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Abstract In this research article, the non-dyadic Haar wavelet collocation method is intro-
duced for approximating the solution of integral equations of Volterra and Fredholm type. The
unknown function involved in the integral equation is approximated by the truncated series of
non-dyadic Haar wavelets. To explain the supremacy of the presented method, we compare the
obtained results with those available in the literature. Different errors have been calculated at
collocation points.

1 Introduction

Integral equations arise in various fields of science and engineering and find their applications
in conformal mapping, Volterra’s population growth model, water waves, diffraction problem,
scattering in quantum mechanics [1], filtration theory, queuing theory, biomechanics, electrical
engineering, approximation theory, heat and mass transfer, actuarial science, etc. [2]. These
equations are usually difficult to solve analytically, so approximation methods are needed for
finding their approximate solution. A variety of methods are available in the literature for solv-
ing integral equations including the Toeplitz matrix method [3], CAS wavelets [4], Chebyshev
wavelet [5], Legendre wavelets [6], Gaussian radial basis function [7], Wavelet moment method
[8], Triangular orthogonal functions [9], Two-dimensional Legendre wavelets method [10], Dis-
crete Adomian decomposition [11], Iteration method [12], Walsh function [13], operational ma-
trix of RH wavelet [14], Modified homotopy perturbation method [15], Finite difference method
[16], Hermite cubic splines [17]. To determine the approximate solution of integral equations
various researchers used different basis functions such as wavelets and orthogonal functions.
Wavelet basis is used in a variety of fields of science and engineering to effectively approximate
the solution of a large number of problems. A number of researchers used Gegenbauer and
Bernoulli wavelets [18], Haar wavelets [19], Legendre wavelets [20], Hermite wavelets [21],
and Jacobi wavelets [22] for solving differential equations. The Volterra integral equations and
Fredholm integral equations have been solved in the literature using various wavelet bases in
connection with a variety of collocation techniques. In [27] the author solved the Volterra in-
tegral equation by using the two-dimensional Haar wavelets. The mixed Volterra Fredholm
integral equations involving the delay term has been solved by using Haar wavelets in [28]. The
nondyadic haar wavelet is used in literature for solving Fisher Kolmogorov Petrovsky Equation
[24], integrodifferential equations [31] and dispersive equation [32]. In this manuscript, we have
approximated the solution of integral equations of both Volterra and Fredholm types by utilizing
nondyadic Haar wavelets. The rest of this article is organized as: section 2 contains a brief idea
about nondyadic Haar wavelets and their integrals. Section 3 contains the proposed nondyadic
Haar wavelet collocation technique. In section 4 some examples from already published research
articles are analyzed by the presented technique along with their errors. The conclusion is given
in section 5 of the paper.
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2 Non-Dyadic Haar Wavelet

In a dyadic Haar wavelet, the whole wavelet family is generated by only one mother wavelet but
in the case of a non-dyadic Haar wavelet, the wavelet family is generated by two mother wavelets
having different shapes and different characteristics. Standard representation of non-dyadic Haar
wavelet is presented here [25]
Haar scaling Function

h1(z) =

{
1; 0 ≤ z < 1
0; elsewhere

(2.1)

Symmetric Haar wavelet

hi(z) = ϕ1(3jz − k) = 1
√

2


−1; α1 ≤ z < α2

2; α2 ≤ z < α3

−1; α3 ≤ z < α4

0; elsewhere

for even wavelet numbers i. (2.2)

Anti-Symmetric Haar wavelet

hi(z) = ϕ2(3jz − k) =
√

3
2


1; α1 ≤ z < α2

0; α2 ≤ z < α3

−1; α3 ≤ z < α4

0; elsewhere

for odd wavelet numbers i. (2.3)

where the values of parameters α1, α2, α3, and α4 are given as follows:

α1 =
k

p
, α2 =

3k + 1
3p

, α3 =
3k + 2

3p
, α4 =

k + 1
p

j is called the dilation factor and the value of j varies from j = 0, 1, 2, .... The translation
parameter in the wavelet family is represented by k, and the value of k = 0, 1, 2, ..., p − 1, and
p = 3j . i is the wavelet number and the values of the wavelet number i, is calculated from two
different mathematical relations which are given as follows:

i− 1 = 3j + 2k (for i = 2, 4, 6, ...3p− 1.)

i− 2 = 3j + 2k (for i = 3, 5, 7, ...3p.)

Using the aforementioned formulae for varying j and k , the extended wavelet family would
be produced, where h2(z) and h3(z) are referred to as mother wavelets and the other wavelets
generated from these two mother wavelets are referred to as daughter wavelets.

With dyadic Haar wavelet, only a single mother wavelet is responsible for generating all
sequential wavelets. However in nondyadic, two mothers with significantly different wavelet
structures are responsible for creating the wavelet family, which helps to increase the rate at
which solutions converge.

With the formula that is presented below, the integration of the equation [(2.1) − (2.3)] can
be performed effortlessly and rapidly throughout the interval [c, d] the desired number of times.

qδ,i (z) =

∫ z

c

∫ z

c

∫ z

c

... δ times ...

∫ z

c

hi(x)(dx)
δ =

1
(δ − 1)!

∫ z

c

(z − x)(δ−1)hi(x)dx

=
1

Γ(δ)

∫ z

c

(z − x)(δ−1)hi(x)dx (2.4)

where δ = 1, 2, 3, ... and i = 1, 2, 3, ..., 3p.
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After obtaining the abovementioned integrals,

qδ,i (z) =
zδ

Γ(δ + 1)
, for i = 1. (2.5)

qδ,i (z) =
1
√

2



0; 0 ≤ z < α1
−1

Γ(δ+1)(z − α1)δ; α1 ≤ z < α2
1

Γ(δ+1) [−(z − α1)δ + 3(z − α2)δ]; α2 ≤ z < α3
1

Γ(δ+1) [−(z − α1)δ + 3(z − α2)δ − 3(z − α3)δ]; α3 ≤ z < α4
1

Γ(δ+1) [−(z − α1)δ + 3(z − α2)δ − 3(z − α3)δ + (z − α4)δ]; α4 ≤ z < 1

for i = 2, 4, 6, ..., 3p− 1. (2.6)

qδ,i (z) =

√
3
2



0; 0 ≤ z < α1
1

Γ(δ+1)(z − α1)δ; α1 ≤ z < α2
1

Γ(δ+1) [(z − α1)δ − (z − α2)δ]; α2 ≤ z < α3
1

Γ(δ+1) [(z − α1)δ − (z − α2)δ − (z − α3)δ]; α3 ≤ z < α4
1

Γ(δ+1) [(z − α1)δ − (z − α2)δ − (z − α3(i))δ + (z − α4)δ]; α4 ≤ z < 1

for i = 3, 5, 7, ..., 3p. (2.7)

The collocation point for the interval [c, d] in the nondyadic Haar wavelet collocation technique
is determined by the following relation:

zm = c+ (d− c)
m− 1

2
3p

; m = 1, 2, 3, ..., 3p. (2.8)

3 Non-Dyadic Haar wavelet Collocation Method

In this section, a numerical method has been designed by utilizing non-dyadic Haar wavelets for
approximating the solutions of variety of integral equations.
1. Nonhomogenous linear Volterra integral equations of second kind

u(z) = g(z) +

∫ z

0
w(z, t)u(t)dt (3.1)

2. Nonhomogenous linear Fredholm integral equations of second kind

u(z) = g(z) +

∫ 1

0
w(z, t)u(t)dt (3.2)

3. Nonhomogenous nonlinear mixed Volterra Fredholm hammerstein integral equations of sec-
ond kind

u(z) = g(z) + +

∫ 1

0
w(z, t)u(t)ndt+

∫ z

0
w(z, t)u(t)ndt where n ≥ 2 (3.3)

4. Nonhomogenous nonlinear Fredholm integral equations of second kind

u(z) = g(z) +

∫ 1

0
w(z, t)u(t)ndt where n ≥ 2 (3.4)

here g(z) and the kernel function w(z, t) are known function, we have to calculate the unknown
function u(z). non-dyadic Haar wavelet collocation approach has been introduced for the in-
terval [0, 1).The unknown function is approximated by the truncated series of non-dyadic Haar
functions and then integrals are calculated by the process of integration.
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3.1 Approximation of solution

Using the characteristics of non dyadic Haar wavelets, any member of l2(R) can be expressed as
follows:

u(z) =
∞∑
i=0

cihi(z) = c1h1(z) +
∑
eveni

ciϕ
1(3jz − k) +

∑
oddi

ciϕ
2(3jz − k) (3.5)

here ci is the unknown wavelet coefficients, that will be calculated by the proposed method. By
considering only finite 3p terms for computation.

u(z) = u3p(z) =
3p∑
i=0

cihi(z) (3.6)

Now, for approximating the solution of equation (3.1)-(3.4) consider

u(z) =
3p∑
i=1

cihi(z) (3.7)

Integrating (3.7) both sides from 0 to z∫ z

0
u(z)dz =

3p∑
i=1

ciPi,1(z); where Pi,1(z) =

∫ z

0
hi(z)dz (3.8)

Again integrating (3.8) from 0 to z∫ z

0

∫ z

0
u(z)dzdz =

3p∑
i=1

ciPi,2(z); where Pi,2(z) =

∫ z

0
Pi,1(z)dz (3.9)

and so on. By repeating this process and making the required substitutions to the given integral
equations, as well as substituting the collocation points from equation (2.8), one obtains aN×N
system of algebraic equations that can be solved by any sequential iterative technique. In order
to solve this set of linear equations, we used the Gauss - Jordan technique. As a result of solving
this system, we obtain the unknown Haar coefficients. The solution at the collocation points can
be determined by substituting the corresponding Haar coefficients ci’s into Eq.(3.7). The method
is explained in detail for example 2 of the paper.

4 Numerical Examples

For checking the accuracy of the method, we implemented the method to different examples and
the results obtained by this method are compared with previous results. The maximum Absolute
error, l2 − error, Emax − error, and l∞ − error has been calculated for checking the accuracy
of the presented algorithm by using the MATLAB software. Where uap is the approximate and
uex is the exact solution at different collocation points zm.

l2 − error =

√∑3p
i=1 |uex(zm)− uap(zm)|2∑3p

i=1 |uex(zm)|2
, Emax − error =

√√√√ 3p∑
i=1

|uex(zm)− uap(zm)|2

l∞ − error = max|uex(zm)− uap(zm)| , Absolute error = |uex(zm)− uap(zm)|

Example 1

Consider the second kind of Fredholm integral equation [23]

u(z) = 0.9z2 +

∫ z

0
z2t2u(t) dt (4.1)
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z Analytical solution Approximate
solution

Absolute Error

0.055555556 0.003086420 0.003083488 2.93E-03
0.166666667 0.027777778 0.027751394 2.64E-02
0.277777778 0.077160494 0.077087206 7.33E-02
0.388888889 0.151234568 0.151090923 1.44E-01
0.500000000 0.250000000 0.249762546 2.37E-01
0.611111111 0.373456790 0.373102076 3.55E-01
0.722222222 0.521604938 0.521109511 4.95E-01
0.833333333 0.694444444 0.693784851 6.60E-01
0.944444444 0.891975309 0.891128098 8.47E-01

Table 1. Computation of exact and approximated solution for example 1

J l2 − error l∞ − error Emax−error Emax−error
[26]

0 8.35E-03 5.80E-03 6.17E-03 ———
1 9.50E-04 8.47E-04 1.27E-03 ———
2 1.06E-04 1.02E-04 2.46E-04 ———
3 1.18E-05 1.16E-05 4.73E-05 8.23E-04
4 1.31E-06 1.30E-06 9.11E-06 1.92E-04
5 1.45E-07 1.45E-07 1.75E-06 4.66E-05
6 1.61E-08 1.61E-08 3.37E-07 1.14E-05

Table 2. Computations of different errors for example 1

The exact solution for example 1 is u(z) = z2 The Fredholm integral equation presented in
example 1 has been solved by using nondyadic Haar wavelet collocation method. The results
obtained by using the presented method is tabulated in table 1 which clearly explains the com-
parability among the exact and approximated solution for level of resolution 1. Table 1 clearly
depicts that NHWCA provides more accurate results for small number of collocation points.
l2−error, l∞−error and Emax−error for fredholm integral equation 1 (for level of resolution
1) are 9.50E−04, 8.47E−04 and 1.27E−03 respectively. From table 2, figure 1 and figure 2, it
can be observed that approximated solution converges to the exact solution. From table 2 we can
observe that by increasing the number of collocation points, accuracy of the solution gets better.
Also, it can be observed from table 2 that NHWCM gives more accurate results than previous
methods.

Example 2

Next consider Volterra integral equation of second kind [23]

u(z) = z +

∫ z

0
(t− z)u(t) dt (4.2)

Let

u(z) =
3p∑
i=1

ciψi(z) (4.3)

Integrating (4.3) both sides from 0 to z∫ z

0
u(z)dz =

3p∑
i=1

ciLi,1(z); where Li,1(z) =

∫ z

0
ψi(z)dz (4.4)
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Figure 1. Comparability of exact and
approximated solution for example 1
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Figure 2. Graph of absolute error for example 1

Again integrating (4.4) from 0 to z

∫ z

0

∫ z

0
u(z)dzdz =

3p∑
i=1

ciLi,2(z); where Li,2(z) =

∫ z

0
Li,1(z)dz (4.5)

Substitute equation (4.3), (4.4), and (4.5) in (4.2) and simplifying we get

3p∑
i=1

ciψi(z) = z −
3p∑
i=1

ciLi,2(z)

3p∑
i=1

ci(ψi(z) + Li,2(z)) = z (4.6)

Which is the required AX = B form. The exact solution found from literature for example
2 is u(z) = sin(z) The Volterra integral equation presented in example 2 has been solved by
using nondyadic Haar wavelet collocation method. The results obtained by using the presented
method is tabulated in table 3 which clearly explains the comparability among the exact and
approximated solution for level of resolution 1. Table 3 clearly depicts that NHWCA provides
more accurate results for small number of collocation points. l2−error, l∞−error and Emax−
error for Volterra integral equation 2 (for level of resolution 1) are 9.76E − 04, 7.66E − 04 and
1.53E−03 respectively. From table 4, figure 3 and figure 4, it can be observed that approximated
solution converges to the exact solution. From table 4, we can observe that by increasing the
number of collocation points, accuracy of the solution gets better.

Example 3

Consider the Volterra integral equations having separable kernel [23]

u(z) = 1− z − z2

2
+

∫ z

0
(z − t)u(t) dt (4.7)

The exact solution found from the literature for example 3 is u(z) = 1 − sinh(z) The Volterra
integral equation presented in example 3 has been solved by using nondyadic Haar wavelet
collocation method. The results obtained by using the presented method is tabulated in table 5
which clearly explains the comparability among the exact and approximated solution for level
of resolution 1. Table 5 clearly depicts that NHWCA provides more accurate results for small
number of collocation points. l2 − error, l∞ − error and Emax − error for Volterra integral
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z Analytical solution Approximate
solution

Absolute Error

0.055555556 0.055526982 0.055469954 5.70E-02
0.166666667 0.165896133 0.165726102 1.70E-01
0.277777778 0.274219289 0.273939402 2.80E-01
0.388888889 0.379160504 0.378775945 3.85E-01
0.500000000 0.479425539 0.478943447 4.82E-01
0.611111111 0.573777826 0.573207178 5.71E-01
0.722222222 0.661053722 0.660405180 6.49E-01
0.833333333 0.740176853 0.739462595 7.14E-01
0.944444444 0.810171396 0.809404909 7.66E-01

Table 3. Computation of exact and approximated solution for example 2

J l2 − error l∞ − error Emax−error
0 8.71E-03 6.36E-03 7.82E-03
1 9.76E-04 7.66E-04 1.53E-03
2 1.09E-04 8.68E-05 2.95E-04
3 1.21E-05 9.71E-06 5.67E-05
4 1.34E-06 1.08E-06 1.09E-05
5 1.49E-07 1.20E-07 2.10E-06
6 1.65E-08 1.33E-08 4.04E-07

Table 4. Computations of different errors for example 2
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Figure 3. Comparability of exact and
approximated solution for example 2
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Figure 4. Graph of absolute error for example 2
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z Analytical solution Approximate
solution

Absolute Error

0.055555556 0.944415862 0.944358578 5.73E-05
0.166666667 0.832560656 0.832387741 1.73E-04
0.277777778 0.718636170 0.718344419 2.92E-04
0.388888889 0.601234481 0.600818493 4.16E-04
0.500000000 0.478904695 0.478356784 5.48E-04
0.611111111 0.350135011 0.349445080 6.90E-04
0.722222222 0.213334046 0.212489422 8.45E-04
0.833333333 0.066811159 0.065796383 1.01E-03
0.944444444 -0.091244435 -0.092447859 1.20E-03

Table 5. Computation of exact and approximated solution for example 3

J l2 − error l∞ − error Emax−error
0 1.10E-02 9.25E-03 1.06E-02
1 1.22E-03 1.20E-03 2.06E-03
2 1.35E-04 1.41E-04 3.98E-04
3 1.50E-05 1.60E-05 7.65E-05
4 1.67E-06 1.78E-06 1.47E-05
5 1.85E-07 1.99E-07 2.83E-06
6 2.06E-08 2.21E-08 5.45E-07

Table 6. Computations of different errors for example 3

equation 3 (for level of resolution 1) are 1.22E − 03, 1.20E − 03 and 2.06E − 03 respectively.
From table 6, figure 5 and figure 6, it can be observed that approximated solution converges to
the exact solution. From table 6 we can observe that by increasing the number of collocation
points, accuracy of the solution gets better.

Example 4

Consider the nonlinear Hammerstein integral equations of mixed Volterra Fredholm type [29]

u(z) =
z

2
− z4

12
− 1

3
+

∫ 1

0
(z + t) u(t) dt+

∫ z

0
(z − t)[u(t)]2 dt and 0 ≤ z, t,≤ 1 (4.8)

The exact solution for example 4 is u(z) = z. The Volterra Fredholm hammerstein integral
equation presented in example 4 has been solved by using nondyadic Haar wavelet collocation
method. The results obtained by using the presented method is tabulated in table 7 which clearly
explains the comparability among the exact and approximated solution for level of resolution
1. Table 7 clearly depicts that NHWCA provides more accurate results for small number of
collocation points. l2 − error, l∞ − error and Emax − error for integral equation 4 (for level
of resolution 1) are 1.08E − 02, 9.59E − 03 and 1.87E − 02 respectively. From table 8, figure
7 and figure 8, it can be observed that approximated solution converges to the exact solution.
From table 8 we can observe that by increasing the number of collocation points, accuracy of the
solution gets better.
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Figure 6. Graph of absolute error for example 3

z Analytical solution Approximate
solution

Absolute Error

0.055555556 0.055555556 0.058392521 2.84E-03
0.166666667 0.166666667 0.170158473 3.49E-03
0.277777778 0.277777778 0.281939105 4.16E-03
0.388888889 0.388888889 0.393748617 4.86E-03
0.500000000 0.500000000 0.505605179 5.61E-03
0.611111111 0.611111111 0.617531404 6.42E-03
0.722222222 0.722222222 0.729555086 7.33E-03
0.833333333 0.833333333 0.841710272 8.38E-03
0.944444444 0.944444444 0.954038787 9.59E-03

Table 7. Computation of exact and approximated solution for example 4

J l2 − error l∞ − error Emax−error
1 1.08E-02 9.59E-03 1.87E-02
2 1.19E-03 1.11E-03 3.57E-03
3 1.32E-04 1.25E-04 6.87E-04
4 1.47E-05 1.39E-05 1.32E-04
5 1.63E-06 1.55E-06 2.54E-05
6 1.81E-07 1.72E-07 4.89E-06

Table 8. Computations of different errors for example 4
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Figure 8. Graph of absolute error for example 4

z Analytical solution Approximate
solution

Absolute Error

0.055555556 0.055555556 0.057953754 2.40E-03
0.166666667 0.166666667 0.168817106 2.15E-03
0.277777778 0.277777778 0.279680457 1.90E-03
0.388888889 0.388888889 0.390543809 1.65E-03
0.500000000 0.500000000 0.501407160 1.41E-03
0.611111111 0.611111111 0.612270512 1.16E-03
0.722222222 0.722222222 0.723133863 9.12E-04
0.833333333 0.833333333 0.833997215 6.64E-04
0.944444444 0.944444444 0.944860567 4.16E-04

Table 9. Computation of exact and approximated solution for example 5

Example 5

Consider the nonlinear integral equations of Fredholm type [30]

u(z) =
3z
4

+
1
5
+

∫ 1

0
(z − t)[u(t)]3 dt and 0 ≤ t ≤ 1 (4.9)

The exact solution for example 5 is u(z) = z. The Fredholm integral equation presented in
example 5 has been solved by using nondyadic Haar wavelet collocation method. The results
obtained by using the presented method is tabulated in table 9 which clearly explains the com-
parability among the exact and approximated solution for level of resolution 1. Table 9 clearly
depicts that NHWCA provides more accurate results for small number of collocation points.
l2 − error, l∞ − error and Emax − error for integral equation 5 (for level of resolution 1) are
2.68E − 03, 2.40E − 03 and 4.64E − 03 respectively. From table 10, figure 9 and figure 10, it
can be observed that approximated solution converges to the exact solution. From table 10 we
can observe that by increasing the number of collocation points, accuracy of the solution gets
better.

5 Conclusions

In this paper, a numerical method based on non-dyadic Haar wavelets has been introduced for
finding the approximate solution of Fredholm integral equations and Volterra integral equations.
The integral equations are converted to the corresponding linear algebraic system of equations
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J l2 − error l∞ − error Emax−error
1 2.68E-03 2.40E-03 4.64E-03
2 2.99E-04 2.76E-04 8.96E-04
3 3.32E-05 3.10E-05 1.73E-04
4 3.69E-06 3.46E-06 3.32E-05
5 4.10E-07 3.85E-07 6.39E-06
6 4.56E-08 4.28E-08 1.23E-06

Table 10. Computations of different errors for example 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
(z

)

Example 5 

Analytical Solution

Approximated Solution

Figure 9. Comparability of exact and
approximated solution for example 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.5

1

1.5

2

2.5

3

A
b

s
o

lu
te

 e
rr

o
r

10
-4 Absolute error in Example 5 

Figure 10. Graph of absolute error for example
5

which are then solved by the gauss elimination method. For the nonlinear equation, Quasilin-
earization technique is used. The proposed method is applied to some examples found in the
literature for which the exact solutions are known. The results obtained by using this method are
compared with the exact solution. From the table and graphs, it is observed that by increasing the
level of resolution, approximated solutions converge to the exact solutions. MATLAB software
is used for all the computational purposes.
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