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Abstract For a local Noetherian ring (B,n) with infinite residue fieldB/n andH is a finitely
generated B-module, the ideals L ⊆ K with the property that Km+1H = LKmH is called the
reduction of K for H . Some of results on reduction of ideals are extended reduction of ideals for
H . Moreover, we give analogous result of P-A for reduction of K for H .

1 Introduction

In the Noetherian commutative ring B with identity, K is the ideal of B, the ideals play a sig-
nificant role in the theory of reduction. It links the isolated complete intersection singularities
theory, the Rees algebra and to study linear systems of divisors on non singular surfaces. The
Rees algebra of K is defined by B(K) = ⊕m≥0K

m. There are several interesting relationship
that holds between invariants of reduction of ideals. Many such relations are proved in the paper
[8] of Rees. Many results have been done to generalize some of the work on reduction of ideals
to local ring of higher dimension [9], [10],[11][15].

The modules in the reduction theory are not just a generalization of ideals. In some cases such
as formation of tensor products, products, quotients are closed for modules but not for ideals.
These obstacles have been forcing the module theoretic setup to study of reduction of ideals for
modules. The construction of the reduction and the Rees algebras of ideals for modules was
initiated by Sharp ( [1], [2]). He studied general properties of this algebra, its behavior under
annihilator of a module, extension of a ring of scalars and determinantal trick. Since then, the
theory of reduction of ideals for modules has received a good deal of attention from geometers
and algebraists and has been further refined and generalized. This theory has an interesting
interwining of its structural and numerical aspects. The P-A theorem [3] has been several proofs
beginning with one by Carroll([4], [5]), Caviglia [6], Trung [12], Parmeshvaran Srininasan[7],
Singh, Kumar [13]. A recent paper of Goel, Roy, Verma [14] has a proof of Eakin- Sathaye
theorem, joint reduction and good filtration of ideals.

The objective of this paper is to investigate the properties of reduction of ideals for modules
and to extend some of the results on reduction of ideals to reduction of an ideal for modules.
Using the theory of reduction we will give result of P-A [3] in the reduction of an ideal for a
module. This theorem will show that if for any reduction L of K for module H is generated by

s elements and KmH is generated by less than

(
m+ s

s

)
, then reduction number of K for H is

at most m.

2 Preliminaries

We give some general facts and definitions about reduction of an ideal for a module, Rees algebra
and fiber cone which will be used in Section 3.

Definition 2.1. Let B be a commutative ring with identity, K be an ideal of B and H be B-
module. The Rees algebra of K for H is defined as

B(H) =
⊕
m≥0

KmH.
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Let (B,n) be a Noetherian local ring. Then fiber cone of K for H is defined by

F (H) =
B(H)

nB(H)
'
⊕
m≥0

KmH

nKmH
.

The dimension of the fiber cone ofK forH is called analytic spread ofK forH . It is denoted
by λ(K,H).

Definition 2.2. [15] ” Let H be B-module and the ideals L ⊆ K of a ring B. Then L is said to a
reduction of K for H if L KmH = Km+1H for some m ≥ 0. The reduction number of K for
H is defined as”

rK(H) =Min
{
m ≥ 0 | L KmH = Km+1H

}
Definition 2.3. [15] A reduction L of K is called a minimal reduction of K for H if no ideal is
strictly contained in L a reduction of K for H .

For every ideal L ⊆ K is a reduction of K for H such that λ(K,H) ≤ µ(L), where µ(.) is
the minimal generating function. If residue field is infinite, then λ(K,H) = µ(L).

Proposition 2.4. For a finitely generated H , B-module and L ⊆ K are ideals of a Noetherian
ring B. Then L is a reduction of K in B/ann(H) if and only if L is a reduction of K for H .

Proof. Let L be a reduction of K for H . Then LKmH = Km+1M for some m ≥ 0. Let
H =< x1, . . . , xt >, Km =< y1, . . . , yt > and a ∈ K such that ayi ∈ Km+1 for i = 1, . . . , t.
Therefore,

ayi xi =
t∑

j=1

bij yj xj ,where bij ∈ L for i = 1, . . . , t.

t∑
j=1

(aδij − bij)yjxj = 0,

where δij = 1 if i = j and δij = 0 if i 6= j. By multiplying adjoint of the matrix (aδij − bij),
we have 4xjyj = 0, for all j = 1, . . . , t, where 4 is the determinant of the matrix (aδij − bij).
This implies that 4KmH = 0 and 4Km ⊆ ann(H). Now expansion of 4 shows that L is a
reduction of K in B/ann(H).

Conversely, L is a reduction of K in B/ann(H). Then there exist m > 0 such that Km+1 ⊆
LKm + ann(H). This implies that Km+1H ⊆ LKmH and L is a reduction of K for H .

Definition 2.5. An idealK is said to be nilpotent ideal for H , ifKm ⊆ ann(H) for somem > 0.

Remark 2.6. If an ideal K is a nilpotent ideal forH , then any ideal contained in K is a reduction
of K for H .

Proof. Let L ⊆ K be ideals of a ring B. Since K is a nilpotent ideal for H , Km ⊆ ann(H)
and KmH = 0 for some m > 0. This implies that LKmH = L.0H = Km+1H = 0 and L is a
reduction of K for H .

Proposition 2.7. Let (B,n) be a local Noetherian ring and K be n-primary ideal of B. Suppose
H is a finitely generated B-module. Then dim(H) = 0 if and only if K is a nilpotent for H .

Proof. Let dim(
B

ann(H)
) = dim(H) = 0. Note that (

B

ann(H)
,

n

ann(H)
) is a local Noetherian

ring with dim(
B

ann(H)
) = 0. Therefore

B

ann(H)
is an Artinian ring. Consider the following

chain of ideals of
B

ann(H)

K ⊇ K2 ⊇ · · · ⊇ Km ⊇ Km+1,
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where Km = Km + ann(H)/ann(H). Since
B

ann(H)
is an Artinian ring, Km = Km+1 for

m >> 0. By Nakayama lemma, Km = 0 and Km ⊆ ann(H).
Conversely, suppose K is a nilpotent ideal for H . Then there exist m > 0 such that Km ⊆

ann(H). So that
rad(Km) ⊆ rad(ann(H))

rad(K) ∩ · · · ∩ rad(K) = rad(Km) ⊆ rad(ann(H)) =
⋂

ann(H)⊆X

X,

where X are minimal prime ideals over ann(H). Since K is n-primary ideal, rad(K) = n and

n ⊆ X . Therefore n = X and
n

ann(H)
is the only prime ideal of

B

ann(H)
. Then dim(H) =

dim(
B

ann(H)
) = 0.

3 Reductions for modules

Lemma 3.1. Let (B,n) be a local Noetherian ring. Suppose L ⊂ K are ideals of B and H
is finitely generated B-module. Then L + nK is a reduction of K for H if and only if L is a
reduction of K for H .

Proof. Let L+nK be a reduction ofK forH . Then there existsm ≥ 0 such thatKm+1H = (L+
nK)KmH ⊆ L KmH + nKm+1H ⊆ Km+1H . So equality holds throughout and Km+1H =

L KmH + nKm+1H . We go through modulo L KmH ,
Km+1H

L KmH
=

L KmH + nKm+1H

L KmM
=

n

(
Km+1H

L KmH

)
. By Nakayama lemma,

Km+1H

L KmH
= 0. So that Km+1H = K LmH . Conversely,

if L is a reduction of K for H , then Km+1H = L KmH for some m ≥ 0 and Km+1H =
L KmH ⊆ (L + nK)KmH ⊆ LKmH + nKm+1H ⊆ Km+1H . So equality holds throughout
and L+ nK is a reduction of K for H .

Proposition 3.2. Let (B,n) be a local Noetherian ring, K be an ideal of B and H be finitely
generated B-module. Suppose ui − vi ∈ nK for i = 1, . . . , r. Then (u1, . . . , ur) is a reduction
of K for H if and only if (v1, . . . , vr) is a reduction of K for H .

Proof. Let L = (u1, . . . , ur) be a reduction of K for H . Then L+n K is a reduction of K for H
(Lemma 3.1). Note That ui + nK = vi + nK for i = 1, . . . , r. Therefore, (u1, . . . , ur) + nK =
(v1, . . . , vr)+nK and (v1, . . . , vr)+nK is a reduction of K for H . By Lemma 3.1, (u1, . . . , ur)
is a reduction of K for H .

Proposition 3.3. Let H be a finitely generated B-module and (B,n) be a local Noetherian ring.
Suppose L ⊆ K are ideals of B. Then L = (x1 . . . , xr) is a reduction of K for H if and only if

dim

(
F (H)

(x1, . . . , xr)H

)
= 0.

Proof. Let L be a reduction of K for H . Then there exists m > 0 such that LKmH = Km+1H .
By Lemma 3.1, L + nK is a reduction of K for H . This implies that Km+1H = L KmH +

nKm+1H and the length of module of
KmH

(x1 . . . , xt)Km−1H + nKmH
is equal to zero for m >>

0. Therefore dim
(

F (H)

(x1, . . . , xr)H

)
= 0.

Suppose dim

(
F (H)

(x1, . . . , xr)H

)
= 0. Hence it has finite length and

F (H)

(x1, . . . , xr)H
has

finitely many non zero graded components. This implies that
KmH

(x1 . . . , xt)Km−1H + nKmH
=

0 form >> 0. ThereforeKmH = (x1, . . . , xr)Km−1H+nKmH and going modulo (x1, . . . , xr)Km−1H ,
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we have
KmH

(x1, . . . , xr)Km−1H
=

(x1, . . . , xr)Km−1H + nKmH

(x1, . . . , xr)Km−1H
= n

(
KmH

(x1, . . . , xr)Km−1H

)
.

Then by Nakayama lemma,
KmH

(x1, . . . , xr)Km−1H
= 0. So KmH = (x1, . . . , xr)Km−1H .

Hence (x1, . . . , xr) is a reduction of of K for H .

Theorem 3.4. Suppose that H is a finitely generated B-module and (B,n) is a local Noetherian
ring with infinite residue field B/n := k. Let L = (x1, . . . , xm) ⊆ K be ideals of R. Then there
exists a non empty open subset of ksm, where s ≤ m the set

W =

{

a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm

 ∈ Bs×m(k) |


a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm




x1

x2

.

.

xm

 =


y1

y2

.

.

ys


(y1, . . . , ys)KtH = Kt+1H

}
for all s and m.

Proof. Note that W is a well defined set. If
a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm

 =


b11 . . b1m

b21 . . b2m

. . . .

. . . .

bs1 . . bsm

 ,

then aij − bij ∈ n for all i, j and
a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm




x1

x2

.

.

xm

 =


y1

y2

.

.

ys

&


b11 . . b1m

b21 . . b2m

. . . .

. . . .

bs1 . . bsm




x1

x2

.

.

xm

 =


z1

z2

.

.

zs

.

Then yi = ai1x1 + ai2x2 + · · · + aimxm, zi = bi1x1 + bi2x2 + · · · + bimxm and yi −
zi = (ai1 − bi1)x1 + · · · + (aim − bim)xm. Since aij + n = bij + n and yi − zi ∈ nK,
(z1, . . . , zr)KtH = Kt+1H (Proposition 3.2). So that W is a well defined set. Note that Kt =<
xs1

1 . . . . .x
sm
m | s1+s2+ · · ·+sm = t > andKt+1 =< xs1

1 . . . . .x
sm
m | s1+s2+ · · ·+sm = t+1 >.

Consider the minimal generating sets of K
′t and K

′t+1, where K
′t =

Kt + ann(H)

ann(H)
over

B/ann(H). Then K
′t/nK

′t and K
′t+1/nK

′t+1 are vector spaces over B/n.

Let y1, . . . , yr ∈ K and define the map
(
K

′t

nK ′t

)s
f−→ K

′t+1

nK ′t+1 such that f(z′1, . . . , z′s) =

y′1z
′
1 + y′2z

′
2 + · · ·+ y′sz

′
s = y′1z

′
1 + · · ·+ y′sz

′
s + nK

′t+1. we observe that that f is a well defined
map.

Now f(z′1, . . . , z
′
s) = y′1z

′
1 + y′2z

′
2 + · · ·+ y′sz

′
s = y′1z

′
1 + · · · + y′sz

′
s = (a11 x′1 + · · · +

a1m x′m)x
′s1
1 x

′s2
2 . . . . .x

′sm
m + · · ·+(as1 x′1 + · · ·+asm x′m)x

′s1
1 x

′s2
2 . . . . .x

′sm
m = (a11 +a21 + · · ·+

as1)x
′r1+1
1 x

′s2
2 . . . . .x

′sm
m + · · ·+(a1m+a2m+ · · ·+asm)x

′s1
1 x

′s2
2 . . . . .x

′sm+1
m , where yi = ai1x1+

. . . , aimxm by assumption. We can see that there are x
′s1+1
1 x

′s2
2 . . . . .x

′sm
m , x

′s1
1 x

′s2+1
2 . . . . .x

′sm
m , . . . , x

′s1
1 x

′s2
2 . . . . .x

′sm+1
m

m- monomials with coefficients aij . These coefficients are linear.
We have to show that (y′1, . . . , y

′
s)K

′t = K
′t+1 if and only if f is onto. We have to show that

T is onto. If x′ ∈ k
′t+1

nK ′t+1 , where x′ = x′+nK
′t+1 and x ∈ K ′t+1, then x ∈ (y′1, . . . , y

′
s)K

′t, for

K
′t+1 = (y′1, . . . , y

′
s)K

t. Thus x′ = (y′1a1 + · · ·+ y′sas)y
′ = y′1a1y

′ + · · ·+ y′sasy
′. Pick z′1 =



Reduction of ideals for modules 35

a1y
′, z′2 = a2y

′, . . . , z′s = asy
′, where ai ∈ B/ann(H) and y ∈ K ′t. This implies that if x′ =

y′1z
′
1+· · ·+y′sz′s+nK

′t+1 and (z′1, . . . , z
′
s) ∈

(
K

′t

mK ′t

)s

, then f(z′1, . . . , z′s) = x′. This shows that

map f is onto. Conversely suppose that f is onto. Then for any x′ ∈ K ′t+1/nK
′t+1 there exists

(z′1, . . . , z
′
s) ∈

(
K

′t

nK ′t

)s

such that f(z′1, . . . , z′s) = x′. Thus x′ = y′1z
′
1 + · · · + y′sz

′
s + nK

′t+1

and K
′t+1 ⊆ (y′1, . . . , y

′
s)K

′t + nK
′t+1. Going modulo (y′1, . . . , y

′
s)K

′t,
K

′t+1

(y′1, . . . , y
′
s) K

′t
⊆

(y′1, . . . , y
′
s) K

′t + nK
′t+1

(y′1, . . . , y
′
s) K

′t
= n

(
K

′t+1

(y′1, . . . , y
′
s) K

′t

)
. By Nakayama lemma,

K
′t+1

(y′1, . . . , y
′
s) K

′t
=

0. Therefore, K
′t+1 = (y′1, . . . , y

′
s) K

′t and Kt+1 ⊆ (y1, . . . , ys)Kt + ann(H). In this case we
have (y1, . . . , ys) is a reduction of K in B/ann(H). By Lemma 3.1 (y1, . . . , ys) is a reduction
of K for H . Defining the set W ,

W =

{

a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm

 ∈ Bs×m(k) |


a11 . . a1m

a21 . . a2m

. . . .

. . . .

as1 . . asm




x1

x2

.

.

xm

 =


y1

y2

.

.

ys


and f is onto

}
.

By (Lemma 3.7, [16]) the theorem is proved.

Theorem 3.5. Suppose H is a finitely generated B-module and (B,n) is a local Noetherian ring
with infinite residue field B/n = k. Let K be an ideal of B. Assume that m ≥ 1 and s ≥ 0 are

integers such that µB(KmH) <

(
m+ s

s

)
. Then there exists of xi ∈ K for i = 1, . . . , s such

that (x1, . . . , xs)Km−1H = KmH .

Proof. The proof is based on double inductionm and s. If s = 0, then

(
m

0

)
= 1 and assumption

dimk

(
KmH

nKmH

)
= µB(KmH) = 0. This implies that KmH = nKmH and Nakayama lemma

KmH = 0. Hence KmH = 0 = 0Km−1H and 0 is a reduction of K for H .

Therefore, result is proved for s = 0. If m = 1, then µB(KH) = dimk

(
KH

nKH

)
<(

s+ 1
1

)
= s+ 1. This implies that dimk

(
KH

nKH

)
≤ s and there exists a1 + nKM, . . . , as +

nKH such that
KH

nKH
=< a1 + nKH + · · · + as + nKH >, where ai = xiyi, xi ∈ K and

yi ∈ H . This implies that KH = (x1, . . . , xs)H+nKH . We go through module (x1, . . . , xs)H ,

we have
KH

(x1, . . . , xs)H
= n(

KH

(x1, . . . , xs)H
). By Nakayama lemma, KH = (x1, . . . , xs)H .

Thus result is proved for m = 1.
Now assume that the result is false. Pick a counter example for the case µB(KmH) <(
m+ s

s

)
and there does not exist of xi ∈ K for i = 1, . . . , s such that (x1, . . . , xs)Km−1H =

KmH , where s is minimal and m is minimal for this s. Now, we may suppose that m ≥ 2 and
s ≥ 1.

There are two cases.

Case 1. Suppose there exists y ∈ KrnK such that dimk

(
yKm−1H + nKmH

nKmH

)
≥

(
m− 1 + s

s

)
.

If s = 1, then hypothesis of the theorem µ(KmH) = dimk(
KmH

nKmH
) is generated by at most
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m elements and also minimum dimension of
yKm−1H + nKmH

nKmH
over B/n is m. So that

KmH

nKmH
=

yKm−1H + nKmH

nKmH
and KmH = yKm−1H + nKmH . We go through modulo

yKm−1H and
KmH

yKm−1H
= n(

KmH

yKm−1H
). By Nakayama lemma

KmH

yKm−1H
= 0. This implies

that KmH = yKm−1H . We can say that y is a reduction of K for H . Therefore, this is a
contradiction because m is minimal for the given s = 1. Now we may suppose that s > 1.

F (H) =
F (H)

yF (H)
. Note that

F (H)m =

KmH

nKmH
yKm−1H + nKmH

nKmH

and

(
m+ s

s

)
−

(
m+ s− 1

s

)
=

(
m+ s− 1
s− 1

)
.

Consider the following exact sequence

0 −→ yKm−1H + nKmH

nKmH
−→ KmH

nKmH
−→

KmH

nKmH
yKm−1H + nKmH

nKmH

−→ 0.

Then dimk

(
yKm−1H + nKmH

nKmH
)− dimk

(
KmH

nKmH

)
+ dimk

( KmH

nKmH
yKm−1H + nKmH

nKmH

)
= 0.

Since, dimk

(
KmH

nKmH

)
<

(
m+ s

s

)
and dimk

(
yKm−1H + nKmH

nKmH
) ≥

(
m+ s− 1

s

)
, it

implies that dimk

( KmH

nKmH
yKm−1H + nKmH

nKmH

)
<

(
m+ s− 1
s− 1

)
. Therefore assumption of the the-

orem is satisfied for F (H) and by the minimality of s, there exist x1, . . . , xs ∈ K such that
(x1, . . . , xs)Km−1H + nKmH

nKmH
=

KmH

nKmH
and (x1, . . . , xs)Km−1H+nKmH = KmH . Again

by Nakayama lemma, (x1, . . . , xs)Km−1H = KmH which is again a contradiction.

Case 2. Now assume that for all y ∈ K r nK, dimk

(
yKm−1H + nKmH

nKmH

)
<

(
m− 1 + s

s

)
and define a multiplication map fy :

Km−1H

nKm−1H
→ KmH

nKmH
such that fy(x+nKm−1H) = yx+

nKmH . Note that ker(fy) =
(nKmH : y) + nKm−1H

nKm−1H
. Fundamental theorem of B/n-module

homomorphism

Km−1H

nKm−1H
ker(fy)

' yKm−1H + nKmH

nKmH
. Since dimk

(
yKm−1H + nKmH

nKmH

)
<

(
m− 1 + s

s

)
, dimk

( Km−1H

nKm−1H
ker(fy)

)
<

(
m− 1 + s

s

)
.

Therefore, hypothesis of the theorem is satisfied for

Km−1H

nKm−1H
ker(fy)

and by induction on m,

there exist y1, . . . , ys in K such that
Km−1H

nKm−1H
=

(y1, . . . , ys)Km−2H + (nKmH : y)
nKm−1H

. Let

K = (x1, . . . , xs). Then by Theorem 3.4 there exists a non empty open subset Wi of kst such
that (x1, . . . , xs)Kn−2H + (nKmH : xi) = Km−1H with reduction number at most m − 2
for each xi. Let W = ∩ti=1Wi. Since residue field is infinite, W is a non empty open set.
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Choose y1, . . . , ys ∈ K such that (y1, . . . , ys)Km−2H +(nKmH : xi) = Km−1H . For each i =
1, . . . , s xiKm−1H ⊆ (y1, . . . , ys)Km−1H+nKmH . ThereforeKmH ⊆ (y1, . . . , ys)Km−1H+
nKmH ⊆ KnH . Equality holds through out and (y1, . . . , ys) + nK is a reduction of K for H .
By Lemma 3.1, (y1, . . . , ys) is a reduction of K for H which is again a contradiction to the
minimality of s. This proves the theorem.
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