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Abstract In this paper, we generalize quasi dual-Baer module to principally quasi dual-Baer
(PQ dual-Baer) module. A module M is said to be PQ dual-Baer if for each cyclic submodule
X of M , DE(X) = {f ∈ E : Im(f) ⊆ X} is a direct summand of E = End(M). We
study some properties of PQ dual-Baer modules. We find some conditions for which the direct
sum of arbitrary copies of PQ dual-Baer modules is PQ dual-Baer. We also study the ring of
endomorphisms of PQ dual-Baer modules.

1 Introduction

All over the article we consider the ring R to be associative ring with identity element and mod-
ule M to be unital. A ring R, in which annihilator of each right ideal (ideal) in R is a direct
summand of R is known as Baer (quasi-Baer) ring ([4], [5], [7]). Baer ring is an attractive topic
for researchers because it has a connection to functional analysis ([2], [4], [7]). A principally
quasi-Baer (in short, PQ Baer) ring was defined by Birkenmeier et al. [3], which was actually
a generalization of quasi-Baer ring. In theory, the ring R is described as PQ Baer if right anni-
hilator of every principal ideal of R in R is a direct summand of R. Rizvi and Roman in [10],
defined Baer like properties for an R-module M and called a module M Baer (quasi-Baer) if the
left annihilator of every submodule (fully invariant) of M in E = End(M) is a direct summand
of E ([4], [10]). Motivated by this nice structure of Baer module much more work have been
done by many authors in literature (see, [1], [4], [6], [8], [10], [12], [13]). In [13], Ungor et al.
introduced PQ-Baer modules and Dana et al. [6] and G. Lee [13] also studied PQ-Baer modules
in different aspects. According to them the left annihilator of Em (or cyclic submodule of M ) in
E = EndR(M) for everym ∈M must be a direct summand of E for a moduleM to be PQ-Baer.
The dual concept of Baer modules is being considered for extending the theory of Baer modules.
In [12], Tutuncu et al. presented the idea of dual notion of Baer modules and termed a module
M to be dual-Baer if for every submodule X of M , DE(X) = {α ∈ E : Im(α) ⊆ X} = Ee
for some e2 = e ∈ E = EndR(M). The dual-Baer module have some nice connections with
semisimple ring, Harada ring and lifting module (see [12]). Dual concept of Baer modules also
have an attraction for further study. So in [11], Tribek et al. introduced quasi dual-Baer mod-
ule and they defined a module M as quasi dual-Baer if for every ideal T of E = EndR(M),
EM (T) = Σf∈TIm(f) is a direct summand of M .
Motivated by above generalizations of Baer modules, we introduce the class of principally quasi
(in short, PQ) dual-Baer modules which properly contain the class of quasi dual-Baer modules.
We define the module M to be PQ dual-Baer if for all m ∈ M , DE(Em) = Ef for some
f2 = f ∈ E = EndR(M).
In section 2, we define and study PQ dual-Baer modules. By providing an example we show
that a PQ dual-Baer module need not be a quasi dual-Baer module (see Example 2.9). While a
PQ dual-Baer module whose ring of endomorphisms has FI-GSSP is a quasi dual-Baer module
(see Proposition 2.10). It is proved in (Proposition 2.12) that inheritance of PQ dual-Baer prop-
erties occur through direct summand of PQ dual-Baer modules. We characterize regular (von
Neumann) and semisimple Artinian ring in terms of the PQ dual-Baer module (see Proposition
2.13 and Proposition 2.14). We find conditions over which the direct sum of PQ dual-Baer mod-
ules is PQ dual-Baer (see Proposition 2.18 and Theorem 2.19). In the last section, we study
the endomorphism ring of PQ dual-Baer modules. It is shown that the ring of endomorphisms
of a PQ dual-Baer module generally is a PQ-Baer ring (see Proposition 3.1) while it is not in
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general, PQ dual-Baer ring. By taking the class of finitely generated PQ dual-Baer modules, we
prove that the ring of endomorphisms E = EndR(M) of M is PQ dual-Baer if EE has SSP (see
Proposition 3.2).
The notations ⊆, ≤, ≤⊕, ≤e and E will be fixed to denote a subset, a submodule, a direct sum-
mand, an essential submodule and a submodule invariant by endomorphism (or an ideal) respec-
tively. For right R-module X , rX(T) = {x ∈ X : T(x) = 0} and lE(Y ) = {α ∈ E : α(Y ) = 0}
where T ≤ EE and Y ≤ X , will denote right annihilator in X of T and left annihilator in
E of Y respectively. We also denote DE(Y ) = {α ∈ E : Im(α) ⊆ Y } for Y ⊆ X and
EX(T) =

∑
α∈T Im(α) for T ⊆ E and E = EndR(M) (ring of endomorphisms of an R-

module M ).

2 Principally quasi dual-Baer module

Definition 2.1. We define a module M principally quasi (in short, PQ) dual-Baer if for each
cyclic submodule X of M , DE(X) is a direct summand of E.
In other words the module M is PQ dual-Baer if for every m ∈ M there is a f2 = f ∈ E such
that DE(Em) = Ef . Generally we say a ring R right PQ dual-Baer if RR is a PQ dual-Baer
right R-module.

Example 2.2. (i) The Z-modules Q and Zp∞ are PQ dual-Baer.

(ii) An injective indecomposable module is PQ dual-Baer module.

(iii) Every dual-Baer is a PQ dual-Baer module.

(iv) RR is a PQ dual-Baer right R-module if R is a right regular ring.

(v) Every PQ dual-Baer module is dual-Rickart.

Let M be an R-module and E = EndR(M). An idempotent f2 = f ∈ E is right (left)
semicentral if fg = fgf (gf = fgf ) for each g ∈ E. We fix the set Sr(E) to denote idempotent
elements of E which are right semicentral also.

Lemma 2.3. If M is a PQ dual-Baer module with E = EndR(M) then for m ∈ M , there is a
f ∈ Sr(E) such that DE(Em) = Ef .

Proof. Let M be a PQ dual-Baer module and m ∈ M . Then there exists f2 = f ∈ E such
that DE(Em) = Ef . Since Efφ(Em) ⊆ Ef(Em) ⊆ Em, for every φ ∈ E. Therefore
Efφ ⊆ DE(Em), which implies that fφ = fφf . Hence f ∈ Sr(E).

Remark 2.4. From Lemma 2.3 it is clear, if M is PQ dual-Baer module then the idempotent
f ∈ E = EndR(M) such that DE(Em) = Ef is right semicentral.

A moduleX has summand sum property (SSP) (generalised summand sum property (GSSP)),
if sum of finitely (resp. infinitely) many summands of X is also a summand of X . Furthermore
a ring E of endomorphisms has SSP (GSSP) if E-module EE has SSP (GSSP). While X has FI-
SSP (FI-GSSP) if sum of summands which are fully invariant as well in X , is also a summand
of X .
The following proposition shows when finitely generated modules are PQ dual-Baer.

Proposition 2.5. If a module M is PQ dual-Baer with endomorphism ring E = EndR(M) and
EE has SSP thenDE(X) is a direct summand of E, for every submoduleX =< x1, x2, ..., xn >
of M .

Proof. Let X =
∑n
i=1 Exi be a submodule generated by xi ∈ M where (1 6 i 6 n) and

(n ∈ N). It is routine to check that DE(X) = DE(Σni=1Exi) = Σni=1DE(Exi). Since M is PQ
dual-Baer therefore from Lemma 2.3, there exists e2

i = ei ∈ Sr(E) such that DE(Exi) = Eei
for every 1 6 i 6 n. Thus DE(X) = Σni=1Eei. Since EE has SSP, Σni=1Eei is also a direct
summand of E.

Proposition 2.6. For a module M the following conditions are equivalent



Principally quasi dual-Baer modules 3

(a) M is a PQ dual-Baer module;

(b) For any cyclic submodule P ≤ M , there is a decomposition M = P1 ⊕ P2 with P1 ≤⊕ P
and Hom(M, P ∩ P2) = 0.

Proof. (a) ⇒ (b). Let P be a cyclic submodule of M and E = EndR(M). Then by (a),
there must be an element f2 = f ∈ E, for which DE(P ) = Ef . Suppose that P1 = fM and
P2 = (1−f)M which impliesM = P1⊕P2. AlsoEM (DE(P )) = EM (Ef) = fM = P1 ≤⊕ P ,
therefore P = P1 ⊕ (P ∩ P2). Now take, g ∈ E be such that g(M) ⊆ P ∩ P2 which implies that
g ∈ DE(P ). So there exists h ∈ E such that g = hf . Thus g(M) ⊆ P1. Since g(M) ⊆ P2 which
yields that g = 0. Hence HomR(M, P ∩ P2) = 0.
(b) ⇒ (a.) Let E = End(M) and P = Em where m ∈ M . Clearly P is cyclic submodule
of M so by condition (b), there is a decoposition of M such that P1 ⊕ P2 = M , P1 ⊆ P and
Hom(M, P ∩ P2) = 0. Let P1 = fM for some idempotent f2 = f ∈ E. Then it is clear that
Ef ⊆ DE(P ). Let g ∈ DE(P ) and π be a projection map from P to P ∩P2. Then πφ = 0 which
implies that g(M) ⊆ f(M). Thus g(1 − f) = 0 ⇒ g = gf ∈ Ef which gives DE(P ) ⊆ Ef .
Therefore DE(P ) = Ef . Hence M is PQ dual-Baer module.

Corollary 2.7. If all the cyclic submodules of M are direct summands of M then M is a PQ
dual-Baer module.

Corollary 2.8. In the case of an indecomposable module X , the following are equivalent

(1) X is PQ dual-Baer module;

(2) Hom(X, Y ) = 0, for every cyclic submodule Y of X .

Proof. (1)⇒ (2) easily seen from Proposition 2.6.
(2)⇒ (1) Let P be a cyclic submodule of M and E = EndR(M). Since M is indecomposable
and Hom(M P ) = 0, DE(M) = E and DE(P ) = 0. Hence DE(P ) ≤⊕ E which proves that M
is PQ dual-Baer module.

It is clear from the definition that the following hierarchy is true in general.
Dual-Baer⇒ Quasi dual-Baer⇒ PQ dual-Baer.
We provide some examples that show the converse of the above implications need not be true.

Example 2.9. (i) Consider the ring R =

(
J K/J

0 J

)
, where J is a simple domain that is not

a division ring and K is the ring of quotients of J . Then the R-module M =

(
J K/J

0 0

)
is a quasi dual-Baer module from [11, Example 2.9(iii)], but it is not dual-Baer.

(ii) Let A = Z and M =
∏
p Zp (p be a prime) be an A-module. The evidence is clear that

M a PQ dual-Baer A-module, while from [11, Example 3.4], M is not a quasi dual-Baer
module.

Proposition 2.10. A module M is a quasi dual-Baer if and only if M is a PQ dual-Baer and EE
has FI-GSSP, where E = EndR(M).

Proof. The module M is PQ dual-Baer because it is a quasi dual-Baer module so for sufficient
condition, it only remains to prove that left E-module EE has FI-GSSP. For it, let T = Σi∈ΛEei
and each ei ∈ Sr(E). Then Σi∈ΛEei = Σi∈ΛDE(eiM) = DE(Σi∈ΛeiM) = Ee for some
e ∈ Sr(E). Therefore E-module EE has FI-GSSP.
Conversely, let N E M . Since DE(N) = Σn∈NDE(En) and M is PQ dual-Baer module, there
is an ei ∈ Sr(E) for each i such that DE(En) = Eei. By hypothesis, EE has FI-GSSP, therefore
DE(N) = Σi∈ΛEei ≤⊕ E. Hence M is a quasi dual-Baer module.

Proposition 2.11. If the module M is finitely generated and E is a principal ideal domain with
SSP, then the following statements are equivalent:

(1) M is a dual-Baer;
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(2) M is a quasi dual-Baer;

(3) M is a PQ dual-Baer.

Proof. It follows from Proposition 2.5.

In the following proposition we show that direct summand is inherited for PQ dual-Baer
modules.

Proposition 2.12. Let X be a direct summand of a module M . Then X is PQ dual-Baer if M is
PQ dual-Baer.

Proof. Let E = EndR(M), X ≤⊕ M and x ∈ X . So we have f2 = f ∈ E such that X = fM
and T = End(X) ∼= fEf . Since M is a PQ dual-Baer module, there exists a g ∈ Sr(E) such
that I = DE(Ex) = Eg. Since by Lemma 1.3 of [1], I E E, therefore fIf = fEf ∩ I .
Since g ∈ Sr(E), gf = gfg. Therefore fIf = fEgf = fEgfg = (fEgf)(fg) which implies
fIf ≤⊕ fEf . Now we claim that DT (Tx) = fIf . For it, let h ∈ I , fhf(M) = fh(fM) =
fh(X) ⊆ f(Ex) ⊆ (fEf)x = Tx which yields fhf(M) ∈ DT (Tx). Thus fIf ⊆ DT (Tx).
Now assume that 0 6= fφf ∈ fEf such that fφf(X) ⊆ Tx where φ ∈ E. Since X = fM ,
fhf(M) = fφf(X) ⊆ Tx ⊆ Ex, so fφf ∈ DE(Ex) = I . But fφf = ffφff = f(fφf)f ∈
fIf . Therefore DT (Tx) = fIf for all x ∈ X . Hence X is a PQ dual-Baer module.

Proposition 2.13. The following assumptions are equivalent for a module M :

(1) Every S-module is PQ dual-Baer;

(2) Every projective S-module is PQ dual-Baer;

(3) The free module S(S) is PQ dual-Baer;

(4) The S is semisimple and Artinian ring.

Proof. The implications (1)⇒ (2)⇒ (3) are easy to verify.
(3) ⇒ (4) For every right ideal J of S, there must be a free module KS and an epimorphism π
for which π(K) = J . Since K ≤⊕ S(S), KS is PQ dual-Baer.
Thus πKS = J ≤⊕ KS which implies that J ≤⊕ SS . Hence ring S is semisimple and Artinian.
(4)⇒ (1) It follows easily.

Now we characterize PQ dual-Baer module over regular ring.

Proposition 2.14. The following conditions are equivalent:

(a) Each finitely generated free S-module is PQ dual-Baer;

(b) The free S-module S(n) is PQ dual-Baer where n ∈ N;

(c) S is regular ring.

Proof. (a)⇒ (b) and (b)⇒ (c) are trivial.
(c) ⇒ (a). It is obvious to have that End(S(n)) ∼= Matn(R) for every n ∈ N. Since ring S is
regular, so Matn(S) is also regular ring. Hence S(n) is PQ dual-Baer R-module.

Proposition 2.15. If a ring S is regular which is neither semisimple nor Artinian. Then each free
S-module is PQ dual-Baer while it is not dual-Baer.

Proof. From proposition 2.14, every free module M which is finitely generated over the ring
S is a PQ dual-Baer. Since S is not semisimple, by [12, Corollary 2.10], module M is not PQ
dual-Baer.

Example 2.16. The ring J = Π∞i=1Zp (where p is a prime) is regular which is clearly neither
semisimple nor Artinian. Hence from Proposition 2.15, every finitely generated free J-module
M is a PQ dual-Baer module but M is not dual-Baer.

Now we provide an example which shows that direct sum of PQ dual-Baer modules, generally
need not be a PQ dual-Baer module.
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Example 2.17. If A = Z, P = Zp∞ and Q = Zp (p is any prime). Then P and Q are PQ dual-
Baer A-modules. While by [9, Example 2.10], P ⊕ Q is not an A dual-Rickart module. Hence
P ⊕Q can not be a PQ dual-Baer A-module.

We discuss in the following proposition, when direct sum of two PQ dual-Baer modules is
PQ dual-Baer.

Proposition 2.18. If M1 and M2 are PQ dual-Baer modules such that Hom(Mα ,Mβ) = 0 for
every α 6= β, α, β = 1, 2, then M1 ⊕M2 is a PQ dual-Baer module.

Proof. Let M =M1⊕M2 with E1 = End(M1) and E2 = End(M2). Since Hom(MαMβ) = 0
for every α 6= β, E = End(M) = E1 ⊕ E2. Therefore, for every m = (m1, m2) ∈ M ,
DE(Em) = DE1(E1m1)⊕DE2(E2m2). From hypothesis Mi is PQ dual-Baer module, so there
exists e2

i = ei ∈ Ei such that DEi
(Eimi) = Eei for each i = 1, 2. Thus DE(Em) = E1e1 ⊕

E2e2 ≤⊕ E. Hence M is a PQ dual-Baer module.

In the following result we study when direct sum of arbitrary copies of PQ dual-Baer modules
is PQ dual-Baer.

Theorem 2.19. Let M be a PQ dual-Baer module with ring of endomorphisms E of M . Then⊕
i∈IMi where Mi = M for each i ∈ I, is PQ dual-Baer if EE has generalized summand sum

property (GSSP).

Proof. Let module M be PQ dual-Baer and M (I) =
⊕

i∈IMi where Mi = M for each i ∈ I

and I is an arbitrary index set. First we assume I = N. Let m = (mi)i∈I ∈M (I) and Eij denote
a (I × I) matrix of H = End(M (I)) with 1E (identity element of E) at (i, j)th position and 0
on remaining places. Clearly, Eij(m) ∈ M (I) such that mj at i-th position and 0 elsewhere. So
there is a n ∈ N such that for each l > n, ml = 0, that means Ell(m) = 0, which implies m =
Σni=1Eii(m). Then from the claim of [8, Theorem 3.8], we get H(m) =

⊕
j∈I(Σ

n
i=1Eji(mi)),

where Eji = Hom(Mi, Mj) = E. Consider Xj = Σni=1Eji(mi) for every j ∈ I. It is routine
to check that DE(Xj) = DE(Σni=1Eji(mj)) = Σni=1DE(Eji(mj)). Since M is PQ dual-Baer
module and EE has GSSP, from Proposition 2.5, DE(Xj) = Ee for some e2 = e ∈ E. Let
1H be the identity of H and take e1H ∈ H which is a diagonal matrix having e at diagonals.
Then e1H is an idempotent element of H. Since e1H(

⊕
j∈I(Xj)) =

⊕
j∈I e(Xj) ⊆

⊕
j∈I(Xj),

He1H ⊆ DH(
⊕

j∈IXj). Again let ψ = [ψkj ] ∈ DH(
⊕

j∈IXj), then ψ(
⊕

j∈IXj) ⊆
⊕

j∈IXj

which implies that ψkj(Xj) ⊆ Xj for all j, k ∈ I. So ψkj ∈ DE(Xj) = Ee for some idempotent
e ∈ E because M is PQ dual-Baer module. Therefore ψkj = ψkje for all j, k ∈ I. Hence
DH(

⊕
j∈IXj) ⊆ He1H. So we get DH(

⊕
j∈IXj) = He1H. Thus DH(Hm) = He1H. By

following the similar steps it is easy to prove the theorem when I is an arbitrary index set.

3 Endomorphism ring of PQ dual-Baer modules

This section is devoted for study of ring of endomorphisms of a PQ dual-Baer module.
Following proposition suggests that ring of endomorphisms of a PQ dual-Baer module is PQ
Baer.

Proposition 3.1. Let M be a module and E be its endomorphism ring. Then E is PQ Baer ring
if M is PQ dual-Baer module.

Proof. Let M be a PQ dual-Baer module, m ∈ M and T be a principal ideal of E. Then there
exists f2 = f ∈ E such that DE(Tm) = Ef . For every g ∈ T , Im(g) ⊆ Σg∈DE(Tm)Im(g) =
Σg∈EfIm(g) = EM (Ef) = fM . So for every g ∈ T , (1 − f)φM = 0 which implies that
(1 − f)g = 0. Therefore (1 − f) ∈ lE(T ). For E to be a PQ Baer ring, it is enough to prove
that lE(T ) = E(1 − f). For it let, h ∈ lE(T ) then h(DE(Tm)) = 0 ⇒ h(Ef) = 0 ⇒ hf = 0.
Therefore h = h(1− f) ∈ E(1− f). Thus lE(T ) ⊆ E(1− f). Now assume that h ∈ E(1− f)
then for every m ∈ M , hT (m) = h(1 − f)T (m) ⊆ h(1 − f)(fM) because for every h ∈ T ,
Im(h) ∈ fM . So hT (m) = 0 for every m ∈ M ⇒ hT = 0⇒ h ∈ lE(T ). Hence E is PQ Baer
ring.
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It is not necessary for the converse of the above proposition to be true. In fact, the Z-module
Z is not a PQ dual-Baer while EndZZ ' Z is a PQ Baer ring.
In the next proposition we find the condition under which endomorphism ring of PQ dual-Baer
module is a PQ dual-Baer.

Proposition 3.2. Let M be a finitely generated PQ dual-Baer module with E = EndR(M) and
EE has SSP, then endomorphism ring of M is PQ dual-Baer.

Proof. LetM is PQ dual-Baer module with f ∈ E. Assume thatM is generated bym1,m2, ...,mn

where each mi ∈ M and n ∈ N. For every ψ ∈ DE(Eφ), ψ(Eφ) ⊆ Eφ and ψ((Eφ)M) ⊆
(Eφ)M . Thus ψ((Eφ)(mi)) ⊆ (Eφ)(mi) for all 1 6 i 6 n. Therefore ψ ∈ DE(E(φ(mi))) for
each i. SinceM is PQ dual-Baer module, there exist ei ∈ Sr(E) such thatDE(E(φ(mi))) = Eei
for all 1 6 i 6 n. Hence ψ ∈ Σni=1Eei and so DE(Eφ) ⊆ Σni=1Eei. Now let f ∈ Σni=1Eei and
m ∈ M be arbitrary. Then for ri ∈ R (1 6 i 6 n), f(Eφ(m)) = f(Σni=1Eφ(miri)) =
f(Σni=1(Eφ(mi)ri)). Clearly Σni=1(Eφ(mi))ri is finitely generated submodule of M . Since
M is PQ dual-Baer module and EE has SSP so by proposition 2.5, f(Σni=1(Eφ(mi)ri)) ⊆
Σni=1(Eφ(mi))ri. Thus f(Eφ) ⊆ Eφ that implies f ∈ DE(Eφ). Hence Σni=1Eei = DE(Eφ).
Since EE has SSP, DE(Eφ) ≤⊕ E. Hence E is a PQ dual-Baer ring.

Proposition 3.3. If X =
⊕

λ∈IMλ where Mλ =M for each λ ∈ I. If the endomorphism ring of
X is a PQ dual-Baer ring then E = EndR(M) is a quasi dual-Baer ring..

Proof. Let M be a PQ dual-Baer module with E = End(M) and T E E. Consider I = |T |
and H = End(X). Clearly CFME ⊆ H ⊆ MatI(E). Set ψ = diag[ψ1, ψ2, ..., ψi, ...]i∈I ∈ H.
We claim that DH(Hψ) = H ∩ MatI(Σψi∈TDE(Eψi)). For it let φ = [φij ] ∈ DH(Hψ)
be arbitrary. Then φ(Hψ) ⊆ Hψ. Denote by Eii a matrix in H with 1E at (i, i)-th position
and 0 on remaining places. Then EiiφEjj(HEkkψEkk) ⊆ HEkkψEkk ⇒ φij(Eψk) ⊆ Eψk
for each i, j, k ∈ I. Thus φij ∈ Σψk∈TDE(Eψk) for every i, j ∈ I. Therefore φ ∈ H ∩
MatI(Σψk∈TDE(Eψk)). For the reverse inclusion, let θ = [θij ] ∈ H ∩MatI(Σψk∈TDE(Eψk))
be arbitrary. Then θij ∈ Σψk∈TDE(Eψk) for every i, j ∈ I. Thus θij(Eψk) ⊆ Eψk for all
i, j, k ∈ I. Therefore θ(Hψ) ⊆ Hψ. Hence, θ ∈ DH(Hψ) which proves our claim. Now
assume that P = Σψk∈TDE(Eψk). So from our claim H ∩ MatI(P ) = DH(Hψ). Since
from assumption H is PQ dual-Baer ring, there must exist F 2 = F = [Fij ] ∈ H for that
DH(Hψ) = HF . It clearly follows that EiiFEii = FiiEii is a right semicentral idempotent
of EiiHEii. Thus PEii = Eii(H ∩ MatI(P ))Eii = EiiHFEii = EiiHFEiiFEii. Thus
P = PFii ⊆ EEii for all i ∈ I. Since HF = H+MatI(P ), EFii ⊆ P . Hence P = EEii with
Fii ∈ E. Therefore, E is quasi dual-Baer ring.
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