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Abstract This manuscript studied the one dimensional sine Gordon equation (SGE) using
differential quadratue (DQ) method with modified form of quartic B-spline (mQB spline) as
base functions. The modification in quartic B-splines is done so as the diagonal dominance of
the coefficient matrix is not effected and the method does not requires additional evaluations
outside the computational domain as it is required with original form of quartic B-spline. At
first, the SGE is transformed into a system of two ordinary differential equations and after the
implementation of mQB-DQ method we get a system of ODEs which is solved by the SSP-
RK43 method. The efficiency, accuracy and convergence of the method is demonstrated by
implementing the method on three test problem of SGE, the solution profile of these test problem
is also depicted graphically.

1 Introduction

To gain insight into the phenomenon of science and engineering, researchers are often present-
ing the relations between the involved variable in terms of differential equations. The study of
modelled equations has always attracted mathematicians to get a deep understanding of the pro-
cess. One of the well-known nonlinear partial differentials having applications in various fields
of physics and whose solutions are in soliton form is a Sine-Gordon (SG) equation. It appears in
the study of motion of pendulum, fluid motion, optics etc.

In the study of optics, the SG equation is administered as a solution to the classical Maxwell
systems [1]. This equation is considered a prototype equation to describe the light bullet phe-
nomenon. That plays an important role in communication systems and is an entrant to be
opted in designing optical switches in optical devices. This equation presents a mathematical
model to discuss the fault dynamics and to study the phenomena related to strain waves and
earthquakes[2]. It plays a significant role in understanding the seismic distortion effects on the
earth’s crust. It has been applied to verify the theory behind the faulty medium in the analysis
of natural substances. It is successfully implemented in the models due to the soliton solution
of kinks form. SGE also appears in the literature in the geometrical study of the soliton in view
of the canonical field [3]. The work is presented as a link in the evaporation of the black hole
that was depicted in form of the one soliton solution phenomena. This study also describes a
relationship between the soliton velocity and the black hole temperature.

The equation is given by:

∂2ξ

∂τ 2 + α
∂2ξ

∂y2 + sin(ξ) = 0, τ ≥ 0, y ∈ [l, r] = lΩr (1.1)

This equation has been solved for its soliton solutions by numerous researchers and scientist
because of its applications in phenomena involving waves. Various analytical and numerical
techniques have been used by the researchers and scientist to study SGE that includes but are not
limited to the following: Kaya [4] and Ray [5] uses application of the modified decomposition
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method for evaluating the SGE in 1 and 2 dimensions, Wang [6] uses modified Adomian decom-
position method to solve the SGE in higher dimensions, homotopy analysis method by Yucel [7].
Spline based approximation is implemented along with the finite difference scheme Rashidinia
and Mohammadi [8]. Other than investigating the solution of the equation, researchers have put
the effort in to studying the solution based on the properties shown by the equation. Such as
the equation has been solved using finite difference based on the concept of conserved discrete
energy Ben-yu et. al. [9]. The equation is discussed for the unstable nature using the nonlinear
spectrum approach by Albowitz et. al. [10, 11]. Some other approaches that have been success-
fully implemented to study and solve the SG equation are Legendre spectral element method
[12], virtual element method [13], MCB collocation technique [14], CFD6 scheme [15], bound-
ary element and boundary integral approach [16, 17], localized method of approximate particular
solutions [18].

Recently, the equation is solved using fourth order efficient collocation scheme [19]. The
SG equation in fractional form has also been solved using homotopy perturbation method [20].
The equation in the fractional form in two-dimensional has been solved using finite difference
meshfree methods in [21]. The equation in multidimensional form has been solved using radial
basis functions [22], the concept of rational radial basis functions has been used to solve the
equation in 1-dim [23].

In this work we proposed a modification in the quartic B-spline functions so that use of
additional nodes outside the computation domain is not required while using these B-splines.
We adopted DQ method with modified quartic B-splines to study the SGE. The DQ method was
firstly introduced by [24], till then many variant form of DQ method has been introduced by
various researchers to study the different type of phenomena arising in the field of engineering
and sciences and thus this method is now one of the efficient and powerful technique to study
the various phenomena modeled in the form of a PDEs. For more details about DQ method see
[25, 26, 27, 28, 29, 30, 31, 32] and references therein. The rest of the manuscript is designed
as: Section 2 presents the quartic and modified quartic B-splines and the procedure of the DQ
method. Section 3 presents the implementation of the mQB-DQ method on the SGE. Three
test problems are solved and their solutions are compared in the section 4 and in the last we
concluded on our work in the section 5.

2 Modified Quartic B-spline Differential Quadrature Method (mQB-DQ
Method)

The quartic B-spline Qk(y) at different nodes yj of the uniform partition χ = {l = y0 < y1 <
y2 < . . . < yn−1 < yn = r}, of the domain of computation lΩr = [l, r] is defined as [33]:

24 Qk(y) =



A4
k−2, [yk−2, yk−1]

A4
k−2 − 5A4

k−1, [yk−1, yk]

A4
k−2 − 5A4

k−1 + 10A4
k, [yk, yk+1]

A4
k+3 − 5A4

k+2, [yk+1, yk+2]

A4
k+3, [yk+2, yk+3]

0, otherwise,

(2.1)

where Ak = (yk − y)/h. The set of these splines {Q−2, . . . ,Qn,Qn+1} make a basis for the
function defined over the considered computation domain lΩr.

The values of quartic splines Qk and their derivatives at various nodes (yj ∈ χ) can be
computed from equation (2.1), which is given as

24Qk(yk−1) = 24Qk(yk+2) = 1, 24Qk(ki) = 24Qk(yk+1) = 11,

2hQ′k(yk−1) = −2hQ′k(yk+2) = 1, 2hQ′k(yk) = −2hQ′k(yk+1) = 1,

2h2Q′′k(yk−1) = 2h2Q′′k(yk+2) = 1, 2h2Q′′k(yk) = 2h2Q′′k(yk+1) = −1,

h3Q′′′k (yk−1) = −h3Q′′′k (yk+2) = 1, h3Q′′′k (yk) = −h3Q′′′k (yk+1) = −1,

(2.2)



Numerical Study of SG equation via mQB-DQ Method 13

also values of Qk, Q′k, Q′′k and Q′′′k vanishes at other nodes .
One can easily observe that the some of these splines Qk, k ∈ {−2,−1, 0, 1, n − 2, n −

1, n, n+ 1} needs additional nodes outside the computation domain lΩr so these splines aren’t
supported completely inside the domain of computation. So during the use of these splines the
additional nodes outside the computation domain increase the complexity of the computation.
To reduce the complexity of the computation wee have redefined the quartic B-splines at the
boundary of the domain as follows

Q0(y) = Q0(y) + 2 Q−1(y) + 3 Q−2(y),

Q1(y) = Q1(y)−Q−1(y)− 2 Q−2(y),

Qk(y) = Qk(y), k ∈ ∆n−2 \ {0, 1}
Qn−1(y) = Qn−1(y)−Qn+1(y),

Qn(y) = Qn(y) + 2 Qn+1(y).

(2.3)

2.1 Procedure of Differential Quadrature (DQ) Method

DQ method is a well known and powerful technique to compute the approximations of high accu-
racy for a unknown of the partial differential equations (PDEs), in DQ method partial derivatives
of unknown are transformed into the weighted linear sum of the functional values at the con-
sidered nodes of computation domain. As a result, if the PDE is time-independent it transform
into a set of algebraic equations whereas if the PDE is time dependent it transform into a set of
ordinary differential equations (ODEs).

The r-th order derivative of unknown ξ(y, τ) i.e ∂rξ
∂yr , r = 1, 2 at the certain node y = yj , j =

0, 1, . . . , n is read as

∂rξ

∂yr
(yj) =

n∑
k=0

η
(r)
jk ξ(yk), j = 0, 1, . . . , n, (2.4)

where η(r)jk denote rth derivative’s weighting coefficients at jth node y = yj . We will compute
these coefficients by adopting the mQB splines as trial functions in the DQ method, the procedure
of computation of these coefficients is described in following section.

Computing procedure for weighting coefficient η(r)
jk , r = 1, 2

For the computation of weighting coefficients η(r)jk , r = 1, 2 we will utilize the modified quartic
B-splines (2.3) as trial functions in the DQ (2.4), which leads to the equation

∂rQi
∂yr

(yj) =
n∑
k=0

η
(r)
jk Qi(yk), j = 0, 1, . . . , n; r = 1, 2. (2.5)

For a fix node point yj , the equation (2.5) can be written as

Q00 Q01 Q02 . . . Q0n

Q10 Q11 Q12 . . . Q1n

Q20 Q21 Q22 . . . Q2n
...

...
...

...
Q(n−1)0 Q(n−1)1 Q(n−1)2 . . . Q(n−1)n

Qn0 Qn1 Qn2 . . . Qnn





η
(r)
j0

η
(r)
j1

η
(r)
j2
...

η
(r)
j(n−1)

η
(r)
jn


= Ψj , (2.6)

where Qij = Qi(yj) and Ψj =
[
∂rQ0
∂yr (yj),

∂rQ1
∂yr (yj), . . . ,

∂rQn
∂yr (yj)

]T
. Values of Qij and

∂rQi
∂xr (yj) can be computed directly from (2.3) with the help of equation (2.2). As the matrix

arises in Equation (2.6) is nonsingular, therefore equation (2.6) can be easily solve by Gauss
elimination method, and hence we will get the weighting coefficient for the rth(= 1, 2) order
derivative.
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3 Implementation of mQB-DQ Method to sine-Gordon equation

Before implementing the mQB-DQ Method to sine-Gordon equation, we consider the transfor-
mation ϑ = ξτ , and this transformation reduces the SGE (1.1) into a system of first order ODEs

∂ξ

∂τ
= ϑ;

∂ϑ

∂τ
= −α∂

2ξ

∂y2 − sin(ξ). (3.1)

Now implementing the mQB-DQ Method with boundary conditions: ξ(l, τ) = ψ1(τ), ξ(r, τ) =
ψ2(t) the system (3.1) is reduces to following system of ODEs

∂ξi
∂τ

= ϑi,

∂ϑi
∂τ

= −α
n−1∑
j=1

η
(2)
ij ξj − sin(ξi) + Fi,

(3.2)

where Fi = η
(2)
i0 ψ1 + η

(2)
in ψ2. This system of ODEs (3.2) can be easily solved by implementing a

number of admissible procedures of integration. Among them, we preferably chose SSP-RK43

technique [34] due to its accuracy and stability. The procedure of SSP-RK43 to solve
dξ̄

dτ
= L(ξ̄)

with time-step ∆τ is given as

γ(1) = ξ̄m +
∆τ

2
L(ξ̄m); γ(2) = γ(1) +

∆τ

2
L(γ(1)); γ(3) =

2
3
ξ̄m +

γ(2)

3
+

∆τ

6
L(γ(2));

ξ̄m+1 = γ(3) +
∆τ

2
L(γ(3))

The initial solution is required before the implementation of SSP-RK43 on equation (3.2) and this
initial solution can be easily get from the initial conditions of SGE as ξ(yj , 0) = φ1(yj), ϑ(yj , 0) =
φ2(yj), j = 0, 1, . . . , n. With these initial solution we can find the solution of SGE at desired
level of τ .

4 Numerical Illustrations

In this section we will assess the efficiency, convergence and accuracy of the proposed scheme
by implementing it on some test problems of SGE and evaluating the L2, and L∞ errors given
as

L2 :=

√√√√h

n∑
j=0

|ξj − ξ∗j |2, L∞ := max
{∣∣ξj − ξ∗j ∣∣nj=0

}
, (4.1)

where ξ∗j is the exact solution and ξj is approximate solution at the node yj . The order of
convergence of the proposed scheme is assessed numerically by the following formula

ln(En1/En2)

ln(n2/n1)
,

where Enk stands for the L2/L∞ error in the evaluated approximate solution while taking
nk (k = 1, 2) nodes.

Example 4.1. Consider the one dimensional SGE (1.1) in the computational domain −`Ω`, ` =
1, 2 with α = −1 together with the initial conditions ξ(y, 0) = 0, ξτ (y, 0) = 4sech(y), and
boundary conditions extracted from the analytical solution (4.2) as given in [14]

ξ(y, t) = 4 arctan(τsech(y)) (4.2)

For ` = 1, we calculated the approximate solution at various values of τ(= 0.25, 0.50, 0.75, 1.0)
by taking the parametric values as h ∈ {0.02, 0.04},∆τ = 0.001. The L2 and L∞ errors in
these approximations are reported in the table 1 and compared with that of obtained in [19, 14,
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16]. Comparison in table 1 shows that we are getting the improved solution than [14, 16] and
comparable to [19]. In addition, the absolute errors at different time level and various nodes of
the computation domain is reported and compared in the table 2, which shows the efficiency and
accuracy of proposed technique.

Now for ` = 2, we have computed the L2, and L∞ errors in the approximate solution at
τ = 0.1 × k, k = 1, 2, . . . , 10 by taking the parametric values h = 0.01, ∆τ = 0.001 and
reported and compared them with [36, 19, 14] in the table 3. Further, in table 4 we reported
the L2, L∞ errors at t = 1, 2 using different number of nodes and ∆t = 0.001. The order of
convergence of the scheme evaluated in this table indicates it to be two. The solution profile of
the problem is depicted in the Fig. 3.

Table 1. Comparison of mQB-DQ solution of Ex. 4.1
τ [19] [14] [16] Present
h = 0.02 L∞ L2 L∞ L2 L∞ L2 L∞ L2

0.25 1.34E-06 7.40E-07 8.20E-06 3.71E-06 2.60E-06 8.27E-07
0.5 3.96E-06 1.42E-06 1.62E-05 1.34E-05 2.93E-06 1.60E-06
0.75 1.61E-05 7.07E-06 2.54E-05 2.40E-05 2.94E-06 1.79E-06
1 3.22E-05 1.78E-05 4.14E-05 3.00E-05 1.04E-05 4.00E-06
h = 0.04
0.25 9.67E-06 4.20E-06 2.32E-05 1.18E-05 5.89E-06 3.91E-05 9.84E-06 3.17E-06
0.5 9.36E-06 6.92E-06 4.11E-05 4.19E-05 2.01E-05 1.30E-04 1.17E-05 6.50E-06
0.75 2.25E-05 1.09E-05 1.02E-04 7.78E-05 3.63E-05 2.35E-04 1.18E-05 7.48E-06
1 6.38E-05 3.27E-05 1.64E-04 1.30E-04 5.07E-05 3.27E-04 3.91E-05 1.59E-05

Table 2. Comparison absolute errors at various nodes Ex. 4.1
[14] [19] Present

y τ = 1 τ = 0.1 τ = 0.01 τ = 1 τ = 0.1 τ = 0.01 τ = 1 τ = 0.1 τ = 0.01
-0.8 1.11E-05 4.24E-08 4.19E-11 1.86E-05 7.25E-10 5.57E-11 4.63E-06 1.23E-11 2.40E-14
-0.6 6.17E-07 1.94E-08 1.72E-11 8.23E-06 8.03E-10 8.00E-11 4.25E-07 1.03E-11 2.04E-14
-0.4 1.47E-05 3.01E-08 3.32E-11 1.24E-06 1.05E-09 1.06E-10 2.87E-06 1.27E-12 2.01E-14
0 4.13E-05 1.09E-07 1.15E-10 1.01E-07 1.29E-09 1.33E-10 7.83E-08 2.65E-11 3.02E-14
0.4 1.47E-05 3.01E-08 3.32E-11 1.24E-06 1.05E-09 1.06E-10 4.12E-07 1.27E-12 2.01E-14
0.6 6.17E-07 1.94E-08 1.72E-11 8.23E-06 8.03E-10 8.00E-11 6.03E-07 1.03E-11 2.04E-14
0.8 1.11E-05 4.24E-08 4.19E-11 1.86E-05 7.25E-10 5.57E-11 7.43E-07 8.13E-12 2.40E-14

Table 3. Comparison of mQB-DQ solution of Ex. 4.1 at various τ
[19] [14] [36] Present

τ L2 L∞ L∞ L∞ L2 L∞

0.1 2.05E-07 5.89E-07 7.20E-06 1.54E-06 1.26E-07 6.70E-07
0.2 4.35E-07 8.33E-07 2.26E-05 9.25E-05 3.68E-07 1.40E-06
0.3 5.99E-07 7.59E-07 4.54E-05 9.02E-05 6.79E-07 2.12E-06
0.4 6.81E-07 7.64E-07 7.52E-05 1.62E-04 1.04E-06 2.81E-06
0.5 7.76E-07 1.01E-06 1.12E-04 2.58E-04 1.44E-06 3.46E-06
0.6 1.11E-06 2.47E-06 1.55E-04 3.73E-04 1.86E-06 4.07E-06
0.7 1.83E-06 4.35E-06 2.04E-04 4.98E-04 2.30E-06 4.62E-06
0.8 2.93E-06 6.62E-06 2.59E-04 6.24E-04 2.76E-06 5.12E-06
0.9 4.40E-06 9.28E-06 3.19E-04 7.44E-04 3.21E-06 5.55E-06
1 6.23E-06 1.23E-05 3.84E-04 8.49E-04 3.67E-06 5.93E-06



16 Brajesh Kumar Singh1,a, Mukesh Gupta1,b and Geeta Arora2,c

Table 4. Order of convergence(OC) of mQB-DQ method for 4.1
τ = 1 τ = 2

n L∞ OC L2 OC L∞ OC L2 OC
11 5.64E-03 1.6908 5.17E-03 1.7389 1.02E-02 1.9617 1.51E-02 1.9517
21 1.89E-03 1.8563 1.68E-03 1.8715 2.87E-03 1.9962 4.29E-03 1.9744
31 9.16E-04 1.9051 8.10E-04 1.9145 1.32E-03 1.9902 1.99E-03 1.9829
41 5.38E-04 1.9293 4.74E-04 1.9360 7.56E-04 1.9946 1.14E-03 1.9874
51 3.53E-04 3.11E-04 4.89E-04 7.39E-04

−2
−1

0
1

2

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

ξ(
y
,τ

)

τ
y

Figure 1. solution profile of Ex. 4.1 in −2Ω2 and 0 ≤ τ ≤ 1

Example 4.2. Consider the one dimensional SGE (1.1) in the computational domain −3Ω3 with

α = −1 together with the initial conditions ξ(y, 0) = 4 arctan
(

exp
(

y√
1−κ2

))
, ξτ (y, 0) =

− 4κ√
1−κ2

exp
(

y√
1−κ2

)
1+exp

(
2y√
1−κ2

) , and boundary conditions extracted from the analytical solution (4.3) as

given in [14]

ξ(y, τ) = 4 arctan
(

exp
(
y − κ τ√

1− κ2

))
, (4.3)

where κ denotes the velocity of solitary-wave. For the comparison purpose we have chosen the
two values of κ (0.05, & 0.5).

For κ = 0.5, we calculated the approximate solution at various values of τ(= 0.25, 0.50, 0.75, 1.0)
by taking the parametric values as h ∈ {0.02, 0.04},∆τ = 0.0001. The L2 and L∞ errors in these
approximations are reported in the table 5 and compared with that of obtained in [19, 14, 16].
Comparison in table 5 shows that we are getting the improved solution than [14] for both values
of h and comparable to [19, 16].

For κ = 0.05, the absolute errors at different time level and various nodes of the computation
domain is reported and compared with [19, 14] in the table 6 by taking the parametric values
as ∆τ = 0.0001, h = 0.02,, which shows the accuracy and efficiency the proposed method. In
addition, to evaluate the order of convergence of the proposed scheme we have evaluated the
L2, & L∞ errors, at τ = 1, 2 by considering the various number of node values, and reported
them in table 7. Table 7 again indicates that the order of convergence of the proposed scheme is
two. The solution profile of the problem is depicted in the Fig. 2

Example 4.3. Consider the one dimensional SGE (1.1) in the computational domain −3Ω3 with
α = −1 together with the initial conditions ξ(y, 0) = 0, ξτ (y, 0) = 4 1√

1+κ2 sech
(

y√
1+κ2

)
and

boundary conditions extracted from the analytical solution (4.4) as given in [14]

ξ(y, t) = 4 arctan
(

1
κ

sin
(

κ τ√
1 + κ2

)
sech

(
y√

1 + κ2

))
, (4.4)

where κ denotes the velocity of solitary-wave.
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Table 5. Comparison of mQB-DQ solution of Ex. 4.2
τ [19] [14] [16] Present
h = 0.02 L2 L∞ L2 L∞ L2 L∞ L2 L∞

0.25 7.10E-06 6.62E-06 9.26E-06 1.21E-06 3.66E-06 6.15E-06
0.5 1.23E-05 7.54E-06 2.24E-05 1.89E-05 5.05E-06 6.29E-06
0.75 1.60E-05 1.01E-05 3.98E-05 3.57E-05 5.96E-06 6.14E-06
1 1.79E-05 1.18E-05 5.66E-05 5.25E-05 6.61E-06 6.34E-06
h = 0.04
0.25 1.60E-05 2.73E-05 3.66E-05 4.90E-05 1.76E-05 4.95E-06 1.42E-05 2.38E-05
0.5 2.37E-05 3.09E-05 9.00E-05 7.55E-05 4.31E-05 8.42E-06 1.99E-05 2.44E-05
0.75 2.91E-05 3.52E-05 1.60E-04 1.43E-04 8.25E-05 1.65E-05 2.35E-05 2.47E-05
1 3.25E-05 4.01E-05 2.27E-04 2.10E-04 1.27E-04 2.51E-05 2.62E-05 2.49E-05

Table 6. Comparison absolute errors at various nodes Ex. 4.2
Present [19] [14]

y τ = 0.01 τ = 0.1 τ = 1 τ = 0.01 τ = 0.1 τ = 1 τ = 0.01 τ = 0.1 τ = 1
-2.5 4.27E-15 5.29E-13 5.66E-06 4.02E-10 4.02E-09 5.66E-06 6.05E-10 5.96E-08 5.28E-06
-2 4.21E-14 4.48E-12 2.74E-06 6.41E-10 6.41E-09 4.07E-06 8.76E-10 8.69E-08 1.21E-06
-1.5 1.47E-13 1.51E-11 8.28E-10 9.63E-10 9.63E-09 8.26E-08 5.64E-10 5.89E-08 9.16E-08
-1 9.53E-14 9.86E-12 1.02E-09 1.24E-09 1.23E-08 8.87E-08 2.68E-09 2.53E-07 2.02E-05
0 2.58E-14 8.87E-13 2.94E-10 2.87E-13 3.35E-12 3.97E-10 5.80E-11 5.64E-08 2.51E-05
1 1.30E-13 9.87E-12 1.29E-09 1.24E-09 1.23E-08 8.97E-08 2.72E-09 2.92E-07 4.82E-05
1.5 1.82E-13 1.55E-11 8.42E-10 9.64E-10 9.63E-09 8.32E-08 5.57E-10 5.08E-08 1.27E-05
2 6.57E-14 4.81E-12 2.74E-06 6.41E-10 6.41E-09 4.07E-06 8.78E-10 8.81E-08 2.21E-06
2.5 3.38E-14 8.11E-13 5.82E-06 4.03E-10 4.03E-09 5.97E-06 6.07E-10 6.15E-08 3.41E-06

Table 7. Order of convergence(OC) of mQB-DQ method for 4.2
τ = 1 τ = 2

n L∞ OC L2 OC L∞ OC L2 OC
11 5.26E-03 1.9926 6.78E-03 2.1540 5.07E-03 2.2084 7.07E-03 2.0186
21 1.45E-03 2.1515 1.68E-03 1.9766 1.21E-03 1.9258 1.92E-03 1.9635
31 6.27E-04 1.8153 7.80E-04 1.9884 5.74E-04 1.8144 8.92E-04 1.9837
41 3.78E-04 1.9873 4.47E-04 1.9860 3.45E-04 1.7946 5.12E-04 1.9894
51 2.45E-04 2.90E-04 2.34E-04 3.32E-04
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Figure 2. solution profile of Ex. 4.2 in −3Ω3 and 0 ≤ τ ≤ 1 with κ = 0.05
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Figure 3. solution profile of Ex. 4.3 in −10Ω10 and 0 ≤ τ ≤ 10 with κ = 0.5

For κ = 0.5, we calculated the approximate solution at various values of τ(= 1.0, 10.0, 20.0)
by taking the parametric values as h = 0.01, & ∆τ = 0.001. The L2 and L∞ errors in these
approximations are reported in the table 8 and compared with that of obtained in [19, 14, 37, 35].
Comparison in table 8 shows that we are getting the improved solution than [19, 14, 37, 35]. The
solution profile of the problem is depicted in the Fig. 3.

Table 8. Comparison of mQB-DQ solution of Ex. 4.3
[19] [35] [14] [37] Present

τ L∞ L2 L∞ L∞ L2 L∞ L∞ L2

1 4.77E-07 6.89E-07 9.88E-04 7.03E-06 7.45E-06 1.47E-03 5.83E-09 3.31E-09
10 3.49E-07 7.37E-07 1.63E-03 2.23E-05 4.00E-05 9.22E-03 1.31E-08 9.71E-09
20 3.13E-05 5.74E-05 1.04E-03 3.57E-04 6.47E-04 3.04E-01 2.71E-08 1.52E-08

5 Conclusion

The one dimensional sine Gordon equation (SGE) is studied using differential quadratue (DQ)
method with modified form of quartic B-spline (mQB spline) as base functions. We have done
the modification in quartic B-splines so as the diagonal dominance of the coefficient matrix is
not effected and the requirement of additional nodes outside the computation domain does not
exists. At first, the SGE is transformed into a system of two ordinary differential equations and
after the implementation of mQB-DQ method we get a system of ODEs which is solved by the
SSP-RK43 method. We implemented the mQB-DQ method on three test problem of SGE and
the L2, L∞ error in the computed approximations are compared with that of existed in the some
literature. We found that the method is easy to implement, efficient and accurate. The solution
profile of considered test problem is also depicted graphically. The proposed mQB-DQ Method
seems straightforward, easy and powerful method to obtain accurate and efficient solutions for
various kinds of linear and nonlinear problems arising in various fields.

References
[1] T. Povich and J. Xin, A Numerical Study of the Light Bullets Interaction in the (2+1) Sine-Gordon Equa-

tion, Journal of Nonlinear Science 15(1), 11–25, (2005).

[2] V. G. Bykov, Sine-Gordon equation and its application to tectonic stress transfer, Journal of Seismology
18(3), 497–510, (2014).

[3] L. D. M. Villari, G.Marcucci, M. C.Braidotti and C. Conti, Sine-Gordon soliton as a model for Hawking
radiation of moving black holes and quantum soliton evaporation, J. Phys. Commun. 2, 055016 (2018).

[4] D. Kaya, An application of the modified decomposition method for two dimensional sine-Gordon equa-
tion, Applied Mathematics and Computation 159, 1–9 (2004).

[5] S. S. Ray, A numerical solution of the coupled sine-Gordon equation using the modified decomposition
method, Applied Mathematics and Computation 175, 1046–1054 (2006).

[6] Q. Wang, An application of the modified Adomian decomposition method for (N+1)-dimensional sine-
Gordon field, Applied Mathematics and Computation 181, 147–152 (2006).



Numerical Study of SG equation via mQB-DQ Method 19

[7] U. Yucel, Homotopy analysis method for the sine-Gordon equation with initial conditions, Applied Math-
ematics and Computation 203, 387–395 (2008).

[8] J. Rashidinia, R. Mohammadi, Tension spline solution of nonlinear sine-Gordon equation, Numer. Algor.
56, 129–142 (2011).

[9] G. Ben-Yu, P. J. Pascual, M. J. Rodriguez, and L. Vèzquez, Numerical solution of the sine-Gordon equa-
tion, Appl. Math. Comput. 18(1), 1–14 (1986).

[10] M. J. Ablowitz, B. M. Herbst and C. M. Schober, On the numerical solution of the sine-Gordon equation,
I. Integrable discretization and homoclinic manifolds, J Comput Phys. 126, 299–314 (1996).

[11] M. J. Ablowitz, B. M. Herbst and C. M. Schober, On the numerical solution of the sine-Gordon equation,
II. Performance of numerical schemes, J Comput Phys 131, 354–367 (1997).

[12] M. Lotfi and A. Alipanah, Legendre spectral element method for solving sine-Gordon equation, Adv.
Differ. Equ. 2019, Article no. 113 (2019).

[13] D. Adak and S. Natarajan, Virtual element method for semilinear sine–Gordon equation over polygonal
mesh using product approximation technique, Mathematics and Computers in Simulation 172, 224–243
(2020).

[14] R. C. Mittal and R. Bhatia, Numerical solution of nonlinear Sine-Gordon equation by modified cubic
B-spline collocation method, Int. J. Partial Differ. Eqs. 2014, Article ID 343497, 8 pages (2014).

[15] M. Sari and G. Gurarslan, A sixth-order compact finite difference method for the one-dimensional sine-
Gordon equation, Int. J. Numer. Meth. Biomed. Engng. 27, 1126–1138 (2011).

[16] M. Dehghan and D. Mirzaei, The dual reciprocity boundary element method (DRBEM) for two-
dimensional Sine-Gordon equation, Comput. Methods Appl. Mech. Engrg. 197, 476–486 (2008).

[17] M. Dehghan and A. Shokri, A numerical method for one dimensional nonlinear sine-Gordon equation
using collocation and radial basis functions, Numerical Methods for Partial Differential Equations 24(2),
687–698 (2008).

[18] L. Su, Numerical solution of two-dimensional nonlinear sine-Gordon equation using localized method of
approximate particular solutions, Engineering Analysis with Boundary Elements 108(2), 95–107 (2019).

[19] B. K. Singh and M. Gupta, New Efficient Fourth Order Collocation Scheme for Solving sine–Gordon
Equation, Int. J. Appl. Comput. Math 7, 138 (2021).

[20] Y. Shen and Y. O. El-Dib, A periodic solution of the fractional sine-Gordon equation arising in architec-
tural engineering, Journal of Low Frequency Noise, Vibration and Active Control 40(2), 683–691 (2021).

[21] F. Mirzaee, S. Rezaei and N. Samadyar, Numerical solution of two-dimensional stochastic time-fractional
Sine–Gordon equation on non-rectangular domains using finite difference and meshfree method, Engi-
neering Analysis with Boundary Elements 127(1), 53–63 (2021).

[22] R. Jiwari, Barycentric rational interpolation and local radial basis functions based numerical algorithms
for multidimensional sine-Gordon equation, Numerical Methods for Partial Differential Equations 37(3),
1965–1992 (2021).

[23] M. Shiralizadeh, A. Alipanah and M. Mohammadi, Numerical solution of one-dimensional Sine-Gordon
equation using rational radial basis functions, Journal of Mathematical Modeling (2022).

[24] R. Bellman, B.G. Kashef and J. Casti, Differential quadrature: a technique for the rapid solution of non-
linear partial differential equations, J Comput Phys 10(1), 40–52 (1972).
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