SOME NEW CONGRUENCE MODULO POWERS OF 2 FOR (j, k) - REGULAR OVERPARTITION

Riyajur Rahman and Nipen Saikia*

MSC 2020 Classifications: Primary 11P83; Secondary 05A17.
Keywords and phrases: (j, k)-regular overpartition; congruences; q-series identities.

Abstract

Let $\bar{p}_{j, k}(n)$ denotes the number of (j, k)-regular overpartitions of a positive integer n such that none of the parts is congruent to j modulo k. Naika et al. (2021) proved infinite families of congruences modulo powers of 2 for $\bar{p}_{3,6}(n), \bar{p}_{5,10}(n)$ and $\bar{p}_{9,18}(n)$. In this paper, we obtain infinite families of congruences modulo $4,8,16,32$ and 64 for $\bar{p}_{4,8}(n)$, modulo 4 and 8 for $\bar{p}_{6,12}(n)$, and modulo 16 for $\bar{p}_{8,16}(n)$. For example, we prove that for all integers $n \geq 0$ and $\alpha \geq 0$, $$
\bar{p}_{4,8}\left(5^{2 \alpha+1} \cdot 7^{2 \alpha}(16(5 n+j)+14)\right) \equiv 0 \quad(\bmod 64) .
$$

1 Introduction

A partition of a natural number n is a non-increasing sequence of natural number called parts, whose sum is equal to n. The number of partitions of a natural number n is usually denoted by $p(n)$ (with $p(0)=1$) and the generating function is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}} \tag{1.1}
\end{equation*}
$$

where, for any complex number a and q,

$$
\begin{equation*}
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right), \quad|q|<1 . \tag{1.2}
\end{equation*}
$$

Throughout the paper, we denote

$$
\begin{equation*}
f_{k}:=\left(q^{k} ; q^{k}\right)_{\infty} . \tag{1.3}
\end{equation*}
$$

where k is any non-negative integer. An overpartition of a non-negative integer n is a partition of n in which the first occurrence of each parts may be overlined. For example, there are 14 overpartition of 4 , namely

$$
\begin{gathered}
\overline{4}, \quad 4, \quad \overline{3}+\overline{1}, \quad 3+\overline{1}, \quad \overline{3}+1, \quad 3+1, \quad \overline{2}+2, \quad 2+2, \quad \overline{2}+\overline{1}+1, \quad \overline{2}+1+1, \quad 2+\overline{1}+1, \\
2+1+1, \quad \overline{1}+1+1+1, \quad 1+1+1+1 .
\end{gathered}
$$

If $\bar{p}(n)$ denotes the number of overpartition of n, then the generating function of $\bar{p}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q ; q)_{\infty}} . \tag{1.4}
\end{equation*}
$$

Again, for any positive integer ℓ, an ℓ-regular partition of n is a partition in which no part is divisible by ℓ. If $b_{\ell}(n)$ denotes the number of ℓ-regular partitions of n (with $b_{\ell}(0)=1$), then the generating function of $b_{\ell}(n)$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{\ell}(n) q^{n}=\frac{f_{\ell}}{f_{1}} . \tag{1.5}
\end{equation*}
$$

Naika et al. [5] defined a new overpartition functions known as (j, k)-regular overpartition. An overpartition of a non-negative integer n is said to be (j, k)-regular overpartition if none of the parts is congruent to $j(\bmod k)$. If $p_{j, k}(n)$ denotes the number of (j, k)-regular overpartition of n (with $p_{j, k}(0)=1$), then its generating function is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{j, k}(n) q^{n}=\frac{(-q ; q)_{\infty}\left(q^{j} ; q^{k}\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{j} ; q^{k}\right)_{\infty}} \tag{1.6}
\end{equation*}
$$

For example, the $(4,8)$-regular overpartition of 4 are given by

$$
\begin{gathered}
\overline{3}+\overline{1}, \quad \overline{3}+1, \quad 3+\overline{1}, \quad 3+1, \quad \overline{2}+2, \quad 2+2, \quad \overline{2}+\overline{1}+1, \quad \overline{2}+1+1, \quad 2+\overline{1}+1 \\
2+1+1, \\
\overline{1}+1+1+1, \\
1+1+1+1
\end{gathered}
$$

Naika et al. [5] obtain many infinite families of congruences modulo powers of 2 for $\bar{p}_{3,6}(n)$, $\bar{p}_{5,10}(n)$ and $\bar{p}_{9,18}(n)$. In this paper, we prove many infinite families of congruences modulo 4 , $8,16,32$ and 64 for $\bar{p}_{4,8}(n)$, modulo 4 and 8 for $\bar{p}_{6,12}(n)$, and modulo 16 for $\bar{p}_{8,16}(n)$.

2 Some q-Series Identities

Lemma 2.1. We have

$$
\begin{gather*}
\frac{1}{f_{1}^{4}}=\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}} \tag{2.1}\\
\frac{1}{f_{1}^{2}}=\frac{f_{8}^{5}}{f_{2}^{5} f_{16}^{2}}+2 q \frac{f_{4}^{2} f_{16}^{2}}{f_{2}^{5} f_{8}} \tag{2.2}\\
f_{1}^{2}=\frac{f_{2} f_{8}^{5}}{f_{4}^{2} f_{16}^{2}}-2 q \frac{f_{2} f_{16}^{2}}{f_{8}} \tag{2.3}\\
\frac{f_{3}^{3}}{f_{1}}=\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}} \tag{2.4}
\end{gather*}
$$

The equation (2.1) is the 2-dissection of $\phi(q)^{2}$ [4, (1.10.1)]. The equation (2.2) is the 2 dissection of $\phi(q)$ [4, (1.9.4)]. The equation (2.3) can be derived from the equations (2.2) by substituting $-q$ in place of q respectively. The equation (2.4) is obtained from [4, (22.1.14)]

Lemma 2.2. We have

$$
\begin{gather*}
\frac{f_{2}}{f_{1}^{2}}=\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}} \tag{2.5}\\
\frac{f_{1}^{2}}{f_{2}}=\frac{f_{9}^{2}}{f_{18}}-2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}} \tag{2.6}
\end{gather*}
$$

The identity (2.5) is equivalent to the 3-dissection of $\phi(-q)$ (see [4, (Eq.14.3.2)]). The Identity (2.6) can be obtained from the first by replacing q with ωq and $\omega^{2} q$ and then multiplying the two results, where ω is a primitive cube root of unity.

Lemma 2.3. [3, Theorem 2.2] Let $r \geq 5$ be any prime, then we have

$$
\begin{gather*}
f_{1}=\sum_{\substack{k=\frac{-(r-1)}{2} \\
k \neq \frac{ \pm-1}{6}}}^{(r-1) / 2}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2} f\left(-q^{\left(3 r^{2}+(6 k+1) r\right) / 2},-q^{\left(3 r^{2}-(6 k+1) r\right) / 2}\right) \\
+(-1)^{(\pm r-1) / 6} q^{\left(r^{2}-1\right) / 24} f_{r^{2}} . \tag{2.7}
\end{gather*}
$$

where

$$
\frac{ \pm r-1}{6}= \begin{cases}\frac{(r-1)}{6}, & \text { if } r \equiv 1 \quad(\bmod 6) \\ \frac{(-r-1)}{6}, & \text { if } r \equiv-1 \quad(\bmod 6)\end{cases}
$$

Furthermore, if

$$
\frac{-(r-1)}{2} \leq k \leq \frac{(r-1)}{2} \quad \text { and } \quad k \neq \frac{(\pm r-1)}{2}
$$

then

$$
\frac{\left(3 k^{2}+k\right)}{2} \not \equiv \frac{\left(r^{2}-1\right)}{24} \quad(\bmod r)
$$

Lemma 2.4. [1, Lemma 2.3] For any prime $r \geq 3$, we have

$$
\begin{gather*}
f_{1}^{3}=\sum_{\substack{k=0 \\
k \neq(\pm r-1) / 2}}^{(r-1)}(-1)^{k} q^{(k(k+1)) / 2} \sum_{n=0}^{\infty}(-1)^{n}(2 r n+2 k+1) q^{r n \cdot(r n+2 k+1) / 2} \\
+r(-1)^{(r-1) / 2} q^{\left(r^{2}-1\right) / 8} f_{r^{2}}^{3} . \tag{2.8}
\end{gather*}
$$

Furthermore, if $k \neq \frac{(r-1)}{2}, \quad 0 \leq k \leq r-1$, then

$$
\frac{\left(k^{2}+k\right)}{2} \not \equiv \frac{\left(r^{2}-1\right)}{8} \quad(\bmod r)
$$

Lemma 2.5. [4, Eq.(8.1.1)] We have

$$
\begin{equation*}
f_{1}=f_{25}\left(R\left(q^{5}\right)-q-q^{2} R\left(q^{5}\right)^{-1}\right) \tag{2.9}
\end{equation*}
$$

where

$$
R(q)=\frac{\left(q^{2} ; q^{5}\right)_{\infty}\left(q^{3} ; q^{5}\right)_{\infty}}{\left(q ; q^{5}\right)_{\infty}\left(q^{4} ; q^{5}\right)_{\infty}}
$$

Lemma 2.6. [2, p. 303, Entry 17(v)] We have

$$
\begin{equation*}
f_{1}=f_{49}\left(\frac{E\left(q^{7}\right)}{C\left(q^{7}\right)}-q \frac{D\left(q^{7}\right)}{E\left(q^{7}\right)}-q^{2}+q^{5} \frac{C\left(q^{7}\right)}{D\left(q^{7}\right)}\right) \tag{2.10}
\end{equation*}
$$

where $D(q)=f\left(-q^{3},-q^{4}\right), E(q)=f\left(-q^{2},-q^{5}\right)$ and $C(q)=f\left(-q,-q^{6}\right)$.
In addition to above q-series identities, we will be using following congruence properties which follows from binomial theorem: For any positive integer k and m,

$$
\begin{align*}
& f_{k}^{2 m} \equiv f_{2 k}^{m} \quad(\bmod 2) \tag{2.11}\\
& f_{k}^{4 m} \equiv f_{2 k}^{2 m} \quad(\bmod 4) \tag{2.12}\\
& f_{k}^{8 m} \equiv f_{2 k}^{4 m} \quad(\bmod 8) \tag{2.13}
\end{align*}
$$

3 Congruences for $\overline{\boldsymbol{p}}_{4,8}(\boldsymbol{n})$

Theorem 3.1. If $s \in\{1,2,3,4,5,6\}$ and $t \in\{0,2,3,4\}$. Then for all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha} \cdot 7^{2 \alpha}(16 n+6)\right) q^{n} \equiv 32 f_{1} f_{8} \quad(\bmod 64) \tag{3.1}\\
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha+1} \cdot 7^{2 \alpha}(16 n+14)\right) q^{n} \equiv 32 q f_{5} f_{40} \quad(\bmod 64) \tag{3.2}\\
& \bar{p}_{4,8}\left(5^{2 \alpha+1} \cdot 7^{2 \alpha}(16(5 n+t)+14)\right) \equiv 0 \quad(\bmod 64), \tag{3.3}\\
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha} \cdot 7^{2 \alpha+1}(16 n+10)\right) q^{n} \equiv 32 q^{2} f_{7} f_{56} \quad(\bmod 64), \tag{3.4}\\
& \bar{p}_{4,8}\left(5^{2 \alpha} \cdot 7^{2 \alpha+1}(16(7 n+s)+14)\right) \equiv 0 \quad(\bmod 64) \tag{3.5}
\end{align*}
$$

Proof. Setting $j=4$ and $k=8$ in (1.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(n) q^{n}=\frac{(-q ; q)_{\infty}\left(q^{4} ; q^{8}\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{4} ; q^{8}\right)_{\infty}} \tag{3.6}
\end{equation*}
$$

Applying elementary q-operation and employing (1.3), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(n) q^{n}=\frac{f_{2} f_{4}^{2} f_{16}}{f_{1}^{2} f_{8}^{3}} \tag{3.7}
\end{equation*}
$$

Using (2.2) in (3.7), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(n) q^{n}=\frac{f_{4}^{2} f_{8}^{2}}{f_{2}^{4} f_{16}}+2 q \frac{f_{4}^{4} f_{16}^{3}}{f_{2}^{4} f_{8}^{4}} \tag{3.8}
\end{equation*}
$$

Extracting the even and odd powers of q from both sides of (3.8), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(2 n) q^{n}=\frac{f_{2}^{2} f_{4}^{2}}{f_{1}^{4} f_{8}} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(2 n+1) q^{n}=2 \frac{f_{2}^{4} f_{8}^{3}}{f_{1}^{4} f_{4}^{4}} \tag{3.10}
\end{equation*}
$$

respectively. Employing (2.1) in (3.9), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(2 n) q^{n}=\frac{f_{4}^{16}}{f_{2}^{12} f_{8}^{5}}+4 q \frac{f_{4}^{4} f_{8}^{3}}{f_{2}^{8}} \tag{3.11}
\end{equation*}
$$

Extracting the even and odd powers of q from both sides of (3.11), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n) q^{n}=\frac{f_{2}^{16}}{f_{1}^{12} f_{4}^{5}} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n}=4 \frac{f_{2}^{4} f_{4}^{3}}{f_{1}^{8}} \tag{3.13}
\end{equation*}
$$

respectively. Using (2.1) in (3.13), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n}=4 \frac{f_{4}^{31}}{f_{2}^{24} f_{8}^{8}}+32 q \frac{f_{4}^{19}}{f_{2}^{20}}+64 q^{2} \frac{f_{4}^{7} f_{8}^{8}}{f_{2}^{16}} \tag{3.14}
\end{equation*}
$$

Extracting coefficients of the terms involving $q^{2 n+1}$ from (3.14), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(8 n+6) q^{n}=32 q \frac{f_{2}^{19}}{f_{1}^{20}} \tag{3.15}
\end{equation*}
$$

Employing (2.11) in (3.15), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(8 n+6) q^{n}=32 f_{2}^{9} \quad(\bmod 64) \tag{3.16}
\end{equation*}
$$

Extracting even powers of q from both sides of (3.16), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(16 n+6) q^{n}=32 f_{1}^{8} f_{1} \quad(\bmod 64) \tag{3.17}
\end{equation*}
$$

Again, using (2.11) in (3.17), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(16 n+6) q^{n}=32 f_{8} f_{1} \quad(\bmod 64) \tag{3.18}
\end{equation*}
$$

The equation (3.18) is the case $\alpha=\beta=0$ of equation (3.1). Assume that the congruence (3.1) is true for any integer $\alpha \geq 0$ with $\beta=0$. Utilising (2.9) in (3.1) with $\beta=0$ and then extracting the coefficients of $q^{5 n+4}$, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha+1}(16 n+14)\right) q^{n} \equiv 32 q f_{5} f_{40} \quad(\bmod 64) \tag{3.19}
\end{equation*}
$$

Extracting the coefficients of $q^{5 n+1}$ from both side of (3.19), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2(\alpha+1)}(16 n+6)\right) q^{n} \equiv 32 f_{1} f_{8} \quad(\bmod 64) \tag{3.20}
\end{equation*}
$$

which implies that (3.1) is true for $\alpha+1$ with $\beta=0$. By principle of mathematical induction, (3.1) is true for all non negative integers $\alpha \geq 0$ with $\beta=0$. Assume that the congruence (3.1) holds for $\alpha, \beta \geq 0$. Utilising (2.10) in (3.1) and then extracting the coefficients of $q^{7 n+4}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha} \cdot 7^{2 \alpha+1}(16 n+10)\right) q^{n} \equiv 32 q^{2} f_{7} f_{56} \quad(\bmod 64) \tag{3.21}
\end{equation*}
$$

which proves (3.4). Now extracting coefficients of the term $q^{7 n+2}$ from both sides of (3.21), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(5^{2 \alpha} \cdot 7^{2(\alpha+1)}(16 n+6)\right) q^{n} \equiv 32 f_{1} f_{8} \quad(\bmod 64) \tag{3.22}
\end{equation*}
$$

which implies that (3.1) is true for all $\beta+1$. By principle of mathematical induction (3.1) is true for all positive integers α, β.

Using (2.9) in (3.1), then extracting coefficients of the term $q^{5 n+4}$, we arrive at (3.2). Again utilising (2.9) in (3.2), then extracting coefficients of the term $q^{5 n+t}$ for $t \in\{0,2,3,4\}$ from (3.2), we arrive at (3.3). Employing (2.10) in (3.21) and then extracting coefficients of the term $q^{7 n+s}$ for $s \in\{0,1,3,4,5,6\}$, we arrive at (3.5).

Theorem 3.2. If $1 \leq j \leq r-1$, then for all integers $\alpha \geq 0$ and $n \geq 0$, we have

$$
\begin{gather*}
\bar{p}_{4,8}(16 n+4 c+2) \equiv 0 \quad(\bmod 32) ; \quad c \in(1,2,3), \tag{3.23}\\
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2 \alpha}(8 n+1)\right) q^{n} \equiv 4 f_{1}^{3} \quad(\bmod 32) \tag{3.24}\\
\bar{p}_{4,8}\left(2 \cdot r^{2 \alpha+1}(8(r n+j)+r)\right) \equiv 0 \quad(\bmod 32) \tag{3.25}
\end{gather*}
$$

Proof. From (3.13), we note that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n} \equiv \frac{4 f_{2}^{4} f_{4}^{3}}{f_{1}^{8}} \quad(\bmod 32) \tag{3.26}
\end{equation*}
$$

Employing (2.13) in (3.26), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n} \equiv 4 f_{4}^{3} \quad(\bmod 32) \tag{3.27}
\end{equation*}
$$

Extracting the terms involving $q^{4 n+c}$ for $c \in\{1,2,3\}$ from (3.27), we arrive at (3.23). Again, extracting the terms involving $q^{4 n}$ from (3.27), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(16 n+2) q^{n} \equiv 4 f_{1}^{3} \quad(\bmod 32) \tag{3.28}
\end{equation*}
$$

Congruence (3.28) is $\alpha=0$ case of equation (3.24). Suppose that the congruence (3.24) is true for any integer $\alpha \geq 0$. Utilising (2.8) in (3.24), we obtain

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2 \alpha}(8 n+1)\right) q^{n} \equiv \sum_{\substack{k=0 \\
k \neq(\pm r-1) / 2}}^{(r-1)}(-1)^{k} q^{(k(k+1)) / 2} \sum_{n=0}^{\infty}(-1)^{n}(2 r n+2 k+1) q^{r n \cdot(r n+2 k+1) / 2} \\
+r(-1)^{(r-1) / 2} q^{\left(r^{2}-1\right) / 8} f_{r^{2}}^{3} \quad(\bmod 32) \tag{3.29}
\end{gather*}
$$

Extracting the term involving $q^{r n+\left(r^{2}-1\right) / 8}$ from both sides of (3.29), dividing throughout by $q^{\left(r^{2}-1\right) / 8}$ and then replacing q^{r} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2 \alpha+1}(8 n+r)\right) q^{n} \equiv f_{r}^{3} \quad(\bmod 32) \tag{3.30}
\end{equation*}
$$

Extracting the terms involving $q^{r n}$ from (3.30) and replacing q^{r} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2(\alpha+1)}(8 n+1)\right) q^{n} \equiv f_{1}^{3} \quad(\bmod 32) \tag{3.31}
\end{equation*}
$$

which is the $\alpha+1$ case of (3.24). Thus, by the principle of mathematical induction, we arrive at (3.24). Extracting the coefficients of terms involving $q^{r n+j}$ for $1 \leq j \leq r-1$, from both sides of (3.30), we complete the proof of (3.25).

Theorem 3.3. Let $j \in\{0,2,3,4\}$ and $k \in\{0,1,3,4,5,6\}$. Then for all integers $\alpha \geq 0$ and $\beta \geq 0$, we have

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta}(n)+3 \cdot 5^{2 \alpha} \cdot 7^{2 \beta}\right) q^{n} \equiv 8 f_{1}^{9} \quad(\bmod 16) \tag{3.32}\\
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}(n)+7 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}\right) q^{n} \equiv 8 q f_{5}^{9} \quad(\bmod 16) \tag{3.33}\\
\bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}(5 n+j)+7 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}\right) \equiv 0 \quad(\bmod 16) \tag{3.34}\\
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}(n)+5 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}\right) q^{n} \equiv 8 q^{2} f_{7}^{9} \quad(\bmod 16) \tag{3.35}\\
\bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}(7 n+k)+5 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}\right) \equiv 0 \quad(\bmod 16) \tag{3.36}
\end{gather*}
$$

Proof. From (3.10), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(2 n+1) q^{n}=2 \frac{f_{2}^{4} f_{8}^{3}}{f_{1}^{4} f_{4}^{4}} \tag{3.37}
\end{equation*}
$$

Using (2.1) in (3.37), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(2 n+1) q^{n}=2 \frac{f_{4}^{10}}{f_{2}^{10} f_{8}}+8 q \frac{f_{8}^{7}}{f_{2}^{6} f_{4}^{2}} \tag{3.38}
\end{equation*}
$$

Now extracting the odd powers of q from both sides of (3.38), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+3) q^{n}=8 \frac{f_{4}^{7}}{f_{1}^{6} f_{2}^{2}} \tag{3.39}
\end{equation*}
$$

Utilising (2.11) in (3.39), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+3) q^{n} \equiv 8 f_{2}^{9} \quad(\bmod 16) \tag{3.40}
\end{equation*}
$$

Extracting the even powers of q from both sides of (3.40), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(8 n+3) q^{n} \equiv 8 f_{1}^{9} \quad(\bmod 16) \tag{3.41}
\end{equation*}
$$

The equation (3.41) is the case $\alpha=\beta=0$ of equation (3.32). Assume that the congruence (3.32) is true for any integer $\alpha \geq 0$ with $\beta=0$. Utilising (2.9) in (3.32) with $\beta=0$ and then extracting coefficients of the term $q^{5 n+4}$, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha+1}(n)+7 \cdot 5^{2 \alpha+1}\right) q^{n} \equiv 8 q f_{5}^{9} \quad(\bmod 16) \tag{3.42}
\end{equation*}
$$

Extracting coefficients of the term $q^{5 n+1}$ from both sides of (3.42), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2(\alpha+1)}(n)+3 \cdot 5^{2(\alpha+1)}\right) q^{n} \equiv 8 f_{1}^{9} \quad(\bmod 16) \tag{3.43}
\end{equation*}
$$

which implies that (3.32) is true for $\alpha+1$ with $\beta=0$. By principle of mathematical induction, (3.32) is true for all positive integers $\alpha \geq 0$ with $\beta=0$. Assume that the congruence (3.32) holds for $\alpha, \beta \geq 0$. Utilising (2.10) in (3.32), then extracting the terms involving $q^{7 n+4}$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}(n)+5 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}\right) q^{n} \equiv 8 q^{2} f_{7}^{9} \quad(\bmod 16) \tag{3.44}
\end{equation*}
$$

which proves (3.35). Now extracting coefficients of the term $q^{7 n+2}$ from both sides of (3.44), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2(\beta+1)}(n)+3 \cdot 5^{2 \alpha} \cdot 7^{2(\beta+1)}\right) q^{n} \equiv 8 f_{1}^{9} \quad(\bmod 16) \tag{3.45}
\end{equation*}
$$

which implies that (3.32) is true for all $\beta+1$. By principle of mathematical induction (3.32) is true for all positive integers α, β.

Utilising (2.9) in (3.32), then extracting coefficients of the term $q^{5 n+4}$, we arrive at (3.33). Again employing (2.9) in (3.33) and extracting coefficients of the term $q^{5 n+j}$ for $j \in\{0,2,3,4\}$ from (3.33), we arrive at (3.34). Employing (2.10) in (3.44) and then extracting coefficients of the term $q^{7 n+k}$ for $k \in\{0,1,3,4,5,6\}$, we arrive at (3.36).

Theorem 3.4. Let $r \geq 5$ be a prime with $\left(\frac{-2}{r}\right)=-1$ and $1 \leq t \leq(r-1)$. Then for all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2 \alpha}(8 n+1)\right) q^{n} \equiv f_{1} f_{2} \quad(\bmod 8) \tag{3.46}\\
& \bar{p}_{4,8}\left(2 \cdot r^{2(\alpha+1)}(8(r n+t)+1)\right) \equiv 0 \quad(\bmod 8) \tag{3.47}
\end{align*}
$$

Proof. From (3.13), we note that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n}=4 \frac{f_{2}^{4} f_{4}^{3}}{f_{1}^{8}} \tag{3.48}
\end{equation*}
$$

Using (2.12) in (3.59), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n+2) q^{n} \equiv 4 f_{4}^{3} \quad(\bmod 8) \tag{3.49}
\end{equation*}
$$

Extracting coefficients of the term $q^{4 n}$ from (3.49), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(16 n+2) q^{n} \equiv 4 f_{1} f_{2} \quad(\bmod 8) \tag{3.50}
\end{equation*}
$$

Congruence (3.50) is the $\alpha=0$ case of (3.46). Assume that congruence (3.46) is true for all $\alpha \geq 0$. Utilising (2.7) in (3.46), we obtain

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2 \alpha}(8 n+1)\right) q^{n} \equiv\left\{\sum _ { \substack { k = - (r - 1) / 2 \\
k \neq (\pm r - 1) / 6 } } ^ { k = (r - 1) / 2 } (- 1) ^ { k } q ^ { (3 k ^ { 2 } + k) / 2 } f \left(-q^{\left(3 r^{2}+(6 k+1) r\right) / 2},-q^{\left.\left(3 r^{2}-(6 k+1) r\right) / 2\right)}\right.\right. \\
\\
\left.+(-1)^{(\pm r-1) / 6} q^{\left(r^{2}-1\right) / 24} f_{r^{2}}\right\} \\
\times\left\{\sum_{\substack{m=-(r-1) / 2 \\
m \neq(\pm r-1) / 6}}^{m=(r-1) / 2}(-1)^{m} q^{\left(3 m^{2}+m\right)} f\left(-q^{\left(3 r^{2}+(6 m+1) r\right)},-q^{\left(3 r^{2}-(6 m+1) r\right)}\right)\right. \tag{3.51}\\
\left.+(-1)^{(\pm r-1) / 6} q^{\left(r^{2}-1\right) / 12} f_{2 r^{2}}\right\} \quad(\bmod 8)
\end{gather*}
$$

Now consider the congruence

$$
\left(3 m^{2}+m\right)+\frac{\left(3 k^{2}+k\right)}{2} \equiv \frac{\left(r^{2}-1\right)}{8} \quad(\bmod r)
$$

which is equal to

$$
2(6 m+1)^{2}+(6 k+1)^{2} \equiv 0 \quad(\bmod r)
$$

For $\left(\frac{-2}{r}\right)=-1$, the above congruence has only solution $k=m=\left(\frac{ \pm r-1}{6}\right)$. Therefore, extracting the terms involving $q^{r n+\left(r^{2}-1\right) / 8}$ from (3.51), dividing throughout by $q^{\left(r^{2}-1\right) / 8}$ and then replacing q^{r} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{r}_{4,8}\left(2 \cdot r^{2 \alpha+1}(8 n+r)\right) q^{n} \equiv f_{r} f_{2 r} \quad(\bmod 8) \tag{3.52}
\end{equation*}
$$

Extracting coefficients of the term $q^{r n}$ from both sides of (3.52) and substituting q^{r} by q, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(2 \cdot r^{2(\alpha+1)}(8 n+1)\right) q^{n} \equiv f_{1} f_{2} \quad(\bmod 8) \tag{3.53}
\end{equation*}
$$

which is the $\alpha+1$ case of (3.46). Therefore, by mathematical induction, we arrive at (3.46). Equating the coefficients of terms $q^{r n+t}$ for $1 \leq t \leq r-1$, from both sides of (3.52), we complete the proof of (3.47).

Theorem 3.5. For all integers $n \geq 0, \alpha \geq 0$ and $k \in\{1,2\}$, we have

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 3^{2 \alpha} n\right) q^{n} \equiv \frac{f_{1}^{2}}{f_{2}} \quad(\bmod 4), \tag{3.54}\\
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 3^{2 \alpha+1} n\right) q^{n} \equiv \frac{f_{3}^{2}}{f_{6}} \quad(\bmod 4), \tag{3.55}\\
\bar{p}_{4,8}\left(8 \cdot 3^{2 \alpha+1} n+16 \cdot 3^{2 \alpha}\right) \equiv 0 \quad(\bmod 4), \tag{3.56}\\
\bar{p}_{4,8}\left(8 \cdot 3^{2 \alpha}(3 n+k)\right) \equiv 0 \quad(\bmod 4) . \tag{3.57}
\end{gather*}
$$

Proof. From (3.10), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n) q^{n}=\frac{f_{2}^{16}}{f_{1}^{12} f_{4}^{5}} \tag{3.58}
\end{equation*}
$$

Using (2.12) in (3.59), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(4 n) q^{n}=\frac{f_{2}^{2}}{f_{4}} \quad(\bmod 4) \tag{3.59}
\end{equation*}
$$

Extracting the even powers of q from both sides of (3.59), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(8 n) q^{n}=\frac{f_{1}^{2}}{f_{2}} \quad(\bmod 4) \tag{3.60}
\end{equation*}
$$

Congruence (3.60) is the $\alpha=0$ case of (3.54). Suppose that (3.54) is true for all $\alpha \geq 0$. Using (2.6) in (3.54), then extracting coefficients of the term $q^{3 n}$ from both sides, dividing throughout by q^{3} and substituting q^{3} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 3^{2 \alpha+1} n\right) q^{n} \equiv \frac{f_{3}^{2}}{f_{6}} \quad(\bmod 4) \tag{3.61}
\end{equation*}
$$

which proves (3.55). Again extracting coefficients of the term $q^{3 n}$ from both sides and replacing q^{3} by q, we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(8 \cdot 3^{2(\alpha+1)} n\right) q^{n} \equiv \frac{f_{1}^{2}}{f_{2}} \quad(\bmod 4) \tag{3.62}
\end{equation*}
$$

which is the $\alpha+1$ case of (3.54). Hence, by mathematical induction, we arrive at (3.54). Now using (2.6) in (3.54), then extracting coefficients of the term $q^{3 n+2}$ from both sides, dividing throughout by q^{2} and substituting q^{3} by q we prove (3.56). Again, extracting coefficients of the term $q^{3 n+k}$ for $k \in\{1,2\}$ from both sides of (3.61) and replacing q^{3} by q we prove (3.57).

Theorem 3.6. For all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(24 \cdot 2^{2 \alpha} n+8 \cdot 2^{2 \alpha}\right) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4), \tag{3.63}\\
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(24 \cdot 2^{2 \alpha+1} n+8 \cdot 2^{2(\alpha+1)}\right) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 4), \tag{3.64}\\
&\left.\bar{p}_{4,8}\left(24 \cdot 2^{2(\alpha+1)} n+20 \cdot 2^{2(\alpha+1)}\right)\right) q^{n} \equiv 0 \quad(\bmod 4) . \tag{3.65}
\end{align*}
$$

Proof. Employing (2.6) in (3.60), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(8 n) q^{n}=\left(\frac{f_{9}^{2}}{f_{18}}+2 q \frac{f_{3} f_{18}^{2}}{f_{6} f_{9}}\right) \quad(\bmod 4) \tag{3.66}
\end{equation*}
$$

Extracting coefficients of the term $q^{3 n+1}$ from both sides of (3.66), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(24 n+8) q^{n}=2 \frac{f_{1} f_{6}^{2}}{f_{2} f_{3}} \quad(\bmod 4) \tag{3.67}
\end{equation*}
$$

Using (2.11) in (3.67), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(24 n+8) q^{n}=2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{3.68}
\end{equation*}
$$

Congruence (3.68) is the $\alpha=0$ case of (3.63). Assume that (3.63) is true for all $\alpha \geq 0$. Using (2.4) in (3.63), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(24 \cdot 2^{2 \alpha} n+8 \cdot 2^{2 \alpha}\right) q^{n} \equiv 2\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}\right) \quad(\bmod 4) \tag{3.69}
\end{equation*}
$$

Then extracting coefficients of the term $q^{2 n+1}$ from both sides, dividing throughout by q and substituting q^{2} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(24 \cdot 2^{2 \alpha+1} n+8 \cdot 2^{2 \alpha+2}\right) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 4) \tag{3.70}
\end{equation*}
$$

which proves (3.64). Again extracting coefficients of the term $q^{2 n}$ from both sides, dividing throughout by q and substituting q^{2} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(24 \cdot 2^{2(\alpha+1)} n+8 \cdot 2^{2(\alpha+1)}\right) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{3.71}
\end{equation*}
$$

which is the $\alpha+1$ case of (3.63). Hence, by mathematical induction, we arrive at (3.63). Then extracting the even powers of q from both sides of (3.70), dividing throughout by q and substituting q^{2} by q, we prove (3.65).

Theorem 3.7. If $t \in\{1,2,3,4,5,6,7\}$ and $1 \leq k \leq r-1$, then for all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{gather*}
\bar{p}_{4,8}(48(8 n+t)+8) q^{n}=0 \quad(\bmod 4) \tag{3.72}\\
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(384 \cdot r^{2 \alpha} n+8\left(2 r^{2 \alpha}-1\right)\right) q^{n} \equiv f_{1} \quad(\bmod 4) \tag{3.73}\\
\bar{p}_{4,8}\left(384 \cdot r^{2 \alpha+1}(r n+k)+8\left(2 r^{2 \alpha}-1\right)\right) q^{n} \equiv 0 \quad(\bmod 4) \tag{3.74}
\end{gather*}
$$

Proof. Utilising (2.4) in (3.68), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(24 n+8) q^{n}=2\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}\right) \quad(\bmod 4) \tag{3.75}
\end{equation*}
$$

Extracting coefficients of the term $q^{2 n}$ from both sides of (3.75), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(48 n+8) q^{n}=2 \frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}} \quad(\bmod 4) \tag{3.76}
\end{equation*}
$$

Employing (2.11) in (3.76), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(48 n+8) q^{n}=2 f_{8} \quad(\bmod 4) \tag{3.77}
\end{equation*}
$$

Extracting coefficients of the term $q^{8 n+t}$ for $t \in\{1,2,3,4,5,6,7\}$ from both sides of (3.77), we arrive at (3.72). Again extracting coefficients of the term $q^{8 n}$ from both sides of (3.77), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}(384 n+8) q^{n}=2 f_{1} \quad(\bmod 4) \tag{3.78}
\end{equation*}
$$

which is the $\alpha=0$ case of (3.73). Assume (3.73) is true for any $\alpha \geq 0$. Employing (2.7) in (3.78), we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{p}_{4,8}\left(384 \cdot r^{2 \alpha} n+8\left(2 r^{2 \alpha}-1\right)\right) q^{n} \\
& \equiv\left\{\sum_{\substack{k=-(r-1) / 2 \\
k \neq(\pm r-1) / 6}}^{(r-1) / 2}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2} f\left(-q^{\left(3 r^{2}+(6 k+1) r\right) / 2},-q^{\left(3 r^{2}-(6 k+1) r\right) / 2}\right)\right. \\
&\left.+(-1)^{(\pm r-1) / 6} q^{\left(r^{2}-1\right) / 24} f_{r^{2}}\right\} \quad(\bmod 4) \tag{3.79}
\end{align*}
$$

Extracting coefficients of the term $q^{r n+\left(r^{2}-1\right) / 24}$ from both sides of (3.79), dividing by $q^{\left(r^{2}-1\right) / 24}$ and then substituting q^{r} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(384 \cdot r^{2 \alpha+1}(n)+8\left(2 r^{2(\alpha+1)}-1\right)\right) q^{n} \equiv f_{r} \quad(\bmod 4) \tag{3.80}
\end{equation*}
$$

Extracting coefficients of the term $q^{r n}$ from both sides of (3.80) and substituing q^{r} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{4,8}\left(384 \cdot r^{2(\alpha+1)} n+8\left(2 r^{2(\alpha+1)}-1\right)\right) q^{n} \equiv f_{1} \quad(\bmod 4) \tag{3.81}
\end{equation*}
$$

which is the $\alpha+1$ case of (3.73). Therefore, by mathematical induction, the proof of (3.73) is complete. Extracting coefficients of the term $q^{r n+k}$, for $1 \leq k \leq r-1$, from both sides of (3.80), we arrive at (3.74).

4 Congruences for $\overline{\boldsymbol{p}}_{6,12}(\boldsymbol{n})$

Theorem 4.1. For all integers $n \geq 0, \alpha \geq 0$ and $1 \leq t \leq(r-1)$, we have

$$
\begin{align*}
& \left.\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(24 \cdot r^{2 \alpha} n+r^{2 \alpha}\right)\right) q^{n} \equiv f_{1} \quad(\bmod 4), \tag{4.1}\\
& \bar{p}_{6,12}\left(r^{2 \alpha+1}(24(r n+t)+r)\right) \equiv 0 \quad(\bmod 4) . \tag{4.2}
\end{align*}
$$

Proof. Setting $j=6$ and $k=12$ in (1.6), we note that

$$
\sum_{n=0}^{\infty} \bar{p}_{6,12}(n) q^{n}=\frac{(-q ; q)_{\infty}\left(q^{6} ; q^{12}\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{6} ; q^{12}\right)_{\infty}}
$$

Applying elementary q-operation and using (1.3), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(n) q^{n}=\frac{f_{2} f_{6}^{2} f_{24}}{f_{1}^{2} f_{12}^{3}} \tag{4.3}
\end{equation*}
$$

Utilising (2.5) in (4.3), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(n) q^{n}=\frac{f_{6}^{2} f_{24}}{f_{12}^{3}}\left(\frac{f_{6}^{4} f_{9}^{6}}{f_{3}^{8} f_{18}^{3}}+2 q \frac{f_{6}^{3} f_{9}^{3}}{f_{3}^{7}}+4 q^{2} \frac{f_{6}^{2} f_{18}^{3}}{f_{3}^{6}}\right) \tag{4.4}
\end{equation*}
$$

Extracting coefficients of the term $q^{3 n+1}$ from both sides of (4.4), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+1) q^{n}=2 \frac{f_{2}^{5} f_{3}^{3} f_{8}}{f_{1}^{7} f_{4}^{3}} \tag{4.5}
\end{equation*}
$$

Using (2.11) in (4.5), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+1) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{4.6}
\end{equation*}
$$

Utilising (2.4) in (4.6), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+1) q^{n} \equiv 2 \frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+2 q \frac{f_{12}^{3}}{f_{4}} \quad(\bmod 4) \tag{4.7}
\end{equation*}
$$

Extracting the even powers of q from both sides of (4.7) and using (2.11), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(6 n+1) q^{n} \equiv 2 f_{2}^{2} \quad(\bmod 4) \tag{4.8}
\end{equation*}
$$

Again, extracting the even powers of q from both sides of (4.8) and using (2.11), we arrive at

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(12 n+1) q^{n} \equiv 2 f_{2} \quad(\bmod 4) \tag{4.9}
\end{equation*}
$$

Again, extracting even powers of q from both sides of (4.9), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(24 n+1) q^{n} \equiv 2 f_{1} \quad(\bmod 4) \tag{4.10}
\end{equation*}
$$

which is the $\alpha=0$ case of (4.1). Suppose (4.1) is true for any $\alpha \geq 0$. Employing (2.7) in (4.1), we obtain

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(r^{2 \alpha}(24 n+1)\right) q^{n} \\
\equiv\left\{\sum_{\substack{k=-(r-1) / 2 \\
k \neq(\pm r-1) / 6}}^{(r-1) / 2}(-1)^{k} q^{\left(3 k^{2}+k\right) / 2} f\left(-q^{\left(3 r^{2}+(6 k+1) r\right) / 2},-q^{\left(3 r^{2}-(6 k+1) r\right) / 2}\right)\right. \\
 \tag{4.11}\\
\left.\quad+(-1)^{(\pm r-1) / 6} q^{\left(r^{2}-1\right) / 24} f_{r^{2}}\right\} \quad(\bmod 4)
\end{gather*}
$$

Extracting coefficients of the term $q^{r n+\left(r^{2}-1\right) / 24}$ from both sides of (4.11), dividing by $q^{\left(r^{2}-1\right) / 24}$ and then substituting q^{r} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(r^{2 \alpha+1}(24 n+r)\right) q^{n} \equiv f_{r} \quad(\bmod 4) \tag{4.12}
\end{equation*}
$$

Extracting coefficients of the term $q^{r n}$ from both sides of (4.12) and substituting q^{r} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(r^{2(\alpha+1)}(24 n+1)\right) q^{n} \equiv f_{1} \quad(\bmod 4) \tag{4.13}
\end{equation*}
$$

which is the $\alpha+1$ case of (4.1). Hence, by mathematical induction, the proof of (4.1) is complete. Extracting coefficients of the term $q^{r n+t}$ for $1 \leq t \leq r-1$, from both sides of (4.12), we arrive at (4.2).

Theorem 4.2. For all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{gather*}
\left.\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(3 \cdot 2^{2 \alpha} n+2^{2 \alpha}\right)\right) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{4.14}\\
\left.\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(3 \cdot 2^{2 \alpha+1} n+2^{2(\alpha+1)}\right)\right) q^{n} \equiv 2 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 4) \tag{4.15}\\
\left.\left.\bar{p}_{6,12}\left(3 \cdot 2^{2(\alpha+1)}\right) n+5 \cdot 2^{2(\alpha+1)}\right)\right) \equiv 0 \quad(\bmod 4) \tag{4.16}
\end{gather*}
$$

Proof. From (4.6), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+1) q^{n} \equiv 2 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 4) \tag{4.17}
\end{equation*}
$$

The remaining part of the proof is similar to proofs of the identities (3.63)-(3.65).

Theorem 4.3. For all integers $n \geq 0$ and $\alpha \geq 0$, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(2^{2 \alpha+1}(3 n+1)\right) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 8) \tag{4.18}\\
\sum_{n=0}^{\infty} \bar{p}_{6,12}\left(2^{2 \alpha+2}(3 n+2)\right) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 8) \tag{4.19}\\
\bar{p}_{6,12}\left(2^{2 \alpha+2}(6 n+5)\right) \equiv 0 \quad(\bmod 8) \tag{4.20}
\end{align*}
$$

Proof. Extracting the terms involving $q^{3 n+2}$ from (4.4), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+2) q^{n}=4 \frac{f_{2}^{4} f_{6}^{3} f_{8}}{f_{1}^{6} f_{4}^{3}} \tag{4.21}
\end{equation*}
$$

Utilising (2.11) in (4.21), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+2) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 8) \tag{4.22}
\end{equation*}
$$

Extracting the even powers of q from both sides of (4.22), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(6 n+2) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 8) \tag{4.23}
\end{equation*}
$$

The remaining part of the proof is similar to proofs of the identities (3.63)-(3.65).
Theorem 4.4. For all integers $n \geq 0, \alpha \geq 0$ and $1 \leq j \leq(r-1)$, we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \bar{p}_{6,12}\left(2 \cdot r^{2 \alpha}(24 n+1)\right) q^{n} \equiv 4 f_{1} \quad(\bmod 8) \tag{4.24}\\
& \bar{p}_{6,12}\left(2 \cdot r^{2 \alpha+1}(24(r n+j)+1)\right) \equiv 0 \quad(\bmod 8) \tag{4.25}
\end{align*}
$$

Proof. Extracting coefficients of the term $q^{3 n+2}$ from both sides of (4.4), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+2) q^{n}=4 \frac{f_{2}^{4} f_{6}^{3} f_{8}}{f_{1}^{6} f_{4}^{3}} \tag{4.26}
\end{equation*}
$$

Utilising (2.12) in (4.26), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(3 n+2) q^{n} \equiv 4 \frac{f_{6}^{3}}{f_{2}} \quad(\bmod 8) \tag{4.27}
\end{equation*}
$$

Extracting coefficients of the term $q^{2 n}$ from both sides of (4.27), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(6 n+2) q^{n} \equiv 4 \frac{f_{3}^{3}}{f_{1}} \quad(\bmod 8) \tag{4.28}
\end{equation*}
$$

Employing (2.4) in (4.28), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(6 n+2) q^{n} \equiv 4\left(\frac{f_{4}^{3} f_{6}^{2}}{f_{2}^{2} f_{12}}+q \frac{f_{12}^{3}}{f_{4}}\right) \quad(\bmod 8) \tag{4.29}
\end{equation*}
$$

Extracting the even powers of q from both sides of (4.29) and using (2.11), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(12 n+2) q^{n} \equiv 4 f_{4} \quad(\bmod 8) \tag{4.30}
\end{equation*}
$$

Again, extracting coefficients of the term $q^{4 n}$ from both sides of (4.30), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{6,12}(48 n+2) q^{n} \equiv 4 f_{1} \quad(\bmod 8) \tag{4.31}
\end{equation*}
$$

The remaining part of the proof is similar to the proof of the identities (4.1)-(4.2).

5 Congruences for $\overline{\boldsymbol{p}}_{8,16}(\boldsymbol{n})$

Theorem 5.1. Let $j \in\{0,2,3,4\}$ and $k \in\{0,1,3,4,5,6\}$. Then for all integers $\alpha \geq 0$ and $\beta \geq 0$, we have

$$
\begin{gather*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta}(n)+3 \cdot 5^{2 \alpha} \cdot 7^{2 \beta}\right) q^{n} \equiv 8 f_{1}^{9} \quad(\bmod 16), \tag{5.1}\\
\sum_{n=0}^{\infty} \bar{p}_{8,16}\left(8 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}(n)+7 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}\right) q^{n} \equiv 8 q f_{5}^{9} \quad(\bmod 16), \tag{5.2}\\
\bar{p}_{8,16}\left(8 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}(5 n+j)+7 \cdot 5^{2 \alpha+1} \cdot 7^{2 \beta}\right) \equiv 0 \quad(\bmod 16) \tag{5.3}\\
\sum_{n=0}^{\infty} \bar{p}_{8,16}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}(n)+5 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}\right) q^{n} \equiv 8 q^{2} f_{7}^{9} \quad(\bmod 16) \tag{5.4}\\
\bar{p}_{8,16}\left(8 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}(7 n+k)+5 \cdot 5^{2 \alpha} \cdot 7^{2 \beta+1}\right) \equiv 0 \quad(\bmod 16) \tag{5.5}
\end{gather*}
$$

Proof. Setting $j=8$ and $k=16$ in (1.6), we note that

$$
\sum_{n=0}^{\infty} \bar{p}_{8,16}(n) q^{n}=\frac{(-q ; q)_{\infty}\left(q^{8} ; q^{16}\right)_{\infty}}{(q ; q)_{\infty}\left(-q^{8} ; q^{16}\right)_{\infty}}
$$

Applying elementary q-operation and utilising (1.3), we deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(n) q^{n}=\frac{f_{2} f_{8}^{2} f_{32}}{f_{1}^{2} f_{16}^{3}} \tag{5.6}
\end{equation*}
$$

Using (2.2) in (5.6), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(n) q^{n}=\frac{f_{8}^{7} f_{32}}{f_{2}^{4} f_{16}^{5}}+2 q \frac{f_{4}^{2} f_{8} f_{32}}{f_{2}^{4} f_{16}} \tag{5.7}
\end{equation*}
$$

Extracting the odd powers of q from both sides of (5.7), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(2 n+1) q^{n}=2 \frac{f_{2}^{2} f_{4} f_{16}}{f_{1}^{4} f_{8}} \tag{5.8}
\end{equation*}
$$

Utilising (2.1) in (5.8), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(2 n+1) q^{n}=2 \frac{f_{2}^{2} f_{4} f_{16}}{f_{8}}\left(\frac{f_{4}^{14}}{f_{2}^{14} f_{8}^{4}}+4 q \frac{f_{4}^{2} f_{8}^{4}}{f_{2}^{10}}\right) \tag{5.9}
\end{equation*}
$$

Extracting the odd powers of q from both sides of (5.9), we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(4 n+3) q^{n}=8 \frac{f_{2}^{3} f_{4}^{3} f_{8}}{f_{1}^{8}} \tag{5.10}
\end{equation*}
$$

Utilising (2.11) in (5.10), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(4 n+3) q^{n}=8 f_{2}^{9} \quad(\bmod 16) \tag{5.11}
\end{equation*}
$$

Extracting the even powers of q from both sides of (5.11), we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \bar{p}_{8,16}(8 n+3) q^{n}=8 f_{1}^{9} \quad(\bmod 16) \tag{5.12}
\end{equation*}
$$

The remaining part of the proof is similar to proofs of the identities (3.32)-(3.36).

References

[1] Z. Ahmed and N. D. Baruah, New congruences for ℓ-regular partition for $\ell \in\{5,6,7,49\}$, Ramanujan J. 40, 649-668 (2016).
[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, (1991).
[3] S. P. Cui and N. S. S. Gu, Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math. 51, 507-523 (2013).
[4] M. D. Hirschhorn, The Power of q, A personal journey, Developments in Mathematics, vol. 49, Springer International Publishing, (2017).
[5] M. S. M. Naika, T. Harishkumar and T. N. Veeranayaka, On some congruences for (j, k) - regular overpartitions, Gulf J. Math. 10(1), 43-68 (2021).

Author information

Riyajur Rahman and Nipen Saikia*, Department of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, Pin-791112., India.
E-mail: riyajurrahman@gmail.com; nipennak@yahoo.com * Corresponding author.

