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Abstract In the present article, we compute the fourth order accurate solution of the fourth
order parabolic PDE that describes the behavior of a vibrating beam. We derive a new compact
method by using cubic B-splines. We have used the Crank-Nicolson method for discretization
along the time direction. We have exhibited the unconditional stability of the method using
the stability analysis. A few numerical experiments have been done to validate the accuracy
of the method. The advantages of the current method over the methods available are its easy
implementation and lack of computational efforts.

1 Introduction

In this article, we are interested in deriving a stable and high accurate method to find the approx-
imate solution of a fourth order parabolic PDE

utt + uxxxx = f, (1.1)

where (x, t) ∈ [a, b]× [0, T ]. The IC’s and BC’s are given by

u(x, 0) = α1(x), ut(x, 0) = α2(x), x ∈ [a, b],

u(a, t) = β1(t), u(b, t) = β2(t),

uxx(a, t) = β3(t), uxx(b, t) = β4(t),∀ t ∈ [0, T ].

(1.2)

Various numerical methods have been discussed in the literature to solve the fourth order
parabolic PDE. Mohanty et al. [5, 6] proposed three level implicit stable finite difference meth-
ods to compute the numerical solution of the quasi linear fourth order parabolic PDE. Fair-
weather and Gourlay [7] formulated explicit and implicit finite difference methods, Evans and
Yousif [8] developed an alternating group explicit (AGE) method, Conte [22] proposed an 11
point based stable implicit finite difference scheme to solve the fourth order parabolic PDE. An
implicit compact difference scheme with three levels was presented in [10]to find the generalized
form of the fourth order parabolic PDE. Many authors used spline techniques to solve the fourth
order partial PDEs. In [12], authors used fifth degree B-splines, Aziz et al. [13] solved equation
(1.1) using a three level method based on finite difference discretization in time and parametric
quintic spline in space. Warwaz [14] solved the variable coefficient fourth order parabolic by
applying the adomian decomposition method. This method computed the solution in a series
form. Mittal and Jain [15] used cubic B-splines and quintic B-splines to derive two uncondi-
tionally stable methods for solving equation (1.1). Rashidinia and Mohammadi [16] proposed
a sextic spline collocation method for the approximate solution of a fourth order non homoge-
neous parabolic PDE with variable coefficients. Sinc-Galerkin method to compute the numerical
solution of a variable coefficient fourth-order PDE is presented in El-Gamel [17]. By using fi-
nite difference discretization in time and nonpolynomial cubic tension spline in space, Sultana
and Khandelwal [20] computed the solution of fourth order parabolic PDE. Khan and Sultana
[21] developed a three level implicit method based on finite difference discretization in time
and parametric septic spline in space to solve fourth order nonhomogeneous parabolic PDE. A
two-level implicit cubic spline numerical method was proposed by Mohanty and Sharma [22]
for the approximate solution of 1D time-dependent quasilinear biharmonic equation. Kaur and
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Mohanty [23] proposed a compact difference scheme based on half-step discretization to solve
fourth order time dependent PDE. To solve a special type of fourth order parabolic PDE, Mo-
hanty et al. [24] discussed two-level implicit methods by transforming the original problem to a
coupled system of two second order parabolic PDEs.

In this article, we present a new compact method to approximate the solution of fourth order
parabolic PDE using the collocation of cubic B-splines. We have shown that the method is
of order 2 in time and of order 4 in space. Using a tri-diagonal system of equations to find
the solution, we computed the solution with less computation effort and greater efficacy. The
method is also analyzed to discuss the fourth order accuracy and stability. We have compared
the method’s accuracy and efficiency with those available in the literature using a few numerical
experiments.

We have compiled this article in the following manner: In section 2, we have discussed
the collocation method using cubic B-splines to solve the given problem. We present how to
implement the method and the stability in section 3. Section 4 describes the computation of
initial approximation using IC’s and BC’s. Using the proposed method, we have done some
numerical experiments in section 5. The computed solutions are compared with that available
in the literature to show the accuracy and reliability of the proposed method. Conclusions about
the proposed method are presented in section 6.

2 Description of the Method

We introduce new variables v and w as

v = uxx and w = ut. (2.1)

Using equations (2.1), equation (1.1) can be written in the form of two simultaneous partial
differential equations as

wt + vxx = f,

vt = wxx.
(2.2)

Equation (2.2) can be written as
Pt = CPxx + F, (2.3)

where

P =

(
v

w

)
, C =

(
0 1
−1 0

)
and F =

(
0
f

)
. (2.4)

Let us consider a uniformly spaced partition Π = {x0 < x1 < x2 < . . . < xJ−2 < xJ−1 <

xJ} of interval [a, b] where xj = a + jh, j = 0, 1, . . . , J ; where h =
b− a
J

. Let V and W be
approximations of v and w, respectively, obtained using the cubic B-spline collocation method.
Therefore we have

V (x, t) =
J+1∑
j=−1

vj(t)Ψ
3
j(x),

W (x, t) =
J+1∑
j=−1

wj(t)Ψ
3
j(x),

(2.5)

where vj(t) and wj(t) are unknowns that depend on time and will be evaluated later. In the
domain [a, b], The set of piecewise cubic polynomials {Ψ3

−1,Ψ
3
0,Ψ

3
1, . . . ,Ψ

3
j ,Ψ

3
J+1} serves as a

basis for the space of all the cubic splines over the partition Π. The cubic B-spline functions
Ψ3

j(x) at the nodes are as follows (Boor [21]):
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Ψ
3
j(x) =

1
h3



(x− xj)3, x ∈ [xj−2, xj−1),

3(xj+1 − x)3 + 3h(xj+1 − x)2 + 3h2(x− xj+1) + h3, x ∈ [xj−1, xj),

3(x− xj+1)3 + 3h(x− xj+1)2 + 3h2(xj+1 − x) + h3, x ∈ [xj , xj+1),

(xj+2 − x)3, x ∈ [xj+1, xj+2),

0, otherwise.

(2.6)

With the help of equation (2.6), values of Ψ3
j(x),Ψ

3
j

′

(x) and Ψ3
j

′′

(x) at grid points are displayed
in the following manner:

Ψ3
j(x) =


1, x = xj+1, xj+3,

4, x = xj+2,

0, otherwise.
, Ψ3

j

′

(x) =


3
h
, x = xj+1,

−3
h
, x = xj+3,

0, otherwise.

,

Ψ3
j

′′

(x) =


6
h2 , x = xj+1, xj+3,

−12
h2 , x = xj+2,

0, otherwise.

.

(2.7)

Let P(x, t) be a cubic spline. Therefore P(x, t) is given by

P(x, t) =
J+1∑
j=−1

pj(t)Ψ
3
j(x), (2.8)

where pj(t) = [vj(t), wj(t)]T , for j = −1, 0, 1, ..., J + 1. After calculating the values pj(t) at
time t, one can easily compute the approximate solution P(x, t) at that particular time level. The
approximate value of the solution P, the derivatives Px ≡ DxP and Pxx ≡ D2

xP, at the node xj
in terms of parameters pj ≡ pj(t) using (2.7) and (2.8) are as follows:

Pj = pj−1 + 4pj + pj+1,

(DxP)j =
3
h
pj+1 −

3
h
pj−1,

(D2
xP)j =

6
h2pj−1 −

12
h2 pj +

6
h2pj+1,

(2.9)

for j = 0, 1, . . . , J . We will use the following lemma to derive the method.

Lemma 2.1. Let P ∈ C6[a, b] be the exact solution of equation (2.3). If S represents a cubic
spline interpolation of P, defined as

Sj = Pj , j = 0, 1, 2, . . . , J,

D2
xSj = D2

xPj −
h2

12
D4

xPj +O(h4), j = 0, J.

Then from Lucas [2]:

(i) Pj = Sj +O(h4),

(ii) DxPj = DxSj +O(h3),

(iii) D2
xPj = D2

xSj +O(h2),

(iv) D2
xSj = D2

xPj − h2

12D
4
xPj +O(h4),

for 0 ≤ j ≤ J.
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Consider,

Fj −
h2

12
Fxxj

= Ptj −CPxxj −
h2

12
(
D2

xPtj −D4
xCPj

)
= Ptj −

h2

12
D2

xPtj −C

(
D2

xPj −
h2

12
D4

xPj

)
Therefore, using Lemma 2.1, the fourth order accurate method for the solution of the PDE

(2.3) is as follows:

L1Pj + L2Ptj = Fj −
h2

12
Fxxj

for j = 0, 1, . . . , J, (2.10)

where

L1Pj = −CD2
xPj

=

(
0 −D2

x

D2
x 0

)(
Vj

Wj

)
,

(2.11)

and

L2Ptj =

(
I− h2

12
ID2

x

)
Ptj

=

1− h2

12
D2

x 0

0 1− h2

12
D2

x

(Vtj

Wtj

)
,

(2.12)

with P = P =

(
uxx

ut

)
on the boundary of the domain and I =

(
1 0
0 1

)
.

3 Implementation of the Method and Stability Analysis

Let us consider tn = nk,∀n = 0, 1, 2 . . ., where k represents the step size in the time direction.
Using the Crank-Nicolson method in time direction for the equation (2.10), we get

L1P
n+1
j + L1P

n

j

2
+
L2P

n+1
j − L2P

n

j

k
=

Fn+1
j + Fn

j

2
− h2

12
Fn+1

xxj
+ Fn

xxj

2
(3.1)

for j = 0, 1, . . . , J . Using the equations (2.8),(2.10) and (2.12), the equation (3.1) can be written
as (

1
k

(
I− h2

12
ID2

x

)
− 1

2
CD2

x

)
P

n+1
j =

(
1
k

(
I− h2

12
ID2

x

)
+

1
2
CD2

x

)
P

n

j +
Fn+1

j + Fn
j

2

− h2

12
Fn+1

xxj
+ Fn

xxj

2
. (3.2)

By using (2.4), it can be further written as1
k
− h2

12k
D2

x −1
2
D2

x

1
2
D2

x

1
k
− h2

12k
D2

x

(vn+1
j

wn+1
j

)
=

1
k
− h2

12k
D2

x

1
2
D2

x

−1
2
D2

x

1
k
− h2

12k
D2

x

(vnj
wn

j

)

+

 0
fn+1
j + fnj

2
− h2

12
fn+1
xxj

+ fnxxj

2

 , (3.3)

for all j = 0, 1, . . . , J.
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Let us consider the matrices

B0 =



4 1
1 4 1

. . . . . . . . .

. . . . . . . . .

1 4 1
1 4


, B2 =

6
h2



−2 1
1 −2 1

. . . . . . . . .

. . . . . . . . .

1 −2 1
1 −2


,

and

F
n
=

1
2

(
fn0 −

h2

12
fnxx0

, fn1 −
h2

12
fnxx1

, . . . , fnJ−1 −
h2

12
fnxxJ−1

, fnJ −
h2

12
fnxxJ

)T

.

Therefore,by using equations (2.7) and (3.3) we have1
k
B0 −

h2

12k
B2 −1

2
B2

1
2
B2

1
k
B0 −

h2

12k
B2


V

n+1

W
n+1

 =

1
k
B0 −

h2

12k
B2

1
2
B2

−1
2
B2

1
k
B0 −

h2

12k
B2

(V
n

W
n

)

+

(
0

F
n
+ F

n+1

)
,

⇒

V
n+1

W
n+1

 =

1
k
B0 −

h2

12k
B2 −1

2
B2

1
2
B2

1
k
B0 −

h2

12k
B2


−11

k
B0 −

h2

12k
B2

1
2
B2

−1
2
B2

1
k
B0 −

h2

12k
B2

(V
n

W
n

)

+

1
k
B0 −

h2

12k
B2 −1

2
B2

1
2
B2

1
k
B0 −

h2

12k
B2


−1(

0
F

n
+ F

n+1

)
. (3.4)

where V
n
= [vn0 , v

n
1 , v

n
2 , . . . , v

n
J−2, v

n
J−1, v

n
J ]

T , and W
n
= [wn

0 , w
n
1 , w

n
2 , . . . , w

n
J−2, w

n
J−1, w

n
J ]

T .
We can write equation (3.4) as

Rn+1 =MRn + Fn, (3.5)
where

M =

1
k
B0 −

h2

12k
B2 −1

2
B2

1
2
B2

1
k
B0 −

h2

12k
B2


−11

k
B0 −

h2

12k
B2

1
2
B2

−1
2
B2

1
k
B0 −

h2

12k
B2

 ,

=

1
k
In −

h2

12k
B0
−1B2 −1

2
B0
−1B2

1
2
B0
−1B2

1
k
In −

h2

12k
B0
−1B2


−1

·

·

1
k
In −

h2

12k
B0
−1B2

1
2
B0
−1B2

−1
2
B0
−1B2

1
k
In −

h2

12k
B0
−1B2

 , (3.6)

Fn =

1
k
B0 −

h2

12k
B2 −1

2
B2

1
2
B2

1
k
B0 −

h2

12k
B2


−1(

0
F

n
+ F

n+1

)
, (3.7)

Rn =

(
V

n

W
n

)
and In is an identity matrix of order n. (3.8)
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Once the value of R0 is evaluated, we can use equation (3.5) to calculate Rn for any value of
n. Now, the approximate solution U(x, t) of the exact solution u(x, t) of equation (1.1) can
be obtained from the values of V

n
by means of the cubic B-spline collocation method of the

differential equation
v = uxx. (3.9)

Therefore, the approximate solution U(x, t) using the cubic B-spline collocation method is given
in the following form

U(x, t) =
J+1∑
j=−1

cj(t)Ψ
3
j(x), (3.10)

where cj ′s need to be determined. The method to solve the equation (3.9) is given as

Dx
2Un

j =

(
1− h2

12
Dx

2
)
V

n

j , for j = 0, 1, . . . , J.

Using equations (2.7), we have the system of equations

B2c
n =

(
B0 −

h2

12
B2

)
V

n

cn = B2
−1
(
B0 −

h2

12
B2

)
V

n
. (3.11)

where cn = (cn−1, c
n
0 , . . . , c

n
J , c

n
J+1)

T and V
n

is the vector obtained using (2.5) . This equation
generates a (J + 1)× (J + 3) system of equations with variables namely cn−1, c

n
0 , . . . , c

n
J , c

n
J+1.

After eliminating the variables cn−1 and cnJ+1 using the BC’s, one can easily solve the system and
therefore compute the approximate solution using equation (3.10).

Theorem 3.1. The method presented in equation (2.10), is unconditionally stable.

Proof. Let us assume that the eigenvalue of the matrix B−1
0 B2 is λ. The corresponding eigenval-

ues of the coefficient matrixM are given by

1
k
− h2

12k
λ −1

2
λ

1
2
λ

1
k
− h2

12k
λ


−11

k
− h2

12k
λ

1
2
λ

−1
2
λ

1
k
− h2

12k
λ



=
1(

1
k
− h2

12k
λ

)2

+
1
4
λ2

1
k
− h2

12k
λ

1
2
λ

−1
2
λ

1
k
− h2

12k
λ


2

which is a unitary matrix. Therefore, all eigenvalues of M have modulus 1. Therefore, the
suggested method is unconditionally stable.

4 Approximations at Initial Step and Boundary

Using the BC’s (1.2) and equation (2.1) , we have

v(a, t) = β3(t),

v(b, t) = β4(t),

w(a, t) = ut(a, t) = β1
′(t),

w(b, t) = ut(b, t) = β2
′(t),

(4.1)
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for t ∈ [0, T ]. By equations (2.5) and (2.7), the equations (4.1) can be written as

v−1(t) + 4v0(t) + v1(t) = β3(t),

vJ−1(t) + 4vJ(t) + vJ+1(t) = β4(t),

w−1(t) + 4w0(t) + w1(t) = β1
′(t),

wJ−1(t) + 4wJ(t) + wJ+1(t) = β2
′(t),

(4.2)

∀ t ∈ [0, T ]. Since pj(t) = [vj(t), wj(t)]T . Therefore, we have

p−1(t) + 4p0(t) + p1(t) =

(
β3(t)

β′1(t)

)
,

pJ−1(t) + 4pJ(t) + pJ+1(t) =

(
β4(t)

β′2(t)

)
,

(4.3)

∀ t ∈ [0, T ]. Now, using the IC’s (1.2) and equation (2.1), we can write

v(x, 0) = uxx(x, 0) = α1
′′
(x),

w(x, 0) = α2(x),
(4.4)

∀x ∈ [a, b]. Therefore, from the equations (4.4) we obtain,

p0
j−1 + 4p0

j + p0
j+1 =

(
α
′′

1 (xj)

α2(xj)

)
, for j = 0, 1, . . . , J. (4.5)

Equations (4.3), enable us to eliminate p−1 and pJ+1 from the system of equations obtained by
the equations (4.5). So, using equations (4.3) and (4.5), we get a (J + 1) × (J + 1) system of
equations of the form

AR0 = E (4.6)

where A is a block tridiagonal matrix given by

A =



6I 0
I 4I I

0 I 4I I

· · · · · · · · ·
· · · · · · · · ·

I 4I I 0
I 4I I

0 6I


,R0 =



p0
0

p0
1

p0
2

· · ·
p0
J−2

p0
J−1

p0
J


and E is the vector obtained with the right hand side values of equations (4.3) and (4.5). We can
find the initial vector R0 by solving equation (4.6).

5 Numerical Experiments

In this section, we compute the approximate solution of some test problems using the proposed
method. To validate the order of convergence and accuracy of the proposed method, we will use
the following formula

Maximum Absolute Error (L∞) = max
j
|uj − Uj |,

Order =
log (L∞(J1)/L∞(J2))

log (J1/J2)
,
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where L∞(J1) and L∞(J2) are the errors corresponding to the number of grid points J1, J2 re-
spectively.

Example 1: Let us consider the equation (Mittal and Jain [15]):

∂2u

∂t2
+
∂4u

∂x4 =
(
π4 − 1

)
sinπx cos t, x ∈ [0, 1], t > 0,

with IC’s
u(x, 0) = sinπx, ut(x, 0) = 0, x ∈ [0, 1],

and the BC’s
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t ≥ 0.

u(x, t) = sinπx cos t is the exact solution of the PDE.
For our first computation, we fix k = 0.005. Now choose J = 90, J = 180, J = 270 and

compute solution at time levels t = 0.02, t = 0.05 and t = 1.0. In Table 1, a comparison between
our results with the results obtained by Mittal and Jain [15] is displayed. We can see from the
table that our method produces a better accurate solution. For our next computation, we take
k = 0.005, h = 0.05 and compute the solution at time level t = 0.05. The comparison between
our results and the results obtained by Rashindini and Mohammadi [16] is displayed in Table 2.
In[16], the authors used the sextic spline method, which uses a much larger stencil.
we have also displayed the CPU time and calculated the order in the Table 3. Here we can
observe that method is of order four. For h = 0.05, k = 0.01, numerical solution of the given
problem is illustrated in Figure 1.

Table 1: Absolute error of Example 1, for k = 0.005.

Method Time J x = 1
10 x = 2

10 x = 3
10 x = 4

10 x = 5
10

Present Method

90 2.1442e-09 4.0785e-09 5.6135e-09 6.5991e-09 6.9387e-09
0.02 180 3.7454e-10 7.1241e-10 9.8055e-10 1.1527e-09 1.2120e-09

270 2.7986e-10 5.3232e-10 7.3268e-10 8.6131e-10 9.0564e-10
90 3.3397e-09 6.3526e-09 8.7436e-09 1.0279e-08 1.0808e-08

0.05 180 1.6863e-09 3.2076e-09 4.4148e-09 5.1900e-09 5.4571e-09
270 1.5979e-09 3.0393e-09 4.1833e-09 4.9177e-09 5.1708e-09
90 1.8534e-08 3.5253e-08 4.8522e-08 5.741e-08 5.9976e-08

1 180 1.9236e-08 3.6589e-08 5.0361e-08 5.9203e-08 6.2250e-08
270 1.9274e-08 3.6661e-08 5.0459e-08 5.9319e-08 6.2371e-08

[15]

90 6.1000e-07 1.1500e-06 1.5900e-06 1.8700e-06 1.9600e-06
0.02 180 1.5000e-07 2.9000e-07 3.9000e-07 4.6000e-07 4.9000e-07

270 7.0000e-08 1.3000e-07 1.7000e-07 2.0000e-07 2.1000e-07
90 4.4700e-06 8.4900e-06 1.1700e-05 1.3700e-05 1.4500e-05

0.05 180 1.1000e-06 2.0900e-06 2.8800e-06 3.3800e-06 3.5600e-06
270 4.8000e-07 9.1000e-07 1.2500e-06 1.4600e-06 1.5400e-06
90 3.5600e-05 6.7700e-05 9.3200e-05 1.1000e-04 1.1500e-04

1 180 3.6200e-06 6.8900e-06 9.4800e-06 1.1100e-05 1.1700e-05
270 2.3000e-06 4.3800e-06 6.0300e-06 7.0900e-06 7.4500e-06

Example 2: Consider the PDE

∂2u

∂t2
+
∂4u

∂x4 =
(
24− x2 + 2x3 − x4) cos t, x ∈ [0, 1], t > 0,

with IC’s
u(x, 0) = x2 − 2x3 + x4, ut(x, 0) = 0, x ∈ [0, 1],
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Table 2: Absolute error of Example 1, for h = 0.05 at time t = 0.05.

x Present Method Rashidinia and Mohammadi [16]

1/10 7.2577e-07 2.9100e-06

2/10 1.3800e-06 1.7300e-06

3/10 1.9000e-06 1.6000e-06

4/10 2.2310e-06 2.2300e-06

5/10 2.3483e-06 2.6000e-07

Table 3: CPU time and order table of Example 1 at time t = 1 for k = h2.

h Error Order CPU time (in seconds)

1/4 4.9208e-04 - 0.01

1/8 3.5674e-05 3.79 0.02

1/16 2.3425e-06 3.93 0.03

1/32 1.4857e-07 3.98 0.13

1/64 9.3169e-09 4.00 1.11

1/128 5.8252e-10 4.00 10.04

Figure 1: Numerical solution of Example 1 for h = 0.05, k = 0.01 at time t = 2.

and BC’s
u(0, t) = 0 = u(1, t), uxx(0, t) = 2 cos t = uxx(1, t), t ≥ 0.

u(x, t) = x2(1− x)2 cos t is the exact solution of the PDE. For k = h2 and time t = 5, we have
displayed the CPU time and calculated the order in Table 4, and we can see that our method is of
order four. For h = 0.05, k = 0.01 and time t = 1, the numerical solution is illustrated in Figure
2.
Example 3: Let us consider the PDE

∂2u

∂t2
+
∂4u

∂x4 = 0, x ∈ [0, 1], t > 0,

with IC’s
u(x, 0) =

x

12
(2x2 − x3 − 1), ut(x, 0) = 0, x ∈ [0, 1],

and BC’s
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, ∀ t ≥ 0.
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Table 4: CPU time and order table of Example 2 at time t = 5 for k = h2.

h Error Order CPU time (in seconds)

1/4 9.6006e-06 - 0.02

1/8 1.3677e-07 6.13 0.02

1/16 1.1085e-08 3.63 0.08

1/32 7.1685e-10 3.95 0.52

1/64 4.4744e-11 4.00 4.28

Figure 2: Numerical solution of Example 2 for h = 0.05, k = 0.01 at time t = 1.

The exact solution of the PDE is given by

u(x, t) = −
∞∑
r=1

8
(2r + 1)5π5 sin(2r + 1)πx cos(2r + 1)2π2t.

For our first computation, we fix h = 0.05 and compute the solution at t = 0.02 and t = 1 with
respective time step lengths k = 0.0025 and k = 0.005. Errors between the approximate and
exact solutions are displayed in Table 5. We have also calculated the same results for bending
moment ∂2u

∂x2 and illustrated it in Table 6. The results are compared with the errors obtained from
the hopscotch procedure by Danaee and Evans [19]. The order of the method is alos displayed
in Table 7. We can see that the method is of order 4 in space. For the next computation, we
choose h = 0.1, k = 0.02. Errors between the exact and approximate values of u and uxx at
time t = 1 are evaluated and compared with Fairweather and Gourlay [7] in Table 8. In [7], the
authors have used semi explicit finite difference method. In Figure 3, a three dimensional plot of
the numerical solution is displayed for the values h = 0.1, k = h2 at time t = 2.

6 Conclusion

In this article, we have derived a new compact high order method to solve the fourth order
PDE governing the behavior of a vibrating beam. The present method is based on the cubic
B-spline collocation technique and requires only three grid points in the space direction. We
have shown the method to be unconditionally stable and discussed the accuracy of the method
by performing some numerical experiments. The results obtained by the present method have
been compared with those available in the literature. The advantage of the present method over
the existing techniques are its compactness, easy implementation, and highly accurate results
with less computational effort.
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Table 5: Errors obtained for the solution of Example 3 for h = 0.05 at various time levels .

x
Present Method Danaee and Evans [19]

k = 0.00125, t = 0.02 k = 0.005, t = 1 k = 0.00125, t = 0.02 k = 0.005, t = 1

1/10 1.4646e-07 1.5011e-05 2.5000e-06 3.1880e-03

2/10 2.3670e-07 6.5572e-06 3.9000e-06 2.7270e-03

3/10 5.2983e-07 1.8211e-05 1.3700e-05 9.8030e-03

4/10 4.0198e-07 3.4812e-05 2.6000e-06 1.2459e-02

5/10 2.4761e-07 3.5029e-05 9.8000e-06 1.4032e-02

Table 6: Error obtained at computing
∂2u

∂x2 in Example 3 for h = 0.05 at various time levels.

x
Present Method Danaee and Evans [19]

k = 0.00125, t = 0.02 k = 0.005, t = 1 k = 0.00125, t = 0.02 k = 0.005, t = 1

1/10 7.8080e-05 2.7000e-03 4.9570e-04 1.7410e-03

2/10 4.9414e-04 1.7000e-03 4.7700e-05 3.2820e-03

3/10 2.96273-04 1.0000e-03 2.3793e-03 4.5540e-03

4/10 1.6233e-04 2.8000e-03 4.3360e-04 5.3690e-03

5/10 9.0149e-04 1.5081e-04 3.1216e-03 5.6440e-03

Table 7: CPU time and order table of Example 3 at time t = 1 for k = h2.

h Error Order CPU time (in seconds)

1/20 3.1310e-05 - 0.11

1/40 2.3094e-06 3.76 0.64

1/80 1.4557e-07 3.99 5.18

1/160 9.1029e-09 3.99 55.50

Table 8: Errors of Example 3 for k = 0.02, h = 0.1 at time t = 1.

x
Present Method Fairweather and Gourlay [7]

u uxx u uxx

1/10 2.5303e-04 1.6400e-02 1.3760e-03 2.9855e-02

2/10 3.7029-04 1.7100e-02 2.4560e-03 5.3930e-02

3/10 3.3783e-04 9.5000e-03 3.0140e-03 6.0127e-02

4/10 2.3195-04 3.4000e-03 2.9870e-03 4.8259e-02

5/10 1.7319-04 1.2200e-02 2.4840e-03 2.7202e-02
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