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Abstract Let p; , (n) denotes the number of (j, k)-regular overpartitions of a positive integer
n such that none of the parts is congruent to j modulo k. Naika et al. (2021) proved infinite
families of congruences modulo powers of 2 for p; (1), Bs 19(n) and pg 15(n). In this paper, we
obtain infinite families of congruences modulo 4, 8, 16, 32 and 64 for ﬁ478(n), modulo 4 and 8
for pg 15(n), and modulo 16 for pg 15(n). For example, we prove that for all integers 7 > 0 and
a>0,
Pag (5172 (16(5n + j) + 14)) =0 (mod 64).

1 Introduction

A partition of a natural number n is a non-increasing sequence of natural number called parts,
whose sum is equal to n. The number of partitions of a natural number n is usually denoted by
p(n) (with p(0) = 1) and the generating function is given by

. 1
p(n)q" = ; (1.1)
; (¢:0)oo
where, for any complex number a and ¢,
(a59)00 = H(l —aq"), ¢l <L (1.2)
n=0
Throughout the paper, we denote
fr = (6" ¢") - (1.3)

where k is any non-negative integer. An overpartition of a non-negative integer n is a partition
of n in which the first occurrence of each parts may be overlined. For example, there are 14
overpartition of 4, namely

4, 4, 341, 341, 341, 341, 242, 242, 2+1+1, 24+1+1, 2+1+1,

24 1+1, 1T+1+14+1, 14+1+1+1.
If p(n) denotes the number of overpartition of n, then the generating function of p(n) is given
by
Y Bn)g" = @ 9)e (1.4)
i (€ @)

Again, for any positive integer ¢, an /-regular partition of n is a partition in which no part is
divisible by £. If b,(n) denotes the number of ¢-regular partitions of n (with b,(0) = 1), then the
generating function of b,(n) is given by

> b(n)g" = % (1.5)

n=0
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Naika et al. [5] defined a new overpartition functions known as (7, k)-regular overpartition. An
overpartition of a non-negative integer n is said to be (7, k)-regular overpartition if none of the
parts is congruent to j (mod k). If p; . (n) denotes the number of (j, k)-regular overpartition of
n (with p; 1 (0) = 1), then its generating function is given by

o _ N G T
. n_ : , 1.6
nzzopj’k(n)q (@)oo (=071 6o (1.9

For example, the (4, 8)-regular overpartition of 4 are given by
341, 3+1, 341, 3+1, 242, 242, 24141, 24141, 24141,

24141, 1T+14+141, 14+14+1+1.

Naika et al. [5] obtain many infinite families of congruences modulo powers of 2 for 7 ¢(n),
Ps.10(n) and Py 1g(n). In this paper, we prove many infinite families of congruences modulo 4,
8, 16, 32 and 64 for p, g(n), modulo 4 and 8 for pg 1,(n), and modulo 16 for pg 1(n).

2 Some g-Series Identities

Lemma 2.1. We have

1 4 fifg
il + 4 ; 2.1
R o
1 3 [i 1t
i 4 ; 2.2
[T AT *2
2 _ f2f§ _2 f2f126 2.3
fl f2f126 q fS ) ( . )
3 3 £2 3
I Bide 4t (2.4)

fi o e Tt

The equation (2.1) is the 2-dissection of ¢(q)? [4, (1.10.1)]. The equation (2.2) is the 2-
dissection of ¢(q) [4, (1.9.4)]. The equation (2.3) can be derived from the equations (2.2) by
substituting —q in place of ¢ respectively. The equation (2.4) is obtained from [4, (22.1.14)]

Lemma 2.2. We have

R A A i

J2 ) +4 , 2.5

T T B &
ff_F% _, bl (2.6)

£ fis 1 fefo

The identity (2.5) is equivalent to the 3-dissection of ¢(—q) (see [4, (Eq.14.3.2)]). The Iden-
tity (2.6) can be obtained from the first by replacing ¢ with wq and w?q and then multiplying the
two results, where w is a primitive cube root of unity.

Lemma 2.3. [3, Theorem 2.2] Let r > 5 be any prime, then we have

(r=1)/2
f= Z (71)kq(3k2+k)/2f (7q(3r2+(6k+1)r)/2’7q(3r“7(6k+l)r)/2>

b ;(Tl)
—1
ke =L

+(_1)(ir—1)/6q(r2—1)/24frz. 2.7)

where
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o =D fr=1 (mod6),

r=b ifr=-—1 (mod 6).

Furthermore, if

—(r—1) (r—1) (£r—1)
<k< = 7
> <k< 3 and k # I
then
(Bk*+k) , (r*—1)
> %= 7 (mod 7).
Lemma 2.4. [I, Lemma 2.3] For any prime r > 3, we have
(r—1) 00
f13 = Z (71)’9(](]‘3(79""1))/2 Z(,l)n(zrn 40k + 1)qrn-(rn+2k+l)/2
k#(frzgl)/z n=0

Hr(=1) =02 =0/8 g3,

Furthermore, if k # 0<k<r—1,then

)

(r—1)
2

(2+8) , (=)
2 8

(mod 7).
Lemma 2.5. [4, Eq.(8.1.1)] We have
fi=Fhs(R(@) —q—¢R(¢)™),

where

(qz; qs)oo(q3; qs)oo

Rla) = (6:6°)00(6% %) o0

Lemma 2.6. /2, p. 303, Entry 17(v)] We have

_ E((") D(q) 5 C(q")
Ji =1 <0<q7> ~ ) ¢ +q5D<q7>)’

where D(q) _ f(—q37 —q4)7E(q) _ f(_q2’ _q5) and C(Q) = f(_% —q6).

(2.8)

(2.9)

(2.10)

In addition to above g—series identities, we will be using following congruence properties

which follows from binomial theorem: For any positive integer k£ and m,

7= far (mod 2),

= (mod 4)

8m — pdm

o= fort (mod 8).

2.11)

(2.12)

(2.13)
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3 Congruences for p, ;(n)

Theorem 3.1. If s € {1,2,3,4,5,6} and t € {0,2,3,4} . Then for all integers n > 0 and o > 0,

we have

2794,8 (5°* - 7> (16n+6)) ¢" = 32f, fs (mod 64),
n=0

> Pag (5772 (16n + 14)) ¢" = 32qfsfs0  (mod 64),

Pag (52177 (16(Sn+1t) + 14)) =0 (mod 64),

> Pag (577 (16n + 10)) ¢" = 32¢* f1fs6  (mod 64),

n=0
Pag (5°* - 71 (16(Tn + s) + 14)) =0 (mod 64).

Proof. Setting j =4 and k = 8 in (1.6), we obtain

me _ (39x(q"¢%)w

T (@05 )

Applying elementary g-operation and employing (1.3), we obtain

— n_ Nfif
T;)pét,S(n)q = ?124‘](.516'

Using (2.2) in (3.7), we obtain

> — n f4f8 2 f4f16
nzzom,s(”) = P + f2 23

Extracting the even and odd powers of ¢ from both sides of (3.8), we obtain

ZOO - n_ 513
2 A pr—
n:0p478( T))q -](‘14-](‘8

and

oo 473
> pus(en+ 1) =225
o fify

respectively. Employing (2.1) in (3.9), we obtain

i (2n) i A
Pag(2n)q" = +4q .
n=0 lezfg ‘f28

Extracting the even and odd powers of ¢ from both sides of (3.11), we obtain

16

Zp4,8 (4n)qn = 1§f5
1 74

n=0

and

> Pas(dn+2)g" = fz f4 ;

n=0

respectively. Using (2.1) in (3.13), we deduce that

- n i £ fif§
> Pas(dn+2)g" = f24f +32¢°245 20 +64g> 28
n=0 2 /8 2

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Extracting coefficients of the terms involving ¢***! from (3.14), we obtain

oo 19
> Pas(Bn+6)q" =32¢°5;

2P el (3.15)
Employing (2.11) in (3.15), we find that
iﬁ478(8n +6)¢" =32f; (mod 64). (3.16)
n=0
Extracting even powers of ¢ from both sides of (3.16), we deduce that
i@,g(mn +6)¢" =32f5f; (mod 64). (3.17)
n=0
Again, using (2.11) in (3.17), we obtain
im,g(mn +6)¢" =32f3f1 (mod 64). (3.18)

n=0

The equation (3.18) is the case & = § = 0 of equation (3.1). Assume that the congruence (3.1)
is true for any integer a > 0 with g = 0. Utilising (2.9) in (3.1) with 8 = 0 and then extracting
the coefficients of ¢°"**, we arrive at

Zp (5% (16n + 14)) " = 32qfsfa  (mod 64). (3.19)
n=0

Extracting the coefficients of ¢>**! from both side of (3.19), we obtain
Zp (52 () (160 + 6)) " =Rfifs (mod 64), (3.20)

which implies that (3.1) is true for « + 1 with § = 0. By principle of mathematical induction,
(3.1) is true for all non negative integers o > 0 with § = 0. Assume that the congruence (3.1)
holds for a, 3 > 0. Utilising (2.10) in (3.1) and then extracting the coefficients of ¢’"*, we
obtain

2174,8 (5°* - 771 (16n 4 10)) ¢" = 32¢° f1fs6¢  (mod 64), (3.21)
n=0

which proves (3.4). Now extracting coefficients of the term ¢’"*2 from both sides of (3.21), we
find that

Z P (52a 720+ (165, + 6)) @ =Rffs (mod 64), (3.22)
which implies that (3.1) is true for all 5+ 1. By principle of mathematical induction (3.1) is true
for all positive integers «, 3.

Using (2.9) in (3.1), then extracting coefficients of the term ¢°"**, we arrive at (3.2). Again
utilising (2.9) in (3.2) , then extracting coefficients of the term ¢°"** for ¢t € {0,2,3,4} from

(3.2), we arrive at (3.3). Employing (2.10) in (3.21) and then extracting coefficients of the term
qm*s for s € {0,1,3,4,5,6}, we arrive at (3.5). ]

Theorem 3.2. If 1 < j < r — 1, then for all integers o > 0 and n > 0, we have
]3478(16n—l—4c+2)50 (mod 32); ce(1,2,3), (3.23)

Zp48<2 r2o 8n+1)) " =4f (mod 32), (3.24)

Bus (2 204 (8(rm + §) + 7“)) =0 (mod 32). (3.25)
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Proof. From (3.13), we note that

o n_ARS
Y Pagdn+2)q" = 5t (mod 32) (3.26)
n=0 1
Employing (2.13) in (3.26), we obtain
> Pagldn+2)g" =4f] (mod 32). (3.27)

n=0

Extracting the terms involving ¢*"*¢ for ¢ € {1,2,3} from (3.27), we arrive at (3.23). Again,
extracting the terms involving ¢*” from (3.27), we obtain

> Pag(16n+2)g" =4f} (mod 32). (3.28)

n=0

Congruence (3.28) is o = 0 case of equation (3.24). Suppose that the congruence (3.24) is true
for any integer o > 0. Utilising (2.8) in (3.24), we obtain

o0 (T—l) o0
ZTM,S (2.7a2a (Sn + 1) )qn = Z (_l)kq(k(k+l))/2 Z(_])n(2rn+2k+1)qrn~(rn+2k’+l)/2
n=0 k=0 n=0
k#(xr—1)/2
(=)= D20 =08 3 (mod 32). (3.29)

Extracting the term involving q””“rtl)/ 8 from both sides of (3.29), dividing throughout by
¢ /8 and then replacing " by ¢, we obtain

> P (2 2ot (8 4 1) )q" = (mod 32). (3.30)
n=0

Extracting the terms involving ¢"" from (3.30) and replacing ¢" by ¢, we obtain
> Pas (2 et (8p 4 1) )q" = f} (mod 32), (3.31)
n=0

which is the o + 1 case of (3.24). Thus, by the principle of mathematical induction, we arrive at
(3.24). Extracting the coefficients of terms involving ¢"**/ for 1 < j < r — 1, from both sides
of (3.30), we complete the proof of (3.25). O

Theorem 3.3. Let j € {0,2,3,4} and k € {0,1,3,4,5,6}. Then for all integers o > 0 and
B >0, we have

3 ﬁ478<8 S52 . 728 () 4 3. 5% .72ﬂ)q" =8f° (mod 16), (3.32)

n=0
> ;74)8(8 52t 728(p) 47 . 52t -725)qn =8¢f¢ (mod 16), (3.33)
n=0

Pas (8 52 B (Sn 4 4) 47 52t 725) =0 (mod 16), (3.34)
> P (8 L5200 72841 () 4 5. 5% 725+1)q" = 842f0 (mod 16), (3.35)
n=0

ﬁ4,8(8 . 52a ,72[3+1(7n+k) 4+ 5.5% ,72ﬂ+1) =0 (mod 16). (3.36)
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Proof. From (3.10), we have

o 2 1 ”—ngfg 3.37
Zp4,8( n+ )q - f4f4' ( . )
n=0 174
Using (2.1) in (3.37), we obtain
DUCIRRIVERE e e
DPag(2n+1)¢g" =2 + 8¢ . (3.38)
nZ:O e At R
Now extracting the odd powers of ¢ from both sides of (3.38), we obtain
> Pag(dn+3)g" =8 o (3.39)
n=0 1J2
Utilising (2.11) in (3.39), we find that
> Pag(dn+3)g" =8/, (mod 16). (3.40)
n=0
Extracting the even powers of ¢ from both sides of (3.40), we arrive at
> Pag(8n+3)g" =8f (mod 16). (3.41)

n=0

The equation (3.41) is the case a = S = 0 of equation (3.32). Assume that the congruence
(3.32) is true for any integer o > 0 with g = 0. Utilising (2.9) in (3.32) with § = 0 and then
extracting coefficients of the term ¢>"**, we arrive at

> Pus (8 52t () 47 . 52a+1)q” =842 (mod 16). (3.42)
n=0

Extracting coefficients of the term ¢>"*! from both sides of (3.42), we find that
> Pus (8 520t () + 3. 52<a+1))q" —8f% (mod 16), (3.43)
n=0

which implies that (3.32) is true for o + 1 with § = 0. By principle of mathematical induction,
(3.32) is true for all positive integers « > 0 with § = 0. Assume that the congruence (3.32) holds

for o, B > 0. Utilising (2.10) in (3.32), then extracting the terms involving ¢’"**, we obtain
> Pag (8 -5 7Pt (n) +5. 5% 725+‘)q" =8¢*f; (mod 16), (3.44)
n=0

which proves (3.35). Now extracting coefficients of the term ¢’"*2 from both sides of (3.44), we
arrive at

Zm(s -52a P2B+D () 4 3. 52 72<B+1))q" = 8f° (mod 16), (3.45)
n=0

which implies that (3.32) is true for all 8 + 1. By principle of mathematical induction (3.32) is
true for all positive integers «, [3.

Utilising (2.9) in (3.32), then extracting coefficients of the term ¢°"**, we arrive at (3.33).
Again employing (2.9) in (3.33) and extracting coefficients of the term ¢°"*7 for j € {0,2,3,4}
from (3.33), we arrive at (3.34). Employing (2.10) in (3.44) and then extracting coefficients of
the term ¢’"** for k € {0, 1,3,4,5,6}, we arrive at (3.36). ]
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Theorem 3.4. Let v > 5 be a prime with (

n > 0and o > 0, we have

_2) = —land1 <t < (r—1). Then for all integers
,

Z Pag (2-77°(8n+1))¢" = fif» (mod 8), (3.46)
n=0
Dag (2 2@t D(8(rn 4 1) + 1)) =0 (mod 8). (3.47)

Proof. From (3.13), we note that

Zm s(4n +2)q" ofili, (3.48)
n=0 f]
Using (2.12) in (3.59), we obtain
> Pag(dn+2)g" =4f] (mod 8). (3.49)
n=0
Extracting coefficients of the term ¢*” from (3.49), we obtain
> Pas(16n+2)g" =4f1f, (mod 8). (3.50)

n=0

Congruence (3.50) is the « = 0 case of (3.46). Assume that congruence (3.46) is true for all
a > 0. Utilising (2.7) in (3.46), we obtain

st o(8n + 1 )) E{ i (_l)kq(3k~2+k)/2f (_q(37-2+(6k+])7-)/27 q( —(6k+1)r )/2)
—(r—
#(Er—

/2

( 1)/6

+(_1)(:I:r—l)/ﬁq(rz—l)/%frz}

m=(r—1)/2
X{ Z (71)mq(3m +m)f (7(](37« +(6m+1)7’), 7q(37‘ 7(6m+1)r)>
m=—(r—1)/2
m#(+r—1)/6
+(—1)<ir—‘>/6q<rz—‘>/‘2f2r2} (mod 8). 3.51)

Now consider the congruence

G2 +k) _ (2—1)
2 8

(3m? 4 m) + (mod ),

which is equal to
2(6m+ 1)+ (6k+1)>=0 (mod r).

+r —1

-2
For () = —1, the above congruence has only solution k¥ = m = ( ) Therefore,

T
extracting the terms involving ¢""*(”~1D/8 from (3.51), dividing throughout by ¢’ ~1/8 and
then replacing ¢" by ¢, we obtain

o0

ng (21 (8n+71)) ¢" = frfor (mod 8). (3.52)
n=0

Extracting coefficients of the term ¢"™ from both sides of (3.52) and substituting ¢" by ¢, we
arrive at

> Bas (27280 +1)) ¢" = fif2 (mod 8), (3.53)

n=0
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which is the a + 1 case of (3.46). Therefore, by mathematical induction, we arrive at (3.46).
Equating the coefficients of terms ¢""** for 1 < ¢t < r — 1, from both sides of (3.52), we
complete the proof of (3.47). O

Theorem 3.5. For all integers n > 0, « > 0 and k € {1,2}, we have

el 2
> Pas(8:3n)q" = % (mod 4), (3.54)
n=0 2
. — 2a+1 n f32
D Pag (8-3%n)¢" = 7 (mod 4), (3.55)
n=0
Pag (8-3T'n+16-3%) =0 (mod 4), (3.56)
Pag(8:3*(3n+k)) =0 (mod4). (3.57)
Proof. From (3.10), we have
o0 16
> Pag(dn)g” = 3 = (3.58)
n=0 1 /4
Using (2.12) in (3.59), we obtain
oo 2
> Pag(4n)q" = 72 (mod 4). (3.59)
n=0 4

Extracting the even powers of ¢ from both sides of (3.59), we arrive at

o0 2
> Pag(8n)g" = i (mod 4). (3.60)
n=0 f2
Congruence (3.60) is the o = 0 case of (3.54). Suppose that (3.54) is true for all & > 0. Using
(2.6) in (3.54), then extracting coefficients of the term ¢*" from both sides, dividing throughout
by ¢* and substituting ¢> by ¢, we find that

Lo

D Pag(8:3"n)g" =2 (mod 4), (3.61)
n=0

Sl

which proves (3.55). Again extracting coefficients of the term ¢*" from both sides and replacing
¢ by ¢, we arrive at

= = 2(a+1) n — f12

> Pag (83 n)q* =L (mod 4), (3.62)
n=0 , f2

which is the o + 1 case of (3.54). Hence, by mathematical induction, we arrive at (3.54). Now

using (2.6) in (3.54), then extracting coefficients of the term ¢*”*2 from both sides, dividing

throughout by ¢? and substituting ¢*> by ¢ we prove (3.56). Again, extracting coefficients of the

term ¢>"** for k € {1,2} from both sides of (3.61) and replacing ¢ by ¢ we prove (3.57). O

Theorem 3.6. For all integers n > 0 and o > 0, we have

0o 3
> Pag(24-2%n+8.22)¢" = 2’}3 (mod 4), (3.63)
1
n=0
> Pag(24-2%Fn 4822 g = 2?6 (mod 4), (3.64)
2

n=0

§4,8(24 . 22(a+l)n +20- 22(a+1)))qn =0 (mod 4) (3.65)
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Proof. Employing (2.6) in (3.60), we obtain

5 o (5 Pl
> Bag(8n)g" = (4= +2 (mod 4). (3.66)
= fis oo
Extracting coefficients of the term ¢>”*! from both sides of (3.66), we obtain
i _ w113
Pag(24n + 8)¢" =22 (mod 4). (3.67)
= /3
Using (2.11) in (3.67), we obtain
Z Pag(24n + 8)g" f 23 (mod 4). (3.68)

n=0 f

Congruence (3.68) is the a = 0 case of (3.63). Assume that (3.63) is true for all @ > 0. Using
(2.4) in (3.63), we obtain

121 f”) d 4 3.69
f22f12+ fa (mod 4). (3.69)

S (2422 4 8-22) =2 (
n=0

Then extracting coefficients of the term ¢>”*! from both sides, dividing throughout by ¢ and
substituting ¢ by ¢, we find that

s

Zﬁ4,8(24 . 22a+ln +8. 2204+2)qn = f
2

n=0

(mod 4), (3.70)

which proves (3.64). Again extracting coefficients of the term ¢*>" from both sides, dividing
throughout by ¢ and substituting ¢> by ¢, we obtain

5

Zﬁ478(24 . 22(04+1)n + 8. 22(a+1))qn = 2f
1

n=0

(mod 4), (3.71)

which is the a + 1 case of (3.63). Hence, by mathematical induction, we arrive at (3.63). Then
extracting the even powers of ¢ from both sides of (3.70), dividing throughout by ¢ and substi-

tuting ¢> by ¢, we prove (3.65). O
Theorem 3.7. Ift € {1,2,3,4,5,6,7} and 1 < k < r — 1, then for all integers n > 0 and o > 0,
we have
Pag (48(8n+1) +8)¢" =0 (mod 4), (3.72)
> Pug (38410 +8(2r% — 1)) ¢" = fi (mod 4), (3.73)
n=0
Pag (384 - 1> (rn+ k) +8(2r** — 1)) ¢" =0 (mod 4). (3.74)

Proof. Utilising (2.4) in (3.68), we obtain

> 3 2
> Pag(24n+8)g" =2 (JJ:;‘ J{g + J;f) (mod 4). (3.75)
n=0 2

Extracting coefficients of the term ¢>" from both sides of (3.75), we find that

Zp4848n+8) 2 Jile

= d 4). 3.76
n—=0 fzflz (mo ) ( )
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Employing (2.11) in (3.76), we obtain

> Pag(48n+8)g" =2fs (mod 4). (3.77)
n=0

Extracting coefficients of the term ¢®"** for t € {1,2,3,4,5,6,7} from both sides of (3.77), we
arrive at (3.72). Again extracting coefficients of the term ¢®" from both sides of (3.77), we obtain

D Pag(384n+8)g" =2f1 (mod 4), (3.78)

n=0

which is the & = 0 case of (3.73). Assume (3.73) is true for any @ > 0. Employing (2.7) in
(3.78), we obtain

> pus (3842 4 822 - 1))

n=0
(r=1)/2 . i 2
= { Z (_l)kq(3k +k)/2f (_q(3r +(6k+l)r)/27 _q(3r _<6k+1)7,)/2)
k=—(r—1)/2
k#A(£r—1)/6
(=1 6q“"z“Vz“frz} (mod 4). (3.79)

Extracting coefficients of the term ¢™+("~1/24 from both sides of (3.79), dividing by ¢(""—1)/24
and then substituting ¢” by ¢, we obtain

S Pas (384 20t () 4 8(2r2(0+D) 1)) ¢" = f, (mod 4). (3.80)

n=0

Extracting coefficients of the term ¢"™ from both sides of (3.80) and substituing ¢" by ¢, we find
that

S Pus (384 ety 4 g(2p2(et) 1)) "= fi (mod4). 3.81)
n=0

which is the a + 1 case of (3.73). Therefore, by mathematical induction, the proof of (3.73) is
complete. Extracting coefficients of the term g™k, for 1 < k < r—1, from both sides of (3.80),
we arrive at (3.74). O

4 Congruences for p; ;,(n)

Theorem 4.1. For all integersn > 0, « > 0and 1 <t < (r — 1), we have

Zﬁe,lz (24 -r*n+r*))¢" = fi (mod 4), 4.1)
n=0
Peio (1 (24(rm+1t) 4+ 7)) =0 (mod 4). 4.2)

Proof. Setting j = 6 and £ = 12 in (1.6), we note that

iﬁé (n)g = T D040
i (43 9) o0 (=% ") 0

Applying elementary g-operation and using (1.3), we obtain

0 2
> Fonna =7 }%f“ 43)
n=0
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Utilising (2.5) in (4.3), we find that

o fefau (f6f9 1313 2 fe fis
Po12(n)q" = +2q +4q (4.4)
nz: i \fFfis f b
Extracting coefficients of the term ¢>”*! from both sides of (4.4), we deduce that
—_ f B
> Ben(Bn+ 1)g" =222 4.5)
n=0 fl f4
Using (2.11) in (4.5), we arrive at
s
Z Po.12(3n + 1 i (mod 4). (4.6)
Utilising (2.4) in (4.6), we find that
> Pen(Bn+1)q" = file +2qu2 (mod 4). (4.7
o /32 fa

Extracting the even powers of ¢ from both sides of (4.7) and using (2.11), we obtain
> Pena(6n+1)g" =2f7 (mod 4). (4.8)
Again, extracting the even powers of ¢ from both sides of (4.8) and using (2.11), we arrive at

me (I12n+ 1)g" =2f, (mod 4). (4.9)
n=0

Again, extracting even powers of ¢ from both sides of (4.9), we obtain

> Pen(24n+1)g" =2fi (mod 4), (4.10)
n=0

which is the a = 0 case of (4.1). Suppose (4.1) is true for any a > 0. Employing (2.7) in (4.1),
we obtam

Zp()lz *(24n +1)) ¢"

(r—1)/2
E{ Z (_l)kq(3k2+k)/2f (_q(37'2+(6k+1)r)/2’_q(37'2—(6k+1)7~)/2)
k=—(r—1)/2
k#A(xr—1)/6
+(—1)<i7"—')/6q<7"2—‘>/24fr2} (mod 4). @.11)

Extracting coefficients of the term ¢"™*(”"~1/24 from both sides of (4.11), dividing by ¢’ ~1/24
and then substituting ¢" by ¢, we obtain

pr (r**1(24n +7)) ¢" = f. (mod 4). (4.12)
n=0

Extracting coefficients of the term ¢"™ from both sides of (4.12) and substituting ¢" by ¢, we find
that

me (e D@an+ 1)) q" = fi (mod 4), 4.13)

which is the o + 1 case of (4. 1). Hence, by mathematical induction, the proof of (4.1) is complete.
Extracting coefficients of the term ¢"™* for 1 < ¢t < r — 1, from both sides of (4.12), we arrive
at (4.2). O
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Theorem 4.2. For all integers n > 0 and o > 0, we have

> 3
Zp6712 (3 . 22an + 220‘)) qn = Zfi

mod 4),
n=0 fl ( )

c- - 2041 2(a+1) n _ f63
S Pon (327 I+ 200)) " = 2% (mod 4),
n=0 7 f2

P12 (3 2ty 4 5. 22(a+1))> =0 (mod 4).

Proof. From (4.6), we obtain

o0 3
Zﬁ6,12(3n + l)qn = % (mOd 4)

The remaining part of the proof is similar to proofs of the identities (3.63)-(3.65).

Theorem 4.3. For all integers n > 0 and o > 0, we have

3
Zp6 (3n+1)) 7154%3 (mod 8),

1

_ 48

22a+2 3 + 2 n —
Z Pe,12 n )) fZ

(mod 8),

Pe.12 (22°72(6n+5)) =0 (mod 8).

Proof. Extracting the terms involving ¢*"*? from (4.4), we obtain

f2f6f8
3n 2 =4
nE Ope. 12(3n +2)q" 1573

Utilising (2.11) in (4.21), we find that

s

2136,12(3” +2)¢" =4
f

n=0

(mod 8).

Extracting the even powers of ¢ from both sides of (4.22), we deduce that

Pie

f1 (mod 8).

Zp612 6n +2)q" =
n=0

The remaining part of the proof is similar to proofs of the identities (3.63)-(3.65).

Theorem 4.4. For all integersn > 0, a« > 0and 1 < j < (r — 1), we have

S Pona(2-77(24n + 1))g" = 4f;  (mod 8),

n=0
De12(2- 7271 (24(rn 4 j) + 1)) =0 (mod 8).

Proof. Extracting coefficients of the term ¢*"*2 from both sides of (4.4), we obtain

f2f6f8
(3n+2
nE Ope. 12(3n +2)q" 1573

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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Utilising (2.12) in (4.26), we find that

3
Jo (mod 8). (4.27)
2

256,12(3” +2)¢" = 4f

n=0

Extracting coefficients of the term ¢*” from both sides of (4.27), we obtain

e 3
> Pen(bn+2)q" = 4? (mod 8). (4.28)
1
n=0
Employing (2.4) in (4.28), we obtain
0 3r2 3
pr(m +2)" =4 (]{‘2‘]{6 + qj;lz> (mod 8). (4.29)
0 5 12 4

Extracting the even powers of ¢ from both sides of (4.29) and using (2.11), we obtain

Z%,lz(lzn +2)¢" =4f, (mod 8). (4.30)
n=0

Again, extracting coefficients of the term ¢** from both sides of (4.30), we find that

Y Poin(48n+2)q" = 4f; (mod 8). 4.31)
n=0
The remaining part of the proof is similar to the proof of the identities (4.1)-(4.2). O

5 Congruences for p; ()

Theorem 5.1. Let j € {0,2,3,4} and k € {0,1,3,4,5,6}. Then for all integers o > 0 and
B >0, we have

> Beas (852 7P (n) +3-52 7 )g" =87 (mod 16), (5.1)

n=0
Zp&m(s 52kl 728 () 4.7 . 52t -72ﬁ)q" =8¢f¢ (mod 16), (5.2)
n=0

Bs.16 (8 LSRatl 72B(5p 4 ) 7. 52 72ﬁ) —0 (mod 16), (5.3)
> Brig(8- 5 P () +5- 5 7 )g" =862 (mod 16), (5.4)
n=0

Bs.16 (8 520 2B (T 4 k) 5. 5% 72/3“) =0 (mod 16). (5.5)

Proof. Setting j = 8 and £ = 16 in (1.6), we note that

— n ( qQQ)OO(CIS;qm)oo
E P n)q" = .
o 8’16( ) (q;Q)oo( qg;qm)oo

Applying elementary g-operation and utilising (1.3), we deduce that

e 2
> Bsis(n)g" = f }?;?:2 (5.6)
n=0
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Using (2.2) in (5.6), we find that

o e fifsfn
Pgi6(n)q" = +2¢ : (5.7)
2 e B ™ Fhe
Extracting the odd powers of ¢ from both sides of (5.7), we find that
o0 2
> By 16(2n+ 1)g" = 2f2£4f16. (5.8)
n—0 f] f8
Utilising (2.1) in (5.8), we find that
— 13 fafis ( ! fif3
Dg16(2n+1)¢g" =2 + 4q . 5.9
nZ:O 8,16( ) f8 f2]4f§; 2]()
Extracting the odd powers of g from both sides of (5.9), we obtain
o0 363
Zﬁ8716(4n+3)q” :8f2f;§f8. (5.10)
n=0 fl
Utilising (2.11) in (5.10), we find that
> Dsi6(4n+3)g" =8f; (mod 16). (5.11)
n=0
Extracting the even powers of ¢ from both sides of (5.11), we find that
> Psi6(8n+3)g" =8f) (mod 16). (5.12)
n=0
The remaining part of the proof is similar to proofs of the identities (3.32)-(3.36). O
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