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Abstract In this paper, we generalize quasi dual-Baer module to principally quasi dual-Baer
(PQ dual-Baer) module. A module M is said to be PQ dual-Baer if for each cyclic submodule
X of M, Dg(X) = {f € E : Im(f) € X} is a direct summand of E = End(M). We
study some properties of PQ dual-Baer modules. We find some conditions for which the direct
sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer. We also study the ring of
endomorphisms of PQ dual-Baer modules.

1 Introduction

All over the article we consider the ring R to be associative ring with identity element and mod-
ule M to be unital. A ring R, in which annihilator of each right ideal (ideal) in R is a direct
summand of R is known as Baer (quasi-Baer) ring ([4], [5], [7]). Baer ring is an attractive topic
for researchers because it has a connection to functional analysis ([2], [4], [7]). A principally
quasi-Baer (in short, PQ Baer) ring was defined by Birkenmeier et al. [3], which was actually
a generalization of quasi-Baer ring. In theory, the ring R is described as PQ Baer if right anni-
hilator of every principal ideal of R in R is a direct summand of R. Rizvi and Roman in [10],
defined Baer like properties for an R-module M and called a module M Baer (quasi-Baer) if the
left annihilator of every submodule (fully invariant) of M in E = End(M) is a direct summand
of E ([4], [10]). Motivated by this nice structure of Baer module much more work have been
done by many authors in literature (see, [1], [4], [6], [8], [10], [12], [13]). In [13], Ungor et al.
introduced PQ-Baer modules and Dana et al. [6] and G. Lee [13] also studied PQ-Baer modules
in different aspects. According to them the left annihilator of Em (or cyclic submodule of M) in
E = Endg(M) for every m € M must be a direct summand of E for a module M to be PQ-Baer.
The dual concept of Baer modules is being considered for extending the theory of Baer modules.
In [12], Tutuncu et al. presented the idea of dual notion of Baer modules and termed a module
M to be dual-Baer if for every submodule X of M, Dg(X) ={a € E : Im(a) C X} = Ee
for some ¢> = ¢ € E = Endg(M). The dual-Baer module have some nice connections with
semisimple ring, Harada ring and lifting module (see [12]). Dual concept of Baer modules also
have an attraction for further study. So in [11], Tribek et al. introduced quasi dual-Baer mod-
ule and they defined a module M as quasi dual-Baer if for every ideal T of E = Endg(M),
Ey(T) = ZyerIm(f) is a direct summand of M.

Motivated by above generalizations of Baer modules, we introduce the class of principally quasi
(in short, PQ) dual-Baer modules which properly contain the class of quasi dual-Baer modules.
We define the module M to be PQ dual-Baer if for all m € M, Dg(Em) = Ef for some

2= fcE= FEndr(M).

In section 2, we define and study PQ dual-Baer modules. By providing an example we show
that a PQ dual-Baer module need not be a quasi dual-Baer module (see Example 2.9). While a
PQ dual-Baer module whose ring of endomorphisms has FI-GSSP is a quasi dual-Baer module
(see Proposition 2.10). It is proved in (Proposition 2.12) that inheritance of PQ dual-Baer prop-
erties occur through direct summand of PQ dual-Baer modules. We characterize regular (von
Neumann) and semisimple Artinian ring in terms of the PQ dual-Baer module (see Proposition
2.13 and Proposition 2.14). We find conditions over which the direct sum of PQ dual-Baer mod-
ules is PQ dual-Baer (see Proposition 2.18 and Theorem 2.19). In the last section, we study
the endomorphism ring of PQ dual-Baer modules. It is shown that the ring of endomorphisms
of a PQ dual-Baer module generally is a PQ-Baer ring (see Proposition 3.1) while it is not in



2 Shiv Kumar and A.J. Gupta

general, PQ dual-Baer ring. By taking the class of finitely generated PQ dual-Baer modules, we
prove that the ring of endomorphisms E = Endg(M) of M is PQ dual-Baer if gE has SSP (see
Proposition 3.2).

The notations C, <, <® <€ and < will be fixed to denote a subset, a submodule, a direct sum-
mand, an essential submodule and a submodule invariant by endomorphism (or an ideal) respec-
tively. For right R-module X, rx(T) ={z € X : T(z) =0} and lg(Y) = {a € E: o(Y) = 0}
where T < gE and Y < X, will denote right annihilator in X of T and left annihilator in
E of Y respectively. We also denote Dg(Y) = {a € E : Im(a) C Y} forY C X and
Ex(T) = > crIm(a) for T C E and E = Endr(M) (ring of endomorphisms of an R-
module M).

2 Principally quasi dual-Baer module

Definition 2.1. We define a module M principally quasi (in short, PQ) dual-Baer if for each
cyclic submodule X of M, Dg(X) is a direct summand of E.

In other words the module M is PQ dual-Baer if for every m € M thereis a f> = f € E such
that Dg(Em) = Ef. Generally we say a ring R right PQ dual-Baer if Rg is a PQ dual-Baer
right R-module.

Example 2.2. (i) The Z-modules Q and Z,~ are PQ dual-Baer.
(i) An injective indecomposable module is PQ dual-Baer module.
(iii) Every dual-Baer is a PQ dual-Baer module.
(iv) Rpg is a PQ dual-Baer right R-module if R is a right regular ring.
(v) Every PQ dual-Baer module is dual-Rickart.

Let M be an R-module and E = Endg(M). An idempotent f> = f € E is right (left)
semicentral if fg = fgf (9f = fgf) for each g € E. We fix the set S,.(E) to denote idempotent
elements of E which are right semicentral also.

Lemma 2.3. [f M is a PQ dual-Baer module with E = Endr(M) then for m € M, there is a
f € S.(E) such that Dg(Em) = Ef.

Proof. Let M be a PQ dual-Baer module and m € M. Then there exists f> = f € E such
that Dg(Em) = Ef. Since Ef¢p(Em) C Ef(Em) C Em, for every ¢ € E. Therefore
Ef¢ C Dg(Em), which implies that f¢ = f¢f. Hence f € S,.(E). m]

Remark 2.4. From Lemma 2.3 it is clear, if M is PQ dual-Baer module then the idempotent
f € E = Endr(M) such that Dg(Em) = Ef is right semicentral.

A module X has summand sum property (SSP) (generalised summand sum property (GSSP)),
if sum of finitely (resp. infinitely) many summands of X is also a summand of X . Furthermore
aring E of endomorphisms has SSP (GSSP) if E-module Eg has SSP (GSSP). While X has FI-
SSP (FI-GSSP) if sum of summands which are fully invariant as well in X, is also a summand
of X.

The following proposition shows when finitely generated modules are PQ dual-Baer.

Proposition 2.5. If a module M is PQ dual-Baer with endomorphism ring E = Endg(M) and
gE has SSP then Dg(X) is a direct summand of E, for every submodule X =< xy, x5, ..., T, >
of M.

Proof. Let X = 27:1 Ex; be a submodule generated by x; € M where (1 < i < n) and
(n € N). It is routine to check that Dg(X) = Dg(X!Ex;) = X' | Dg(Ez;). Since M is PQ
dual-Baer therefore from Lemma 2.3, there exists e? = ¢; € S,(E) such that Dg(Ex;) = Ee;
for every 1 < i < n. Thus Dg(X) = X Ee;. Since gE has SSP, X | Ee; is also a direct
summand of E. ]

Proposition 2.6. For a module M the following conditions are equivalent
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(a) M is a PQ dual-Baer module;

(b) For any cyclic submodule P < M, there is a decomposition M = P, ® P> with P| <® P
and Hom(M, PN P;) =0.

Proof. (a) = (b). Let P be a cyclic submodule of M and E = Endg(M). Then by (a),
there must be an element f> = f € E, for which Dg(P) = Ef. Suppose that P, = fM and
P, = (1—f)M which implies M = Py® P,. Also Ey (Dg(P)) = Ey(Ef) = fM = P, <% P,
therefore P = P, @ (P N P,). Now take, g € E be such that g(M) C P N P, which implies that
g € Dg(P). So there exists h € E such that g = hf. Thus g(M) C P,. Since g(M) C P, which
yields that g = 0. Hence Homg(M, PN P;) =0.

(b) = (a.) Let E = End(M) and P = Em where m € M. Clearly P is cyclic submodule
of M so by condition (b), there is a decoposition of M such that P, & P, = M, P, C P and
Hom(M, PN Py) = 0. Let P, = fM for some idempotent f> = f € E. Then it is clear that
Ef C Dg(P). Let g € Dg(P) and 7 be a projection map from P to PN P,. Then ¢ = 0 which
implies that g(M) C f(M). Thus g(1 — f) =0 = g = gf € Ef which gives Dg(P) C Ef.
Therefore Dg(P) = Ef. Hence M is PQ dual-Baer module. O

Corollary 2.7. If all the cyclic submodules of M are direct summands of M then M is a PQ
dual-Baer module.

Corollary 2.8. In the case of an indecomposable module X, the following are equivalent
(1) X is PQ dual-Baer module;
(2) Hom(X, Y) =0, for every cyclic submodule Y of X.
Proof. (1) = (2) easily seen from Proposition 2.6.
(2) = (1) Let P be a cyclic submodule of M and E = Endg(M). Since M is indecomposable

and Hom(M P) =0, Dg(M) = E and Dg(P) = 0. Hence Dg(P) <% E which proves that M
is PQ dual-Baer module. O

It is clear from the definition that the following hierarchy is true in general.
Dual-Baer = Quasi dual-Baer = PQ dual-Baer.
We provide some examples that show the converse of the above implications need not be true.

. . . J K/J . . . .
Example 2.9. (i) Consider the ring R = (0 5 > , where J is a simple domain that is not
e . . . J K/J
a division ring and K is the ring of quotients of J. Then the R-module M = 0 0

is a quasi dual-Baer module from [11, Example 2.9(iii)], but it is not dual-Baer.

(ii) Let A = Z and M = Hp Z, (p be a prime) be an A-module. The evidence is clear that
M a PQ dual-Baer A-module, while from [11, Example 3.4], M is not a quasi dual-Baer
module.

Proposition 2.10. A module M is a quasi dual-Baer if and only if M is a PQ dual-Baer and gE
has FI-GSSP, where E = Endgr(M).

Proof. The module M is PQ dual-Baer because it is a quasi dual-Baer module so for sufficient
condition, it only remains to prove that left E-module gE has FI-GSSP. For it, let T' = ;s Ee;
and each e; € S,.(E). Then L;cpEe; = LicaDg(e;M) = Dg(Eicae;M) = Ee for some
e € S,(E). Therefore E-module gE has FI-GSSP.

Conversely, let N < M. Since Dg(N) = L,enDe(En) and M is PQ dual-Baer module, there
isane; € S, (E) for each 4 such that Dg(En) = Ee;. By hypothesis, gE has FI-GSSP, therefore
Dg(N) = Z;cpEe; <® E. Hence M is a quasi dual-Baer module. O

Proposition 2.11. [f the module M is finitely generated and E is a principal ideal domain with
SSP, then the following statements are equivalent:

(1) M is a dual-Baer;
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(2) M is a quasi dual-Baer;
(3) M is a PQ dual-Baer.
Proof. 1t follows from Proposition 2.5. O

In the following proposition we show that direct summand is inherited for PQ dual-Baer
modules.

Proposition 2.12. Let X be a direct summand of a module M. Then X is PQ dual-Baer if M is
PO dual-Baer.

Proof. Let E = Endp(M), X <® M and x € X. So we have f> = f € E such that X = fM
and T' = End(X) = fEf. Since M is a PQ dual-Baer module, there exists a ¢ € S,.(E) such
that I = Dg(Ez) = Eg. Since by Lemma 1.3 of [1], I < E, therefore fIf = fEf N I.
Since g € S, (E), gf = gfg. Therefore fIf = fEgf = fEgfg = (fEgf)(fg) which implies
fIf <® fEf. Now we claim that Dy (Tx) = fIf. Forit,let h € I, fhf(M) = fh(fM) =
Fh(X) C f(Ezx) C (fEf)z = Tz which yields fhf(M) € Dy(Tx). Thus fIf C Dp(Tx).
Now assume that 0 # f¢f € fEf such that f¢f(X) C Tx where ¢ € E. Since X = fM,

fhf(M) = fof(X) CTx C Ex,s0 fof € De(Ex) = 1. But fof = ffoff = f(f¢f)f €
fIf. Therefore Dy (Tx) = fIf forall z € X. Hence X is a PQ dual-Baer module.

Proposition 2.13. The following assumptions are equivalent for a module M :
(1) Every S-module is PQ dual-Baer;
(2) Every projective S-module is PQ dual-Baer;
(3) The free module S'°) is PQ dual-Baer;
(4) The S is semisimple and Artinian ring.
Proof. The implications (1) = (2) = (3) are easy to verify.
(3) = (4) For every right ideal J of S, there must be a free module K s and an epimorphism 7
for which 7(K) = J. Since K <® S5, Kg is PQ dual-Baer.

Thus nKg = J <® Kg which implies that J <® Sg. Hence ring S is semisimple and Artinian.
(4) = (1) It follows easily. o

Now we characterize PQ dual-Baer module over regular ring.

Proposition 2.14. The following conditions are equivalent:
(a) Each finitely generated free S-module is PQ dual-Baer;
(b) The free S-module S is PQ dual-Baer where n € N;
(c) S is regular ring.

Proof. (a) = (b) and (b) = (c) are trivial.

(¢) = (a). It is obvious to have that End(S™) = Mat, (R) for every n € N. Since ring S is
regular, so Mat, (S) is also regular ring. Hence S is PQ dual-Baer R-module. O

Proposition 2.15. If a ring S is regular which is neither semisimple nor Artinian. Then each free
S-module is PQ dual-Baer while it is not dual-Baer.

Proof. From proposition 2.14, every free module M which is finitely generated over the ring
S is a PQ dual-Baer. Since S is not semisimple, by [12, Corollary 2.10], module M is not PQ
dual-Baer. O

Example 2.16. The ring J = II°,Z, (where p is a prime) is regular which is clearly neither
semisimple nor Artinian. Hence from Proposition 2.15, every finitely generated free J-module
M is a PQ dual-Baer module but M is not dual-Baer.

Now we provide an example which shows that direct sum of PQ dual-Baer modules, generally
need not be a PQ dual-Baer module.
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Example 2.17.If A = Z, P = Z,~ and QQ = Z,, (p is any prime). Then P and ) are PQ dual-
Baer A-modules. While by [9, Example 2.10], P & @ is not an A dual-Rickart module. Hence
P @ @ can not be a PQ dual-Baer A-module.

We discuss in the following proposition, when direct sum of two PQ dual-Baer modules is
PQ dual-Baer.

Proposition 2.18. If M, and M, are PQ dual-Baer modules such that Hom(M,, , Mg) = 0 for
every a # 3, a, B = 1,2, then My ® M, is a PQ dual-Baer module.

Proof. Let M = M; & M, with E; = End(M,) and E; = End(M,). Since Hom(M, Mg) =0
for every o # 8, E = End(M) = E; @ E,. Therefore, for every m = (my, my) € M,
Dg(Em) = Dg,(Eym;) ® Dg,(E;m;). From hypothesis M; is PQ dual-Baer module, so there
exists 2 = e; € E; such that Dg, (E;m;) = Ee; for each i = 1,2. Thus Dg(Em) = Eje; @

Ee; <9 E. Hence M is a PQ dual-Baer module. O

In the following result we study when direct sum of arbitrary copies of PQ dual-Baer modules
is PQ dual-Baer.

Theorem 2.19. Let M be a PQ dual-Baer module with ring of endomorphisms E of M. Then
@,c1 Mi where M; = M for each i € 1, is PQ dual-Baer if gE has generalized summand sum
property (GSSP).

Proof. Let module M be PQ dual-Baer and M) = @D,c1 M; where M; = M for each i € 1
and I is an arbitrary index set. First we assume I = N. Let m = (m;);e1 € M @ and E;; denote
a (I x I) matrix of H = End(MW) with 1g (identity element of E) at (i, j)th position and 0
on remaining places. Clearly, E;;(m) € M (D such that m; at i-th position and O elsewhere. So
there is a n € N such that for each [ > n, m; = 0, that means Ej;(m) = 0, which implies m =
X Ei;(m). Then from the claim of [8, Theorem 3.8], we get H(m) = @, 1(ZiL, Eji(m;)),
where E;; = Hom(M;, M;) = E. Consider X; = X | E;;(m;) for every j € L. It is routine
to check that DE(X]) = DE(E?ZIE”(TTL])) = Z?ZIDE(E],(m])) Since M is PQ dual-Baer
module and gE has GSSP, from Proposition 2.5, Dg(X;) = Ee for some 2 = ¢ € E. Let
1y be the identity of H and take ely € H which is a diagonal matrix having e at diagonals.
Then ely is an idempotent element of H. Since ely(D;;(X;)) = D, cre(X;) € B;er(Xy),
Helna C Du(@;c; X;). Againlet v = [¢y;] € Du(D,cr X;), then (D1 Xj) € Djer X
which implies that ¢y,;(X;) C X forall j,k € I. So ¢; € Dg(X;) = Ee for some idempotent
e € E because M is PQ dual-Baer module. Therefore 1;; = ;e for all j,k € I. Hence
Du(@;c X;) € Helm. So we get Du(@ ;o1 X;) = Hely. Thus Dy (Hm) = Hely. By
following the similar steps it is easy to prove the theorem when I is an arbitrary index set. O

3 Endomorphism ring of PQ dual-Baer modules

This section is devoted for study of ring of endomorphisms of a PQ dual-Baer module.
Following proposition suggests that ring of endomorphisms of a PQ dual-Baer module is PQ
Baer.

Proposition 3.1. Let M be a module and E be its endomorphism ring. Then E is PQ Baer ring
if M is PQ dual-Baer module.

Proof. Let M be a PQ dual-Baer module, m € M and T be a principal ideal of E. Then there
exists f> = f € E such that Dg(Tm) = Ef. Forevery g € T, Im(g) C Loeperm)Im(g) =
YoeefIm(g) = En(Ef) = fM. So forevery g € T, (1 — f)¢M = 0 which implies that
(1 — f)g = 0. Therefore (1 — f) € Ig(T"). For E to be a PQ Baer ring, it is enough to prove
that [g(7') = E(1 — f). Foritlet, h € Ig(T) then h(Dg(Tm)) =0 = h(Ef) =0 = hf = 0.
Therefore h = h(1 — f) € E(1 — f). Thus ig(T) € E(1 — f). Now assume that h € E(1 — f)
then for every m € M, hT(m) = h(1 — f)T(m) C h(1 — f)(fM) because for every h € T,
Im(h) € fM.So hT(m) = 0foreverym € M = hT =0 = h € Ig(T). Hence E is PQ Baer
ring. o
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It is not necessary for the converse of the above proposition to be true. In fact, the Z-module
Z is not a PQ dual-Baer while EndzZ ~ Z is a PQ Baer ring.
In the next proposition we find the condition under which endomorphism ring of PQ dual-Baer
module is a PQ dual-Baer.

Proposition 3.2. Let M be a finitely generated PQ dual-Baer module with E = Endr(M) and
eE has SSP, then endomorphism ring of M is PQ dual-Baer.

Proof. Let M is PQ dual-Baer module with f € E. Assume that M is generated by m, my, ..., m,,
where each m; € M and n € N. For every ¢ € Dg(E¢), ¥(E¢) C E¢ and ¢((E¢)M) C
(E¢)M. Thus ¥((E¢)(m;)) C (E¢)(m;) for all 1 < i < n. Therefore ¢» € Dg(E(¢(m;))) for
each i. Since M is PQ dual-Baer module, there exist e; € S, (E) such that Dg(E(¢(m;))) = Ee;
forall 1 < i < n. Hence ¢ € X" | Ee; and so Dg(E¢) C £I" | Ee,;. Now let f € X | Ee; and
m € M be arbitrary. Then for r;, € R (1 < i < n), f(E¢(m)) = f(ZL,Ep(m;r;)) =
f(Z, (E¢(my)r;)). Clearly X, (E¢(m;))r; is finitely generated submodule of M. Since
M is PQ dual-Baer module and gE has SSP so by proposition 2.5, f(X,(E¢(m;)r;)) C
I (E¢(m;))r;. Thus f(E¢) C E¢ that implies f € Dg(E¢). Hence X | Ee; = Dg(E¢).
Since gE has SSP, Dg(E¢) <% E. Hence E is a PQ dual-Baer ring. m

Proposition 3.3. If X = @, .; M\ where My = M for each X € 1. If the endomorphism ring of
X is a PQ dual-Baer ring then E = Endgr(M) is a quasi dual-Baer ring..

Proof. Let M be a PQ dual-Baer module with E = End(M) and T" < E. Consider I = |T|
and H = End(X). Clearly CFMg C H C Mat1(E). Set ¢ = diag[i1,¢2, ..., ¥i, ...Jic1 € H.
We claim that Dyg(Hvy) = H N Mati(Zy,erDe(Ey;)). Foritlet ¢ = [¢;;] € Du(Hy)
be arbitrary. Then ¢(Hwy) C Hip. Denote by E;; a matrix in H with 1g at (4,7)-th position
and O on remaining places. Then E;;¢E;;(HE Y Er,) € HEp Y Er, = ¢i(Ey) C Eyy
for each i,j,k € I. Thus ¢;; € Xy, crDr(Eyy) for every i,j € I. Therefore ¢ € HN
Maty (X, er D (Evy)). For the reverse inclusion, let 0 = [0;;] € HN Maty(Zy, e Dr(Ey))
be arbitrary. Then 0;; € Xy, crDr(Evy) for every i,j € I. Thus 6;;(Eyy) C Eqy for all
i,j,k € L. Therefore 6(Ht) C Hi. Hence, § € Dy(Hy) which proves our claim. Now
assume that P = X, crDg(Ety). So from our claim H N Maty(P) = Du(H). Since
from assumption H is PQ dual-Baer ring, there must exist F> = F = [F;;] € H for that
Du(Hy) = HF. It clearly follows that E;FFE;; = Fy;Fy; is a right semicentral idempotent
P = PF;,; CEE;; forall i € I. Since HF = H + MatI(P), EF;; C P. Hence P = EFE;; with
F;; € E. Therefore, E is quasi dual-Baer ring. O
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