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Abstract Let BPdt(n) denotes the number of t-regular bi-partitions of n with tagged (desig-
nated) summands. In this paper, we prove infinite families of congruences modulo small powers
of 2 and 3 for BPdt(n). For example, if a ≥ 0 and 1 ≤ m ≤ ρ− 1, then

BPd2(24 · ρ2a+1(ρn+m) + 15 · ρ2a+2) ≡ 0 (mod 16).

1 Introduction

A partition of a non-negative integer n is defined as a non-increasing sequence of positive in-
tegers, which are called the parts of the partitions, such that the sum of all the part is equals to
n. The number of unrestricted partitions for a non-negative integer n is generally represented by
p(n) (with p(0) = 1) and its generating function is given by∑

n≥0

p(n)qn =
1

(q; q)∞
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + · · · , (1.1)

where for z ∈ C and |q| < 1, we have

(z; q)∞ =
∏
n≥0

(1− zqn).

For simplicity, for any positive integer k, we denote (qk; qk)∞ as fk. Let t be any positive
integer, then t-regular partition can be defined as a partition in which no part is a multiple of t.
If bt(n) represent the total number of t-regular partitions of n, then the generating function of
bt(n) is given by ∑

n≥0

bt(n)q
n =

ft
f1
. (1.2)

Several mathematicians studied the congruence properties for bt(n). In this direction, see [6, 10,
17, 18, 19].

In 2004, Andrews et al. [1] studied the partitions with tagged (designated) summand which
are defined as the partitions in which, accurately one part is tagged or designated out of the
parts of the partitions having equal magnitude. If Pd(n) represents the number of partitions with
tagged summand then, the generating function of Pd(n) is given by∑

n≥0

Pd(n)qn =
f6

f1f2f3
. (1.3)

For example, there are 5 partitions of 3 with tagged summands with relevant partitions are

3′, 2′ + 1′, 1′ + 1 + 1, 1 + 1′ + 1, 1 + 1 + 1′.

Chen et al. [7] and Xia [20] have proved several congruences modulo powers of 3 for Pd(n) and
found a few infinite families of congruence modulo powers of 3 for Pd(n). Naika and Gireesh
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[13] considered 3-regular partition with tagged summands, where none of the parts is a multiple
of 3. The total number of 3-regular partitions of n with designated summand is represented by
Pd3(n) and its generating function [13] is given by

∑
n≥0

Pd3(n)q
n =

f2
6 f9

f1f2f18
. (1.4)

They proved congruences modulo 4, 9, 12, 36, 48 and 144 for the partition function Pd3(n). A
bi-partition (ν, ζ) of a non-negative integer n can be defined as a partition pair (ν, ζ) in which
the sum of all the parts of ν and ζ is equal to n. Naika and Shivashankar [14] have discovered
several congruences modulo 3 and powers of 2 for the partition function BPd(n), which counts
the total number of bi-partitions of n with tagged summands, where

∑
n≥0

BPd(n)qn =
f2

6

f2
1 f

2
2 f

2
3
. (1.5)

Naika and Nayaka [15] proved congruences modulo for BPd3(n), which denotes the number of
3-regular bi-partitions of n with tagged summands, where

∑
n≥0

BPd3(n)q
n =

f4
6 f

2
9

f2
1 f

2
2 f

2
18
. (1.6)

They [15] established infinite families of congruences modulo 3, 4 and 6 of BPd3(n).
In recent time, Naika and Harishkumar [16] established infinite families of congruences mod-

ulo 3, 4, 8 and 9 for BPtt(n), which is the number of t-regular partitions triples of n with tagged
summands. Its generating function is given by

∑
n≥0

BPtt(n)q
n =

f3
6 f

3
t f

3
2tf

3
3t

f3
1 f

3
2 f

3
3 f

3
6t
. (1.7)

Motivated from the above paper, in this paper, we study about the partition function BPdt(n),
which counts the total number of t-regular bi-partitions of n with tagged summands. The gener-
ating function of BPdt(n) is given by

∑
n≥0

BPdt(n)q
n =

f2
6 f

2
t f

2
2tf

2
3t

f2
1 f

2
2 f

2
3 f

2
6t
. (1.8)

For example, BPd2(4) = 22 and they are

(3′+1′, ∅), (3′, 1′), (1′, 3′), (∅, 3′+1′), (1′+1+1+1, ∅), (1+1′+1+1, ∅), (1+1+1′+1, ∅),

((1+1+1+1′, ∅), (1′, 1′+1+1), (1′, 1+1′+1), (1′, 1+1+1′), (1′+1, 1′+1),

(1′ + 1, 1 + 1′), (1 + 1′, 1′ + 1), (1 + 1′, 1 + 1′), (1′ + 1 + 1, 1′), (1 + 1′ + 1, 1′)

(1+1+1′, 1′), (∅, 1′+1+1+1), (∅, 1+1′+1+1), (∅, 1+1+1′+1), (∅, 1+1+1+1′).

In Section 3, 4 and 5, we prove infinite families of congruences modulo 3, 4, 6, 8 and 16 for
BPd2(n), congruences modulo 16 for BPd4(n) and congruences modulo 8 and 16 for BPd6(n)
respectively. To prove our results, we use some theta function and q-series identites which are
listed in Section 2.

2 Preliminaries

Ramanujan’s general theta function f (α, β) is defined by

f(α, β) =
∞∑

t=−∞
αt(t+1)/2βt(t−1)/2, where for complex numbers α and β, |αβ| < 1. (2.1)
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Special cases of f(α, β) [5, p. 36, Entry 22 (ii)] is given by

ψ(q) := f(q, q3) =
∑
n≥0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

=
f2

2

f1
. (2.2)

Lemma 2.1. [8, Theorem 2.1] If ρ > 2 be any prime, then

ψ(q) =

(ρ−3)/2∑
s=0

q
(s2+s)

2 f

(
q

(ρ2+(2s+1)ρ)
2 , q

(ρ2−(2s+1)ρ)
2

)
+ q

(ρ2−1)
8 ψ(qρ

2
). (2.3)

Furthermore, (s2+s)
2 6≡ (ρ2−1)

8 (mod ρ) for 0 ≤ s ≤ (ρ− 3)/2.

Lemma 2.2. [8, Theorem 2.2]. If ρ > 5 be any prime, then

f1 =

(ρ−1)/2∑
j=−(ρ−1)/2
j 6=(±ρ−1)/6

(−1)jq
3j2+j

2 f

(
−q

3ρ2+(6j+1)ρ
2 ,−q

3ρ2−(6j+1)ρ
2

)
+ (−1)(±ρ−1)/6q

ρ2−1
24 fρ2 , (2.4)

where
±ρ− 1

6
=

{
(ρ−1)

6 , if ρ ≡ 1 (mod 6)
(−ρ−1)

6 , if ρ ≡ −1 (mod 6).

Furthermore, if
−(ρ− 1)

2
≤ j ≤ (ρ− 1)

2
and j 6= (±ρ− 1)

6
, then

3j2 + j

2
6≡ ρ2 − 1

24
(mod ρ).

Lemma 2.3. [5, p. 303, Entry 17(v)] We have

f1 = f49

(
A(q7)

E(q7)
− qD(q7)

A(q7)
− q2 + q5E(q

7)

D(q7)

)
, (2.5)

where D(q) = f(−q3,−q4), A(q) = f(−q2,−q5) and E(q) = f(−q,−q6).

Lemma 2.4. [9] We have

f1 = f25(G(q
5)− q − q2G(q5)−1), (2.6)

where

G(q) =
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

.

Lemma 2.5. We have

f3
1 =

f6f
6
9

f3f
3
18
− 3qf3

9 + 4q3 f
2
3 f

6
18

f2
6 f

3
9
, (2.7)

f1f2 =
f6f

4
9

f3f2
18
− qf9f18 − 2q2 f3f

4
18

f6f2
9

(2.8)

and
f1

f4
=
f6f9f18

f3
12

− q
f3f

4
18

f3
12f

2
9
− q2 f

2
6 f9f

3
36

f4
12f

2
18
. (2.9)

For the proof of equation (2.7), see [5]. Equation (2.8) can be found in [11]. For the proof of
(2.9), see Baruah and Ojah [4, Lemma 2.6].
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Lemma 2.6. We have

f2
3

f2
1
=
f4

4 f6f
2
12

f5
2 f8f24

+ 2q
f4f

2
6 f8f24

f4
2 f12

, (2.10)

f2
1

f2
3
=
f2f

2
4 f

4
12

f5
6 f8f24

− 2q
f2

2 f8f12f24

f4f4
6

, (2.11)

f2
1 =

f2f
5
8

f2
4 f

2
16
− 2q

f2f
2
16

f8
, (2.12)

1
f2

1
=

f5
8

f5
2 f

2
16

+ 2q
f2

4 f
2
16

f5
2 f8

, (2.13)

1
f4

1
=

f14
4

f14
2 f4

8
+ 4q

f2
4 f

4
8

f10
2

(2.14)

and
1
f1f3

=
f2

8 f
5
12

f2
2 f4f4

6 f
2
24

+ q
f5

4 f
2
24

f4
2 f

2
6 f

2
8 f12

. (2.15)

For the proof of identity (2.10) and (2.11), see Xia and Yao [21]. Identity (2.13) was given
by Hirschhorn [12, p. 40]. One can arrive at (2.12) by substituting q with −q in (2.13). Identity
(2.14) is the 2-dissection of ϕ(q)2, see Hirschhorn[12, (1.10.1)]. Equation (2.15) was proved by
Baruah and Ojha [3].

We conclude this section with the following congruences.

Lemma 2.7. If δ be any prime, then

fδ ≡ f1
δ (mod δ). (2.16)

Using binomial theorem, we obtain (2.16).

Lemma 2.8. [2, Lemma 1.4] If δ be any prime, then

fδ
2

1 ≡ fδ
δ (mod δ2). (2.17)

3 Congruences modulo 3, 4, 8 and 16 for BPd2(n)

Theorem 3.1. Let ρ be any prime such that (
−4
ρ
) = −1 and 1 ≤ m ≤ ρ− 1, then for any a ≥ 0,

we have
BPd2(24n+ 7) ≡ 0 (mod 16), (3.1)

∑
n≥0

BPd2(24 · ρ2an+ 15 · ρ2a)qn ≡ 8ψ(q)ψ(q4) (mod 16) (3.2)

and
BPd2(24 · ρ2a+1(ρn+m) + 15 · ρ2a+2) ≡ 0 (mod 16). (3.3)

Proof. Putting t = 2 in (1.8), we have

∑
n≥0

BPd2(n)q
n =

f4
6 f

2
4

f2
1 f

2
3 f

2
12

=
f4

6 f
2
4

f2
12

( 1
f2

1 f
2
3

)
. (3.4)

Substituting (2.15) in (3.4) and then equating the coefficients of all the terms that contain q2n+1,
we obtain ∑

n≥0

BPd2(2n+ 1)qn = 2
f2

6 f
6
2

f2
3 f

6
1
. (3.5)
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With the aid of (2.17), (3.5) can be written as

∑
n≥0

BPd2(2n+ 1)qn ≡ 2f2
2 f

2
6

(f2
1

f2
3

)
(mod 16). (3.6)

Utilising (2.11) in (3.6) and then extracting all the terms that involve q2n+1, n ≥ 0, we have

∑
n≥0

BPd2(4n+ 3)qn ≡ 12
f4

1 f4f6f12

f2

( 1
f2

3

)
(mod 16). (3.7)

Utilising (2.13) in (3.7), we get

∑
n≥0

BPd2(4n+ 3)qn ≡ 12
f4

1 f4f6f12

f2

( f5
24

f5
6 f

2
48

+ 2q3 f
2
12f

2
48

f5
6 f24

)
(mod 16). (3.8)

Extracting all the terms that involve q2n+1, n ≥ 0, from (3.8), we obtain

∑
n≥0

BPd2(8n+ 7)qn ≡ 8q
(f1f2f3f

3
6 f

2
24

f5
3 f12

)
(mod 16). (3.9)

Utilising (2.16) in (3.9), we have∑
n≥0

BPd2(8n+ 7)qn ≡ 8qf2
3 f

3
12

(
f1f2

)
(mod 16). (3.10)

Utilising (2.8) in (3.10), we obtain

∑
n≥0

BPd2(8n+ 7)qn ≡ 8qf2
3 f

3
12

( f6f
4
9

f3f2
18
− qf9f18 − 2q2 f3f

4
18

f6f2
9

)
(mod 16). (3.11)

Extracting all the terms that involve q3n from (3.11), we obtain the desired result (3.1). Next,
extracting all the terms that involve q3n+1 from (3.11) and with the aid of (2.2), we obtain∑

n≥0

BPd2(24n+ 15)qn ≡ 8ψ(q)ψ(q4) (mod 16). (3.12)

The congruence (3.12) is the case a = 0 of (3.2). Assume that the result (3.2) exists for some
integer a ≥ 0. Utilising (2.3) in (3.2), we deduce that∑

n≥0

BPd2

(
24 · ρ2an+ 15 · ρ2a

)
qn

≡ 8

(
(ρ−3)/2∑
k=0

q
(k2+k)

2 f

(
q

(ρ2+(2k+1)ρ)
2 , q

(ρ2−(2k+1)ρ)
2

)
+ q

(ρ2−1)
8 ψ(qρ

2
)

)
×

(
(ρ−3)/2∑
j=0

q2(j2+j)f
(
q2(ρ2+(2j+1)ρ), q2(ρ2−(2j+1)ρ)

)
+ q(ρ

2−1)/2ψ(q4ρ2
)

)
(mod 16). (3.13)

Consider the congruence

(k2 + k)

2
+ 2(j2 + j) ≡ 5(ρ2 − 1)

8
(mod ρ),

which is similar to
(2k + 1)2 + 4(2j + 1)2 ≡ 0 (mod ρ). (3.14)
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For
(−4
ρ

)
= −1, the only solution of congruence (3.14) is k = j =

ρ− 1
2

. Therefore, extracting

all the terms that involve qρn+5(ρ2−1)/8 from (3.13), dividing throughout by q5(ρ2−1)/8 and then
replacing qρ with q, we have∑

n≥0

BPd2

(
24 · ρ2a+1n+ 15 · ρ2a+2

)
qn ≡ 8ψ(qρ)ψ(q4ρ) (mod 16). (3.15)

Extracting all the terms that involve qρn from (3.15) and replacing qρ with q, we have∑
n≥0

BPd2

(
24 · ρ2(a+1)n+ 15 · ρ2a+2

)
qn ≡ 8ψ(q)ψ(q4) (mod 16). (3.16)

Thus, equation (3.16) is the case a+ 1 of (3.2). Hence, we complete the proof of (3.2) by using
induction method. Finally, extracting all the terms that involve qρn+m, for 1 ≤ m ≤ ρ− 1, from
(3.15), we get the result (3.3).

Theorem 3.2. Let u1 ∈ {33, 57}, u2 ∈ {51, 99}, u3 ∈ {39, 63, 87, 111} and
u4 ∈ {45, 69, 93, 117, 141, 165}. Then for all integers α, β, γ ≥ 0, we have

BPd2(8n+ 7) ≡ 0 (mod 8), (3.17)

BPd2(24n+ 19) ≡ 0 (mod 8), (3.18)

∑
n≥0

BPd2

(
24 · 32α · 52β · 72γ · n+ 3 · 32α · 52β · 72γ

)
qn ≡ 4f3

1 (mod 8), (3.19)

∑
n≥0

BPd2

(
24 · 32α · 52β · 72γ+1 · n+ 3 · 32α · 52β · 72γ+2

)
qn ≡ 4f3

7 (mod 8), (3.20)

BPd2

(
24 · 32α+1 · 52β · 72γ · n+ 3 · 32α · 52β · 72γ

)
≡

{
2 (mod 8), if n is a pentagonal number

0 (mod 8), otherwise,
(3.21)

∑
n≥0

BPd2

(
24 · 32α+1 · 52β · 72γ · n+ 32α+3 · 52β · 72γ

)
qn ≡ 4f3

3 (mod 8), (3.22)

BPd2

(
24 · 32α+1 · 52β · 72γ · n+ 17 · 32α+1 · 52β · 72γ

)
≡ 0 (mod 8), (3.23)

BPd2

(
24 · 32α+2 · 52β · 72γ · n+ u1 · 32α+1 · 52β · 72γ

)
≡ 0 (mod 8), (3.24)∑

n≥0

BPd2

(
24 · 32α · 52β+1 · 72γ · n+ 3 · 32α · 52β+2 · 72γ

)
qn ≡ 4f3

5 (mod 8), (3.25)

BPd2

(
24 · 32α · 52β+1 · 72γ · n+ u2 · 32α · 52β · 72γ

)
≡ 0 (mod 8), (3.26)

BPd2

(
24 · 32α · 52β+2 · 72γ · n+ u3 · 32α · 52β+1 · 72γ

)
≡ 0 (mod 8), (3.27)

BPd2

(
24 · 32α · 52β · 72γ+2 · n+ u4 · 32α · 52β · 72γ+1

)
≡ 0 (mod 8). (3.28)

Proof. With the aid of (2.17), (3.5) can be written as

∑
n≥0

BPd2(2n+ 1)qn ≡ 2f2
2 f

2
6

(f2
1

f2
3

)
(mod 8). (3.29)
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Utilising (2.11) in (3.29) and then extracting all the terms that involve q2n+1, n ≥ 0, we have∑
n≥0

BPd2(4n+ 3)qn ≡ 4f3
2 f12 (mod 8). (3.30)

Extracting all the terms that involve q2n+1, we obtain the desired congruence (3.17). Next,
extracting all the terms that involve q2n, we have∑

n≥0

BPd2(8n+ 3)qn ≡ 4f3
1 f6 (mod 8). (3.31)

Utilising (2.7) in (3.31) and then extracting all the terms that involve q3n+2, we get the desired
result (3.18). Next, extracting all the terms that involve q3n from resultant equation, we obtain∑

n≥0

BPd2(24n+ 3)qn ≡ 4f3
1 (mod 8). (3.32)

The result (3.32) is the case α = β = γ = 0 of equation (3.19). Assume that the result (3.19)
exists for any integer α ≥ 0 with β = γ = 0. Utilising (2.7) in (3.19) with β = γ = 0 and then
extracting all the terms that involve q3n+1, we obtain∑

n≥0

BPd2

(
24 · 32α+1n+ 3 · 32α+2

)
qn ≡ 4f3

3 (mod 8). (3.33)

Extracting all the terms that involve q3n from (3.33), we deduce that∑
n≥0

BPd2

(
24 · 32α+2n+ 3 · 32α+2

)
qn ≡ 4f3

1 (mod 8), (3.34)

which shows, the congruence (3.19) exists for integer α + 1 with β = γ = 0. Thus, by using
the method of induction, (3.19) exist for all integer α. Suppose that the equation (3.19) exists for
α, β ≥ 0 with γ = 0. Utilising (2.6) in (3.19) and then equating q5n+3 terms, we obtain∑

n≥0

BPd2

(
24 · 32α · 52β+1n+ 3 · 32α · 52β+2

)
qn ≡ 4f3

5 (mod 8). (3.35)

Extracting all the terms that involve q5n, from (3.35), we obtain∑
n≥0

BPd2

(
24 · 32α · 52β+2n+ 3 · 32α · 52β+2

)
qn ≡ 4f3

1 (mod 8). (3.36)

Equation (3.36) shows that the result (3.19) exists for integers β + 1 with γ = 0. Thus, by
induction method, the congruence (3.19) exists for all positive integers α, β with γ = 0. Assume
that the result (3.19) exists for α, β, γ ≥ 0. Utilising (2.5) in (3.19) and then equating the q7n+6

terms, we obtain∑
n≥0

BPd2

(
24 · 32α · 52β · 72γ+1n+ 3 · 32α · 52β · 72γ+2

)
qn ≡ 4f3

7 (mod 8), (3.37)

that proves (3.20). Extracting all the terms that involve q7n from (3.37), we obtain∑
n≥0

BPd2

(
24 · 32α · 52β · 72γ+2n+ 3 · 32α · 52β · 72γ+2

)
qn ≡ 4f3

1 (mod 8). (3.38)

Equation (3.38) shows that (3.19) exists for all integers γ + 1. By using induction method, the
result (3.19) exists for all non-negative integers α, β, γ.

Utilising (2.7) in (3.19) and then equating coefficients of q3n, q3n+1 and q3n+2 terms, we
arrive at (3.21), (3.22) and (3.23) respectively. Extracting all the terms that involve q3n+r, where
r ∈ {1, 2} from (3.22), we get the result (3.24).

Utilising (2.6) in (3.19) and then extracting all the terms that involve q5n+3, we achieve the
result (3.25). Again, utilising (2.6) in (3.19) and then extracting all the terms that involve q5n+u,
where u ∈ {2, 4}, yields the result (3.26). Extracting all the terms that involve q5n+a, where
a ∈ {1, 2, 3, 4} from (3.25), yields (3.27). Finally, extracting all the terms that involve q7n+c,
where c ∈ {1, 2, 3, 4, 5, 6} from (3.20), yields (3.28).
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Theorem 3.3. If ρ be any prime with (
−9
ρ
) = −1 and 1 ≤ m ≤ ρ − 1, then for any a ≥ 0, we

have
BPd2(4n+ 3) ≡ 0 (mod 4), (3.39)

BPd2(12n+ 9) ≡ 0 (mod 4), (3.40)

∑
n≥0

BPd2(12 · ρ2an+ 5 · ρ2a)qn ≡ 2f1ψ(q
3) (mod 4) (3.41)

and
BPd2(12 · ρ2a+1(ρn+m) + 5 · ρ2a+2) ≡ 0 (mod 4). (3.42)

Proof. Utilising (2.16) in (3.5), we have∑
n≥0

BPd2(2n+ 1)qn ≡ 2f3
2 f6 (mod 4). (3.43)

Extracting all the terms that involve q2n+1 from (3.43), we get the desired result (3.39). Again,
extracting all the terms that involve q2n from (3.43), we obtain∑

n≥0

BPd2(4n+ 1)qn ≡ 2f3
1 f3 (mod 4). (3.44)

Utilising (2.7) in (3.44) and then extracting all the terms that involve q3n+2, we get the desired
result (3.40). Next, extracting all the terms that involve q3n+1, we obtain∑

n≥0

BPd2(12n+ 5)qn ≡ 2f1ψ(q
3) (mod 4). (3.45)

Equation (3.45) is the case a = 0 of (3.41). Let us assume, the result (3.41) exists for any integer
a ≥ 0. Utilising (2.3) and (2.4) in (3.41), we get∑

n≥0

BPd2

(
12 · ρ2an+ 5 · ρ2a

)
qn

≡ 2

(
(ρ−1)/2∑

j=−(ρ−1)/2
j 6=(±ρ−1)/6

q
(3j2+j)

2 f

(
q

(3ρ2+(6j+1)ρ)
2 , q

(3ρ2−(6j+1)ρ)
2

)
+ q

(ρ2−1)
24 fρ2

)
×

(
(ρ−3)/2∑
m=0

q
3(m2+m)

2 f

(
q

3(ρ2+(2m+1)ρ)
2 , q

3(ρ2−(2m+1)ρ)
8

)
+ q

3(ρ2−1)
8 ψ(q3ρ2

)

)
(mod 4). (3.46)

Consider the congruence

(3j2 + j)

2
+ 3

(m2 +m)

2
≡ 10(ρ2 − 1)

24
(mod ρ),

which is similar to
(6j + 1)2 + 9(2m+ 1)2 ≡ 0 (mod ρ). (3.47)

For
(−9
ρ

)
= −1, the only possible solution of equation (3.47) is j =

(±ρ− 1)
6

and m =

(ρ− 1)
2

. Therefore, extracting all the terms that involve qρn+10(ρ2−1)/24 terms from (3.46), di-

viding throughout by q10(ρ2−1)/24 and then replacing qρ with q, we get∑
n≥0

BPd2

(
12 · ρ2a+1n+ 5 · ρ2a+2

)
qn ≡ 2fρψ(q3ρ) (mod 4). (3.48)



t-REGULAR BI-PARTITION WITH TAGGED SUMMAND 51

Extracting all the terms that involve qρn from (3.48) and then replacing qρ with q, we obtain∑
n≥0

BPd2

(
12 · ρ2(a+1)n+ 5 · ρ2a+2

)
qn ≡ 2f1ψ(q

3) (mod 4). (3.49)

The congruence (3.49) is the case a+ 1 of (3.41). Thus, by induction method, we prove the
congruence (3.41). Next, extracting all the terms that involve qρn+m for 1 ≤ m ≤ ρ − 1 from
(3.48), we get the desired result (3.42).

Theorem 3.4. For all n, α, β ≥ 0, we have∑
n≥0

BPd2

(
12 · 52α · 72βn+ 52α · 72β

)
qn ≡ 2f2

1 (mod 4), (3.50)

∑
n≥0

BPd2

(
12 · 52α+1 · 72βn+ 52α+2 · 72β

)
qn ≡ 2f2

5 (mod 4), (3.51)

BPd2

(
12 · 52α+1 · 72β(5n+ i) + 52α+2 · 72β+2

)
≡ 0 (mod 4), i = 1, 2, 3, 4, (3.52)

∑
n≥0

BPd2

(
12 · 52α · 72β+1n+ 52α · 72β+2n

)
qn ≡ 2f2

7 (mod 4) (3.53)

and

BPd2

(
12 · 52α+1 · 72β+1(7n+ j) + 52α · 72β+1

)
≡ 0 (mod 4), j = 1, 2, 3, 4, 5, 6. (3.54)

Proof. Utilising (2.7) in (3.44) and then extracting all the terms that involve q3n, we obtain∑
n≥0

BPd2(12n+ 1)qn ≡ 2f2
1 (mod 4). (3.55)

Equation (3.55) is the case α = β = 0 of (3.50). Suppose that the congruence (3.50) exists for
any integer α ≥ 0 with β = 0. Utilising (2.6) in (3.50) with β = 0 and then extracting all the
terms that involve q5n+2, we get∑

n≥0

BPd2

(
12 · 52α+1 · 72βn+ 52α+2 · 72β

)
qn ≡ 2f2

5 (mod 4), (3.56)

which proves (3.51). Extracting all the terms that involve q5n+i with i ∈ {1, 2, 3, 4} from (3.56),
we arrive at the result (3.52). Next, extracting all the terms that involve q5n from (3.56), we
deduce ∑

n≥0

BPd2

(
12 · 52(α+1) · 72βn+ 52(α+1) · 72β

)
qn ≡ 2f2

1 (mod 4). (3.57)

Thus, the result (3.50) exists for integers α + 1 with β = 0. Thus, by induction method,
(3.19) exists for all integer α. Assume that the result (3.50) exist for α, β ≥ 0. Utilising (2.5) in
(3.50) and then extracting all the terms that involve q7n+4, we obtain∑

n≥0

BPd2

(
12 · 52α · 72β+1n+ 52α · 72β+2

)
qn ≡ 2f2

7 (mod 4), (3.58)

which proves (3.53). Extracting all the terms that involve q7n+j with j ∈ {1, 2, 3, 4, 5, 6} from
(3.58), we obtain the desired result (3.54). Next, extracting all the terms that involve q7n from
(3.58), we obtain∑

n≥0

BPd2

(
12 · 52α · 72(β+1)n+ 52α · 72β+2

)
qn ≡ 2f2

1 (mod 4), (3.59)

which shows that (3.50) exists for all integers β + 1. By mathematical induction, (3.50) exists
for all integers α, β ≥ 0.
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Theorem 3.5. If ρ ≥ 5 be any prime with
(−3
ρ

)
= −1 and 1 ≤ m ≤ ρ− 1, then for all integers

a ≥ 0, we have
BPd2

(
6n+ 3

)
≡ 0 (mod 3), (3.60)

BPd2

(
12n+ i

)
≡ 0 (mod 3), i = 5, 8, 11, (3.61)

∑
n≥0

BPd2

(
12 · ρ2an+ 2 · ρ2a

)
qn ≡ 2f1f3 (mod 3) (3.62)

and
BPd2

(
12 · ρ2a+1(ρn+m) + 2 · ρ2a+2

)
≡ 0 (mod 3). (3.63)

Proof. Utilising (2.16) in (3.4), we obtain

∑
n≥0

BPd2(n)q
n ≡

f4
6

f3
3 f12

(f1

f4

)
(mod 3). (3.64)

Utilising (2.9) in (3.64), we obtain

∑
n≥0

BPd2(n)q
n ≡

f4
6

f3
3 f12

(f6f9f18

f3
12

− q
f3f

4
18

f3
12f

2
9
− q2 f

2
6 f9f

3
36

f4
12f

2
18

)
(mod 3). (3.65)

Extracting all the terms that involve q3n from (3.65), we obtain

∑
n≥0

BPd2(3n)qn ≡
f5

2 f6

f4
4

(mod 3). (3.66)

Extracting all the terms that involve q2n+1 from (3.66), we get the desired result (3.60). Again,
extracting all the terms that involve q3n+2 from (3.65) and utilising (2.16), we obtain

∑
n≥0

BPd2(3n+ 2)qn ≡ 2
f3

12

f5
4

(mod 3). (3.67)

Extracting all the terms that involve q4n+u, with u ∈ {1, 2, 3} from (3.67), we obtain the desired
result (3.61). Next, extracting all the terms that involve q4n from (3.67), we arrive at

∑
n≥0

BPd2(12n+ 2) ≡ 2
f3

3

f5
1
≡ 2f1f3 (mod 3). (3.68)

The equation (3.68) is the case a = 0 of (3.62). Suppose that the result (3.62) exists for some
integer a ≥ 0. Utilising (2.4) in (3.62), we obtain∑

n≥0

BPd2

(
12 · ρ2an+ 2 · ρ2a

)
qn

≡ 2

(
(ρ−1)/2∑

s=−(ρ−1)/2
s6=(±ρ−1)/6

(−1)sq
(3s2+s)

2 f
(
q

(3ρ2+(6s+1)ρ)
2 , q

(3ρ2−(6s+1)ρ)
2

)
+ (−1)

(±ρ−1)
6 q

(ρ2−1)
24 fρ2

)
×

(
(ρ−1)/2∑

t=−(ρ−1)/2
t 6=(±ρ−1)/6

(−1)tq
3(3t2+t)

2 f

(
q

3(3ρ2+(6t+1)ρ)
2 , q

3(3ρ2−(6t+1)ρ)
2

)
+ (−1)

(±ρ−1)
6 q

(ρ2−1)
8 f3ρ2

)
(mod 3).

(3.69)
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Consider the congruence

(3s2 + s)

2
+ 3

(3t2 + t)

2
≡ (ρ2 − 1)

6
(mod ρ),

which is analogous to
(6s+ 1)2 + 3(6t+ 1)2 ≡ 0 (mod ρ). (3.70)

For
(−3
ρ

)
= −1, the only possible solution of the congruence (3.70) is s = t =

(±ρ− 1)
6

.

Therefore, equating the coefficients of qρn+(ρ2−1)/6 terms from (3.69), dividing throughout by
q(ρ

2−1)/6 and then replace qρ with q, we obtain∑
n≥0

BPd2(12 · ρ2a+1n+ 2 · ρ2a+2)qn ≡ 2fρf3ρ (mod 3). (3.71)

Extracting all the terms that involve qρn from (3.71) and replacing qρ with q, we obtain∑
n≥0

BPd2(12 · ρ2(a+1)n+ 2 · ρ2a+2)qn ≡ 2f1f3 (mod 3). (3.72)

The congruence (3.72) is the case a + 1 of (3.62). Thus, we complete the proof of congruence
(3.62) by induction method. Next, extracting all the terms that involve qρn+m for 1 ≤ r ≤ ρ− 1
from (3.71), we achieve the result (3.63).

Theorem 3.6. For all n ≥ 0, we have

BPd2(6n+ 3) ≡ 0 (mod 6) (3.73)

and
BPd2(6n+ 5) ≡ 0 (mod 6). (3.74)

Proof. Utilising (2.16) in (3.5), we obtain

∑
n≥0

BPd2(2n+ 1)qn ≡ 2
f4

6

f4
3

(mod 6). (3.75)

Extracting all the terms that involve q3n+u with u ∈ {1, 2}, from (3.75), we arrive at the result
(3.73) and (3.74) respectively.

4 Congruences modulo 16 for BPd4(n)

Theorem 4.1. If ρ be any prime with
(−6
ρ

)
= −1 and 1 ≤ m ≤ ρ − 1, then for all integers

a ≥ 0, we have

BPd4

(
8n+ 3

)
≡ 0 (mod 16), (4.1)

BPd4

(
24n+ 23

)
≡ 0 (mod 16), (4.2)

∑
n≥0

BPd4

(
24 · ρ2an+ 7 · ρ2a

)
qn ≡ 8f1ψ(q

2) (mod 16) (4.3)

and
BPd4

(
24 · ρ2a+1(ρn+m) + 7 · ρ2a+2

)
≡ 0 (mod 16). (4.4)
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Proof. Putting t = 4 in (1.8), we obtain

∑
n≥0

BPd4(n)q
n =

f2
4 f

2
6 f

2
8 f

2
12

f2
2 f

2
24

(
1

f2
1 f

2
3

)
. (4.5)

Utilising (2.15) in (4.5) and then extracting all the terms that involve q2n+1 and utilising (2.17),
we obtain ∑

n≥0

BPd4(2n+ 1)qn ≡ 2
f2

2 f
2
4 f

6
6

f2
12

( 1
f4

3

)
(mod 16). (4.6)

Utilising (2.14) in (4.6) and then extracting all the terms that involve q2n+1 from (4.6), we
arrive at ∑

n≥0

BPd4(4n+ 3)qn ≡ 8qf3
2 f

6
6 (mod 16). (4.7)

Extracting all the terms that involve q2n from (4.7), we obtain the desired result (4.1). Next,
extracting coefficients of q2n+1 terms from (4.7), we get∑

n≥0

BPd4(8n+ 7)qn ≡ 8f3
1 f

6
3 (mod 16). (4.8)

Utilising (2.7) in (4.8) and then extracting all the terms that involve q3n+2 terms, we achieve
the desired congruence (4.2). Next, extracting all the terms that involve q3n and using (2.2), we
arrive at ∑

n≥0

BPd4(24n+ 7)qn ≡ 8f1ψ(q
2) (mod 16). (4.9)

The congruence (4.9) is the case a = 0 of (4.3). Utilising (2.4) in (4.3) and continuing like
the proof of (3.41), we obtain∑

n≥0

BPd4

(
24 · ρ2a+1n+ 7 · ρ2a+2

)
qn ≡ 8fρψ(q2ρ) (mod 16). (4.10)

Extracting all the terms that involve qρn from (4.10) and then replacing qρ with q, we arrive at∑
n≥0

BPd4

(
24 · ρ2(a+1)n+ 7 · ρ2(a+1)

)
qn ≡ 8f1ψ(q

2) (mod 16). (4.11)

The congruence (4.11) is a+ 1 case of (4.3). Thus, the proof of (4.3) is complete.
Extracting all the terms that involve qρn+m, for 1 ≤ m ≤ ρ − 1, from (4.10), we arrive at

(4.4).

5 Congruences modulo 8 and 16 for BPd6(n)

Theorem 5.1. If ρ ≥ 5 be any prime with
(−3
ρ

)
= −1 and 1 ≤ m ≤ ρ− 1, then for all integers

a ≥ 0, we have

BPd6

(
6n+ 3

)
≡ 0 (mod 16), (5.1)

BPd6

(
6n+ 5

)
≡ 0 (mod 16), (5.2)

∑
n≥0

BPd6

(
24 · ρ2an+ 19 · ρ2a

)
qn ≡ 8f3f16 (mod 16) (5.3)

and
BPd6

(
24 · ρ2a+1(ρn+m) + 19 · ρ2a+2

)
≡ 0 (mod 16). (5.4)
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Proof. Putting t = 6 in (1.8), we arrive at∑
n≥0

BPd6(n)q
n =

f4
6 f

2
12f

2
18

f2
2 f

2
36

( 1
f2

1 f
2
3

)
. (5.5)

Utilising (2.15) in (5.5) and then extracting all the terms that involve q2n+1 and utilising (2.17),
we get ∑

n≥0

BPd6(2n+ 1)qn ≡ 2
f6

6 f
2
9

f2
3 f

2
18

(mod 16). (5.6)

Extracting the coefficients of the terms q3n+a, where a ∈ {1, 2} from (5.6), we obtain the desired
result (5.1) and (5.2) respectively. Next, extracting all the terms that involve q3n from (5.6) and
utilising (2.17), we arrive at

∑
n≥0

BPd6(6n+ 1)qn ≡ 2
f6

2

f2
6

(f2
3

f2
1

)
(mod 16). (5.7)

Utilising (2.10) in (5.7) and then extracting all the terms that involve q2n+1, we obtain∑
n≥0

BPd6(12n+ 7)qn ≡ 4
f2f4f12

f6

(
f2

1

)
(mod 16). (5.8)

Utilising (2.12) in (5.8), then extracting all the terms that involve q2n+1 and utilising (2.16), we
obtain ∑

n≥0

BPd6(24n+ 19)qn ≡ 8f3f16 (mod 16). (5.9)

Equation (5.9) is the case a = 0 of the congruence (5.3). Utilising (2.4) in (5.3) and continuing
like the proof of (3.62), we obtain∑

n≥0

BPd6

(
24 · ρ2α+1n+ 19 · ρ2α+2

)
qn ≡ f3ρf16ρ (mod 16). (5.10)

Extracting all the terms that involve qρn from (5.10) and then replacing qρ with q, we obtain∑
n≥0

BPd6

(
24 · ρ2(a+1)n+ 19 · ρ2(a+1)

)
qn ≡ f3f16 (mod 16), (5.11)

Equation (5.11) is the case a+ 1 of (5.3). Thus, we complete the proof of result (5.3).
Next, extracting all the terms that involve qρn+m, for 1 ≤ m ≤ ρ− 1, from (5.10), we obtain

the desired congruence (5.4).

Theorem 5.2. If ρ ≥ 5 be any prime with
(−3
ρ

)
= −1 and 1 ≤ m ≤ ρ− 1, then for all integers

a ≥ 0, we have ∑
n≥0

BPd6

(
24 · ρ2an+ 7 · ρ2a

)
qn ≡ 4f3f4 (mod 8) (5.12)

and

BPd6

(
24 · ρ2a+1(ρn+m) + 7 · ρ2a+2

)
≡ 0 (mod 8). (5.13)

Proof. Utilising (2.12) in (5.8), then extracting all the terms that involve q2n and utilising (2.16),
we obtain ∑

n≥0

BPd6(24n+ 7)qn ≡ 4f3f4 (mod 8). (5.14)

which is the case a = 0 of (5.12). Using (2.4) in (5.12) and proceeding as in the proof of (3.62),
we obtain ∑

n≥0

BPd6

(
24 · ρ2a+1n+ 7 · ρ2a+2

)
qn ≡ 4f3ρf4ρ (mod 8). (5.15)
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Extracting all the terms that involve qρn from (5.15) and then replacing qρ with q, we deduce∑
n≥0

BPd6

(
24 · ρ2(a+1)n+ 7 · ρ2(a+1)

)
qn ≡ 4f3f4 (mod 8), (5.16)

Equation (5.16) is the case a + 1 of (5.12). Thus, we complete the proof of (5.12). Extracting
all the terms that involve qρn+m with 1 ≤ m ≤ ρ − 1 from (5.15), we obtain the congruence
(5.13).

Acknowledgement

The first author thanks University Grants Commission (UGC) of India for supporting her re-
search work through Junior Research Fellowship (JRF) vide UGC-Ref.no. 1107/CSIR-UGC
NET DEC-2018.

References
[1] G. E. Andrews, R. P. Lewis and J. Lovejoy, Partitions with designated summands, Acta Arith. 105, 51–66

(2002).

[2] N. D. Baruah and Z. Ahmed, Congruences modulo p2 and p3 for k dots bracelet partitions with k = mps,
J. Number Theory 151(5), 129–146 (2015).

[3] N. D. Baruah and K. K. Ojah, Analogues of Ramanujan’s partition identities and congruences arising from
his theta functions and modular equations, Ramanujan J. 28, 385–407 (2012).

[4] N. D. Baruah and K. K. Ojah, Partition with designated summand in which all parts are odd, Integers 15,
(2015) A9.

[5] B. C. Berndt, Ramanujan’s Notebook Part III, Springer-verlag, New york, (1991).

[6] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, Divisibility properties of the
5-regular and 13-regular partition functions, Integers 8, (2008), A60.

[7] W. Y. C. Chen, K. Q. Ji, H. T. Jin and E. Y. Y. Shen, On the number of partitions with designated sum-
mands, J. Number Theory 133, 2929–2938 (2013).

[8] S. P. Cui and N. S. S. Gu, Arithmetic properties of l-regular partitions, Adv. Appl. Math. 51, 507–523
(2013).

[9] M. D. Hirschhorn, An identity of Ramanujan and Applications, in q-series from a Contemporary Perspec-
tive, Contemporary Mathematics, Amer. Math. Soc. Providence Vol. 254, (2000).

[10] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions, Bull. Aust.
Math. Soc. 81, 58–63 (2010).

[11] M. D. Hirschhorn and J. A. Sellers, A Congruence modulo 3 for partitions into distinct non-multiples of
four, J. Integer Seq. 17(9), (2014). Article 14.9.6.

[12] M. D. Hirschhorn, The Power of q. A Personal Journey, Developments in Mathematics, vol. 49, Springer,
(2017).

[13] M. S. M. Naika and D. S. Gireesh, Congruences for 3-regular partitions with designated summands,
Integers 16, (2016). A25

[14] M. S. M. Naika and C. Shivashankar, Arithmetic properties of bipartitions with designated summands,
Bol. Soc. Mat. Mex. 24, 37–60 (2018).

[15] M. S. M. Naika and S. Shivaprasada Nayaka, Arithmetic properties of 3-regular bi-partitions with desig-
nated summands, Mat. Vesn. 69(3), 192–206 (2017).

[16] M. S. M. Naika and D. S. Gireesh, On `-regular partition triples with designated summands, Palestine J.
Math. 11(1), 87–103 (2022).

[17] D. Penniston, Arithmetic of `-regular partition functions, Int. J. Number Theory 4, 295–302 (2008).

[18] D. Ranganatha, Ramanujan-type congruences modulo powers of 5 and 7, Indian J. Pure and Applied
Maths. 48(3), 449–465 (2017).

[19] C. Adiga and D. Ranganatha, Congruences for 7 and 49-regular partitions modulo powers of 7, Ramanujan
J. 48, 821–833 (2018).

[20] E. X. W. Xia, Arithmetic properties of partitions with designated summands, J. Number Theory 159,
160–175 (2016).



t-REGULAR BI-PARTITION WITH TAGGED SUMMAND 57

[21] E. X. W. Xia and O. X. M. Yao, Analogues of Ramanujan’s partition identities, Ramanujan J. 31, 373–396
(2013).

Author information
Rinchin Drema and Nipen Saikia∗, Department of Mathematics, Rajiv Gandhi University,
Rono Hills, Doimukh, Arunachal Pradesh, Pin-791112, India.
E-mail: rinchin.drema@rgu.ac.in; nipennak@yahoo.com ∗ Corresponding author


	1 Introduction
	2 Preliminaries
	3 Congruences modulo 3, 4, 8 and 16 for BPd2(n)
	4 Congruences modulo 16 for BPd4(n)
	5 Congruences modulo 8 and 16 for BPd6(n)

