mathbf{H}} \subseteq D_{\mathbf{H}}\left(\bigoplus_{j \in \mathbf{I}} X_{j}\right)$. Again let $\psi=\left[\psi_{k j}\right] \in D_{\mathbf{H}}\left(\bigoplus_{j \in \mathbf{I}} X_{j}\right)$, then $\psi\left(\bigoplus_{j \in \mathbf{I}} X_{j}\right) \subseteq \bigoplus_{j \in \mathbf{I}} X_{j}$ which implies that $\psi_{k j}\left(X_{j}\right) \subseteq X_{j}$ for all $j, k \in \mathbf{I}$. So $\psi_{k j} \in D_{\mathbf{E}}\left(X_{j}\right)=\mathbf{E} e$ for some idempotent $e \in \mathbf{E}$ because M is PQ dual-Baer module. Therefore $\psi_{k j}=\psi_{k j} e$ for all $j, k \in \mathbf{I}$. Hence $D_{\mathbf{H}}\left(\bigoplus_{j \in \mathbf{I}} X_{j}\right) \subseteq \mathbf{H} e 1_{\mathbf{H}}$. So we get $D_{\mathbf{H}}\left(\bigoplus_{j \in \mathbf{I}} X_{j}\right)=\mathbf{H} e 1_{\mathbf{H}}$. Thus $D_{\mathbf{H}}(\mathbf{H} m)=\mathbf{H} e 1_{\mathbf{H}}$. By following the similar steps it is easy to prove the theorem when \mathbf{I} is an arbitrary index set.

3 Endomorphism ring of PQ dual-Baer modules

This section is devoted for study of ring of endomorphisms of a PQ dual-Baer module.
Following proposition suggests that ring of endomorphisms of a PQ dual-Baer module is PQ Baer.

Proposition 3.1. Let M be a module and \mathbf{E} be its endomorphism ring. Then \mathbf{E} is $P Q$ Baer ring if M is $P Q$ dual-Baer module.

Proof. Let M be a PQ dual-Baer module, $m \in M$ and T be a principal ideal of \mathbf{E}. Then there exists $f^{2}=f \in \mathbf{E}$ such that $D_{\mathbf{E}}(T m)=\mathbf{E} f$. For every $g \in T, \operatorname{Im}(g) \subseteq \Sigma_{g \in D_{\mathbf{E}}(T m)} \operatorname{Im}(g)=$ $\Sigma_{g \in \mathbf{E} f} \operatorname{Im}(g)=E_{M}(\mathbf{E} f)=f M$. So for every $g \in T,(1-f) \phi M=0$ which implies that $(1-f) g=0$. Therefore $(1-f) \in l_{\mathbf{E}}(T)$. For \mathbf{E} to be a PQ Baer ring, it is enough to prove that $l_{\mathbf{E}}(T)=\mathbf{E}(1-f)$. For it let, $h \in l_{\mathbf{E}}(T)$ then $h\left(D_{\mathbf{E}}(T m)\right)=0 \Rightarrow h(\mathbf{E} f)=0 \Rightarrow h f=0$. Therefore $h=h(1-f) \in \mathbf{E}(1-f)$. Thus $l_{\mathbf{E}}(T) \subseteq \mathbf{E}(1-f)$. Now assume that $h \in \mathbf{E}(1-f)$ then for every $m \in M, h T(m)=h(1-f) T(m) \subseteq h(1-f)(f M)$ because for every $h \in T$, $\operatorname{Im}(h) \in f M$. So $h T(m)=0$ for every $m \in M \Rightarrow h T=0 \Rightarrow h \in l_{\mathbf{E}}(T)$. Hence \mathbf{E} is PQ Baer ring.

It is not necessary for the converse of the above proposition to be true. In fact, the \mathbb{Z}-module \mathbb{Z} is not a PQ dual-Baer while $E n d_{\mathbb{Z}} \mathbb{Z} \simeq \mathbb{Z}$ is a PQ Baer ring.
In the next proposition we find the condition under which endomorphism ring of PQ dual-Baer module is a PQ dual-Baer.

Proposition 3.2. Let M be a finitely generated $P Q$ dual-Baer module with $\mathbf{E}=\operatorname{End}_{R}(M)$ and ${ }_{\mathbf{E}} \mathbf{E}$ has SSP, then endomorphism ring of M is $P Q$ dual-Baer.

Proof. Let M is PQ dual-Baer module with $f \in \mathbf{E}$. Assume that M is generated by $m_{1}, m_{2}, \ldots, m_{n}$ where each $m_{i} \in M$ and $n \in \mathbb{N}$. For every $\psi \in D_{\mathbf{E}}(\mathbf{E} \phi), \psi(\mathbf{E} \phi) \subseteq \mathbf{E} \phi$ and $\psi((\mathbf{E} \phi) M) \subseteq$ $(\mathbf{E} \phi) M$. Thus $\psi\left((\mathbf{E} \phi)\left(m_{i}\right)\right) \subseteq(\mathbf{E} \phi)\left(m_{i}\right)$ for all $1 \leqslant i \leqslant n$. Therefore $\psi \in D_{\mathbf{E}}\left(\mathbf{E}\left(\phi\left(m_{i}\right)\right)\right)$ for each i. Since M is PQ dual-Baer module, there exist $e_{i} \in \mathbb{S}_{r}(\mathbf{E})$ such that $D_{\mathbf{E}}\left(\mathbf{E}\left(\phi\left(m_{i}\right)\right)\right)=\mathbf{E} e_{i}$ for all $1 \leqslant i \leqslant n$. Hence $\psi \in \sum_{i=1}^{n} \mathbf{E} e_{i}$ and so $D_{\mathbf{E}}(\mathbf{E} \phi) \subseteq \sum_{i=1}^{n} \mathbf{E} e_{i}$. Now let $f \in \Sigma_{i=1}^{n} \mathbf{E} e_{i}$ and $m \in M$ be arbitrary. Then for $r_{i} \in R(1 \leqslant i \leqslant n), f(\mathbf{E} \phi(m))=f\left(\sum_{i=1}^{n} \mathbf{E} \phi\left(m_{i} r_{i}\right)\right)=$ $f\left(\sum_{i=1}^{n}\left(\mathbf{E} \phi\left(m_{i}\right) r_{i}\right)\right)$. Clearly $\sum_{i=1}^{n}\left(\mathbf{E} \phi\left(m_{i}\right)\right) r_{i}$ is finitely generated submodule of M. Since M is PQ dual-Baer module and ${ }_{\mathbf{E}} \mathbf{E}$ has SSP so by proposition 2.5 , $f\left(\Sigma_{i=1}^{n}\left(\mathbf{E} \phi\left(m_{i}\right) r_{i}\right)\right) \subseteq$ $\sum_{i=1}^{n}\left(\mathbf{E} \phi\left(m_{i}\right)\right) r_{i}$. Thus $f(\mathbf{E} \phi) \subseteq \mathbf{E} \phi$ that implies $f \in D_{\mathbf{E}}(\mathbf{E} \phi)$. Hence $\sum_{i=1}^{n} \mathbf{E} e_{i}=D_{\mathbf{E}}(\mathbf{E} \phi)$. Since ${ }_{\mathbf{E}} \mathbf{E}$ has SSP, $D_{\mathbf{E}}(\mathbf{E} \phi) \leq{ }^{\oplus} \mathbf{E}$. Hence \mathbf{E} is a PQ dual-Baer ring.

Proposition 3.3. If $X=\bigoplus_{\lambda \in \mathbf{I}} M_{\lambda}$ where $M_{\lambda}=M$ for each $\lambda \in \mathbf{I}$. If the endomorphism ring of X is a $P Q$ dual-Baer ring then $\mathbf{E}=\operatorname{End}_{R}(M)$ is a quasi dual-Baer ring..

Proof. Let M be a PQ dual-Baer module with $\mathbf{E}=\operatorname{End}(M)$ and $T \unlhd \mathbf{E}$. Consider $\mathbf{I}=|T|$ and $\mathbf{H}=\operatorname{End}(X)$. Clearly $C F M_{\mathbf{E}} \subseteq \mathbf{H} \subseteq \operatorname{Mat}_{\mathbf{I}}(\mathbf{E})$. Set $\psi=\operatorname{diag}\left[\psi_{1}, \psi_{2}, \ldots, \psi_{i}, \ldots\right]_{i \in \mathbf{I}} \in \mathbf{H}$. We claim that $D_{\mathbf{H}}(\mathbf{H} \psi)=\mathbf{H} \cap \operatorname{Mat}_{\mathbf{I}}\left(\Sigma_{\psi_{i} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{i}\right)\right)$. For it let $\phi=\left[\phi_{i j}\right] \in D_{\mathbf{H}}(\mathbf{H} \psi)$ be arbitrary. Then $\phi(\mathbf{H} \psi) \subseteq \mathbf{H} \psi$. Denote by $E_{i i}$ a matrix in \mathbf{H} with $1_{\mathbf{E}}$ at (i, i)-th position and 0 on remaining places. Then $E_{i i} \phi E_{j j}\left(\mathbf{H} E_{k k} \psi E_{k k}\right) \subseteq \mathbf{H} E_{k k} \psi E_{k k} \Rightarrow \phi_{i j}\left(\mathbf{E} \psi_{k}\right) \subseteq \mathbf{E} \psi_{k}$ for each $i, j, k \in \mathbf{I}$. Thus $\phi_{i j} \in \Sigma_{\psi_{k} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{k}\right)$ for every $i, j \in \mathbf{I}$. Therefore $\phi \in \mathbf{H} \cap$ $\operatorname{Mat}_{\mathbf{I}}\left(\Sigma_{\psi_{k} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{k}\right)\right)$. For the reverse inclusion, let $\theta=\left[\theta_{i j}\right] \in \mathbf{H} \cap \operatorname{Mat}_{\mathbf{I}}\left(\Sigma_{\psi_{k} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{k}\right)\right)$ be arbitrary. Then $\theta_{i j} \in \Sigma_{\psi_{k} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{k}\right)$ for every $i, j \in \mathbf{I}$. Thus $\theta_{i j}\left(\mathbf{E} \psi_{k}\right) \subseteq \mathbf{E} \psi_{k}$ for all $i, j, k \in \mathbf{I}$. Therefore $\theta(\mathbf{H} \psi) \subseteq \mathbf{H} \psi$. Hence, $\theta \in D_{\mathbf{H}}(\mathbf{H} \psi)$ which proves our claim. Now assume that $P=\Sigma_{\psi_{k} \in T} D_{\mathbf{E}}\left(\mathbf{E} \psi_{k}\right)$. So from our claim $\mathbf{H} \cap \operatorname{Mat}_{\mathbf{I}}(P)=D_{\mathbf{H}}(\mathbf{H} \psi)$. Since from assumption \mathbf{H} is PQ dual-Baer ring, there must exist $F^{2}=F=\left[F_{i j}\right] \in \mathbf{H}$ for that $D_{\mathbf{H}}(\mathbf{H} \psi)=\mathbf{H} F$. It clearly follows that $E_{i i} F E_{i i}=F_{i i} E_{i i}$ is a right semicentral idempotent of $E_{i i} \mathbf{H} E_{i i}$. Thus $P E_{i i}=E_{i i}\left(\mathbf{H} \cap \operatorname{Mat}_{\mathbf{I}}(P)\right) E_{i i}=E_{i i} \mathbf{H} F E_{i i}=E_{i i} \mathbf{H} F E_{i i} F E_{i i}$. Thus $P=P F_{i i} \subseteq \mathbf{E} E_{i i}$ for all $i \in \mathbf{I}$. Since $\mathbf{H} F=\mathbf{H}+\operatorname{Mat}_{\mathbf{I}}(P), \mathbf{E} F_{i i} \subseteq P$. Hence $P=\mathbf{E} E_{i i}$ with $F_{i i} \in \mathbf{E}$. Therefore, \mathbf{E} is quasi dual-Baer ring.

References

[1] T. Amouzegar and Y. Talebi, On Quasi dual-Baer modules, TWMS Journal of Pure and Appllied Mathematics, 4(1) (2013), 78-86.
[2] S. K. Berberian, Baer *-Rings, Berlin-Heidelberg-New York: Springer-Verlag, (1972).
[3] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Communications in Algebra, 29(2) (2001), 638-660.
[4] G. F. Birkenmeier and J. K. Park and S. T. Rizvi, Extensions of rings and modules, New York: Birkhäuser, (2013).
[5] W. E. Clark, Twisted matrix units semigroup algebras, Duke Mathematical Journal. 34 (1967), 417-424.
[6] P. A. Dana, and A. Moussavi, , Endo-principally quasi-Baer modules, Journal of Algebra and Its Applications, 15(02) (2016), 1550132.
[7] I. Kaplansky, Rings of Operators, Mathematics Lecture Note Series, New York: W. A. Benjamin, (1968).
[8] G. Lee, Principally quasi-Baer modules and their generalizations, Communications in Algebra, 47(10) (2019), 4077-4094.
[9] G. Lee, S. T. Rizvi and C. S. Roman, Dual-Rickart modules, Communications in algebra, 39(11) (2011), 4036-4058.
[10] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Communications in Algebra, 32(1) (2004), 103-123.
[11] R. Tribak, Y. Talebi and M. Hosseinpour, Quasi dual-Baer modules, Arabian Journal of Mathematics, 10 (2021), 497-504.
[12] D. K. Tutuncu and R. Tribak, On dual-Baer modules, Glasgow Mathematical Journal, 52(2) (2010), 261269.
[13] B. Ungor, N. Agayev, S. Halıcioglu, and A. Harmanc1, On principally quasi-Baer modules, Albanian Journal of Mathematics, 5(3) (2011), 165-173.

Author information

Shiv Kumar and A.J. Gupta, Department of Mathematical Sciences, IIT(B.H.U.), Varanasi-221005, India. E-mail: shivkumar.rs.mat17@itbhu.ac.in and agupta.apm@itbhu.ac.in

