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Abstract In this paper, we have investigated the hybrid projective combination difference
synchronization scheme between hyper chaotic complex Lü time-delay systems through adap-
tive control. Using Lyapunov stability theory, we establish the stability of error states together
with the controllers and parameters updated laws, that leads to achieve the required synchroniza-
tion scheme among two identical hyperchaotic complex Lü time-delay systems and one slave
hyperchaotic complex Lü time-delay system. Numerical simulations exhibit the validity of the
theoretical work which have been done by using MATLAB.

1 Introduction

Chaos is deterministic and unpredictable phenomenon in nonlinear dynamics. Henri Poincare
observed the three-body problem: earth, moon, and sun are connected under their mutual gravi-
tational interactions and noticed that a small change in the initial phase of this problem can cause
a large error in the final phase, which is the main feature of chaos. Poincare’s [1] aided in the
development of chaos theory. In 1963. E.N. Lorenz [2] introduced the ideas of chaos in weather
model. The chaotic systems exhibit nonlinear and complex behavior that is affected by the initial
conditions.

Due to practical significance and altering the dimensionality of dynamical systems, time de-
lay dynamics has been a popular topic among researchers in the past few decades. According
to Farmer [3], a nonlinear delay differential equation with a constant time delay is an infinite
dimensional system. MacKey and Glass [4] discovered chaos in a time-delay system for the
first time. Since, time delay systems show multi-stability, which has wide application in pattern
recognition and memory storage devices. Because of these properties, time-delay chaotic sys-
tems have piqued the curiosity of many researchers. In a variety of disciplines, including physics,
chemistry, biology and many more, the effects of time delay have been studied. Also, time-delay
occurs in various physical systems such as artificial intelligence, secure communications, neural
networks, automatic control systems, biological systems, population models, economic systems,
and so on. Moreover, time-delay has two representations: delay differential equations and delay
difference equations and also delay differential equations may describe models more precisely
in real-world scenarios very often. Therefore time delay is an unavoidable element of real-world
models; hence, additional research into this topic is required.

Chaos control and chaos synchronization of chaotic systems are very famous research prob-
lems in emerging literature. Therefore, the study of synchronization in chaotic systems has been
an attractive research area for researchers. Pecora and Carroll [5] were the first to propose the
idea of a synchronization problem using the master-slave system’s endowment. Various types of
synchronization schemes have been proposed for chaotic systems, such as anti-synchronization
[6], compound synchronization [7], complete synchronization [8], hybrid projective synchro-
nization [9], compound combination synchronization [10], difference synchronization [11], dual
combination synchronization [12], combination-combination hybrid synchronization [13], mod-
ulas hybrid projective synchronization [14], double compound synchronization [15] and more.
There are several types of useful and powerful methods have been applied to obtain synchroniza-
tion and chaos control. Some of the methods are: adaptive sliding mode control [16], optimal
control [17], active control [18], robust adaptive sliding mode control [19], sliding mode control
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[20], time-delayed feedback control [21] etc. In 1998, Pyragus [22] was the first who studied the
synchronisation of time delay systems. Furthermore, time delay system with lag synchronisation
[23], phase synchronisation [24], and generalised synchronisation [25] were also developed.

We proposed an adaptive control technique based on the previous research work to investigate
the problem of hybrid projective combination difference synchronization (HPCDS) in time-delay
hyperchaotic complex Lü chaotic dynamical systems. Using the Lyapunov stability theory, syn-
chronization has been achieved between two master time-delay hyperchaotic complex Lü system
and one slave time-delay hyperchaotic complex Lü system along with unknown controllers.

This article has been drafted as follows: Section 2 deals with basic definitions and general
principle of HPCDS. Section 3 contains the description of the time-delay hyperchaotic complex
Lü chaotic system. Section 4 contains an example of an adaptive control technique HPCDS
scheme of time-delay hyperchaotic complex Lü chaotic dynamical system. Section 5 provides
the numerical simulations. In Section 6, we made a comparison between previous results and
obtained result through the proposed method. Section 7 provides conclusions.

2 Synchronization Principle of Hybrid Projective Combination Difference
Synchronization (HPCDS)

This section systematically describes the principle of hybrid projective combination difference
synchronization among two identical master time-delay systems and one slave time-delay system
through adaptive control technique. Two identical hyperchaotic time-delay master systems are
described as,

ẋm1 = φ1(xm1, xm1(t− τ1)) + φ2(xm1, xm1(t− τ1))Θ, (2.1)

ẋm2 = ϕ1(xm2, xm2(t− τ1)) + ϕ2(xm2, xm2(t− τ1))Θ, (2.2)

The corresponding hyperchaotic time-delay slave system is:

ẋs3 = χ1(xs3, xs3(t− τ1)) + χ2(xs3, xs3(t− τ1))ω +Q(xm1, xm2, xs3). (2.3)

where xm1 and xm2 are state vectors of the master system which are given as xm1 = (xm11, xm12,
..., xm1n) ∈ Rn, xm2 = (xm21, xm22, ..., xm2n) ∈ Rn and xs3 = (xs31, xs32, ..., xs3n) ∈ Rn is the
state vectors for the slave system and φ1, φ2, ϕ1, ϕ2, χ1, and χ2 represent n× n matrix function
and Θ and ω are the real parameters with τ1 > 0, where Q is the controller to be constructed.

Remark 2.1. Master systems (2.1), (2.2) and the slave system (2.3) achieved the combination
difference synchronization, if for αi and three constant matricesA,B andC ∈Rn×n withC 6= 0,
we have

lim
t→∞

‖E(t)‖ = lim
t→∞

‖Cxs3(t)− αi(Bxm2(t)−Axm1(t))‖ = 0, (2.4)

where αi = diag(α11, α22, ..., αnn) and ‖.‖ describe the matrix norm.

Remark 2.2. If A = B = 0, then from (2.4), combination synchronization will reduce into
general chaos control problem.

Remark 2.3. If C = I and A = B = αiI, then for αi = 1, the equation (2.4) reduces to
combination complete synchronization and if αi = −1, then it reduces to combination anti-
synchronization.

Remark 2.4. The equation (2.4) represents that combination synchronization of two master sys-
tems and one slave system can be developed into many others, such as identical and non-identical
systems.

Definition 2.5. Master systems (2.1), (2.2) and the slave system (2.3) are said to be in hybrid
projective combination difference synchronization (HPCDS), if there exists a real number αi

such that,

lim
t→∞

‖E(t)‖ = lim
t→∞

‖xs3(t)− αi(xm2(t)− xm1(t))‖ = 0, (2.5)

where ‖.‖ represents the matrix norm, and αi ∈ R.
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We describe the synchronization scheme through designed controllers by using adaptive con-
trol approach. The state error for hybrid projective combination difference synchronization is
defined as,

E(t) = xs3(t)− αi(xm2(t)− xm1(t)),

Ė(t) = ẋs3(t)− αi(ẋm2(t)− ẋm1(t)). (2.6)

Using the equations (2.1), (2.2) and (2.3), and we get,

Ė(t) = χ1(xs3, xs3(t− τ1)) + χ2(xs3, xs3(t− τ1))ω +Q− αi(ϕ1(xm2, xm2(t− τ1))

+ϕ2(xm2, xm2(t− τ1))Θ− φ1(xm1, xm1(t− τ1))− φ2(xm1, xm1(t− τ1))Θ). (2.7)

Further, we design the suitable controller Q and the parameter update laws to obtain the syn-
chronization among the two hyperchaotic master time-delay systems and one hyperchaotic slave
time-delay system. In this regard, we will prove the following theorem:

Theorem 2.6. The hybrid projective combination difference synchronization among the two mas-
ter systems (2.1), (2.2) and the slave system (2.3) globally and asymptotically can be achieved if
the controller Q is taken as,

Q = −χ1(xs3, xs3(t− τ1))− χ2(xs3, xs3(t− τ1))ω̂ + αi(ϕ1(xm2, xm2(t− τ1))

+ϕ2(xm2, xm2(t− τ1))Θ̂− φ1(xm1, xm1(t− τ1))− φ2(xm1, xm1(t− τ1))Θ̂)− dQE,

and updated parameters are:

˙̂
Θ = −αi(ϕ2(xm2, xm2(t− τ1))− φ2(xm1, xm1(t− τ1))E − dΘΘ̃,

˙̂ω = −χ2(xs3, xs3(t− τ1))E − dωω̃, (2.8)

where ω̂ and Θ̂ are the estimated values of ω and Θ, and dQ > 0 are chosen arbitrary numbers.
Also Θ̃ = Θ− Θ̂ and ω̃ = ω − ω̂.

Proof. Since we have the error dynamics,

Ė(t) = χ1(xs3, xs3(t− τ1)) + χ2(xs3, xs3(t− τ1))ω +Q− αi(ϕ1(xm2, xm2(t− τ1))

+ϕ2(xm2, xm2(t− τ1))Θ− φ1(xm1, xm1(t− τ1)) + φ2(xm1, xm1(t− τ1))Θ). (2.9)

Using the equation (2.8) in equation (2.9), we obtain,

Ė(t) =χ2(xs3, xs3(t− τ1))ω̃ − αi(ϕ2(xm2, xm2(t− τ1))

−φ2(xm1, xm1(t− τ1)))Θ̃− dQE. (2.10)

Choosing the Lyapunov function,

V (t) =
1
2
(E2 + Θ̃

2 + ω̃2), (2.11)

This implies that,

V̇ = EĖ + Θ̃
˙̃
Θ + ω̃ ˙̃ω. (2.12)

Thus,

V̇ =E[χ2(xs3, xs3(t− τ1))ω̃ − αi(ϕ2(xm2, xm2(t− τ1))

−φ2(xm1, xm1(t− τ1)))Θ̃− dQE] + Θ̃(− ˙̂
Θ) + ω̃(− ˙̂ω). (2.13)
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Using equation (2.8) in equation (2.13), we get

V̇ =E[χ2(xs3, xs3(t− τ1))ω̃ − αi(ϕ2(xm2, xm2(t− τ1))− φ2(xm1, xm1(t− τ1)))Θ̃

−dQE] + Θ̃(−αi(ϕ2(xm2, xm2(t− τ1))− φ2(xm1, xm1(t− τ1))E − dΘΘ̃)

+ω̃(−χ2(xs3, xs3(t− τ1))E − dωω̃),

V̇ = −dQE2 − dΘΘ̃
2 − dωω̃2.

Selecting dQ > 0, dΘ > 0 and dω > 0 in such a manner so V̇ is negative. Thus,

V̇ ≤ 0.

Then by Lyapunov Stability Theory, we get

lim
t→∞

E(t) = 0.

Consequently, the error system is asymptotically globally stable which proves that required syn-
chronization has been achieved among two master systems (2.1), (2.2) and the slave system (2.3).
This ends the proof.

3 System Description

In this section, we firstly describe about the time-delay hyperchaotic complex Lü system, pro-
posed by Mahmood et. al. [26].

ẋ1 = a11(x2 − x1 + x2x3)

ẋ2 = x1x3 + b11x2 + x4

ẋ3 = 1
2(x̄1x2 + x1x̄2)− c11x3

ẋ4 =
d11

2
(x1(t− τ1) + x̄1(t− τ1)),

(3.1)

where a11, b11, c11, d11 denote the real parameters and τ1 ≥ 0 is a constant time delay, x1 =
xm11+ixm12 and x2 = xm13+ixm14 denote the complex variables and x3 = xm15 and x4 = xm16
are real variables and i =

√
−1.

ẋm11 + iẋm12 = a11(xm13 + ixm14 − xm11 − ixm12 + (xm13 + ixm14)xm15)

ẋm13 + iẋm14 = (xm11 + ixm12)xm15 + b11(xm13 + ixm14) + xm16

ẋm15 = 1
2((xm11 − ixm12)(xm13 + ixm14)

+(xm11 + ixm12)(xm13 − ixm14))− c11xm15

ẋm16 =
d11

2
((xm11(t− τ1) + ixm12(t− τ1))

+(xm11(t− τ1)− ixm12(t− τ1))).

(3.2)

Real part and imaginary part of system (3.2) are:

ẋm11 = a11(xm13 − xm11 + xm13xm15)

ẋm12 = a11(xm14 − xm12 + xm14xm15)

ẋm13 = −xm11xm15 + b11xm13 + xm16

ẋm14 = −xm12xm15 + b11xm14

ẋm15 = xm11xm13 + xm12xm14 − c11xm15

ẋm16 = −d11(xm11(t− τ1)).

(3.3)

Choosing the parameter values as a11 = 70, b11 = 15, c11 = 12 and d11 = 5 along with time
deal τ1 = 0.5 which confirms that the systems have the chaotic behavior.
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Figure 1.

Figure 2.

4 Example

To demonstrate the methodology of HPCDS among the two identical hyperchaotic master time-
delay systems and one hyperchaotic slave time-delay system. Let three hyperchaotic time-delay



152 Ayub Khan, Shadab Ali, Uzma Nigar and Arshad Khan

systems be as follows:



ẋm11 = a11(xm13 − xm11 + xm13xm15)

ẋm12 = a11(xm14 − xm12 + xm14xm15)

ẋm13 = −xm11xm15 + b11xm13 + xm16

ẋm14 = −xm12xm15 + b11xm14

ẋm15 = xm11xm13 + xm12xm14 − c11xm15

ẋm16 = −d11(xm11(t− τ1)),

(4.1)

and



ẋm21 = a11(xm23 − xm21 + xm23vm15)

ẋm22 = a11(xm24 − xm22 + xm24xm25)

ẋm23 = −xm21xm25 + b11xm23 + xm26

ẋm24 = −xm22xm25 + b11xm24

ẋm25 = xm21xm23 + xm22xm24 − c11xm25

ẋm26 = −d11(xm21(t− τ1)),

(4.2)

the corresponding slave system;



ẏs11 = a11(ys13 − ys11 + ys13ys15) +Q11

ẏs12 = a11(ys14 − ys12 + ys14ys15) +Q12

ẏs13 = −ys11ys15 + b11ys13 + ys16 +Q13

ẏs14 = −ys12ys15 + b11ys14 +Q14

ẏs15 = ys11ys13 + ys12ys14 − c11ys15 +Q15

ẏs16 = −d11(ys11(t− τ1)) +Q16,

(4.3)

where Q11(t), Q12(t), Q13(t) , Q14(t),Q15(t), Q16(t) are the adaptive controllers to be designed.
Now, the error states of the given systems defined as:



E11(t) = ys11 − α1(xm21 − xm11)

E12(t) = ys12 − α2(xm22 − xm12)

E13(t) = ys13 − α3(xm23 − xm13)

E14(t) = ys14 − α4(xm24 − xm14)

E15(t) = ys15 − α5(xm25 − xm15)

E16(t) = ys16 − α6(xm26 − xm16).

(4.4)

From (4.4) we obtain error dynamics as,



Ė11(t) = ẏs11 − α1(ẋm21 − ẋm11)

Ė12(t) = ẏs12 − α2(ẋm22 − ẋm12)

Ė13(t) = ẏs13 − α3(ẋm23 − ẋm13)

Ė14(t) = ẏs14 − α4(ẋm24 − ẋm14)

Ė15(t) = ẏs15 − α3(ẋm25 − ẋm15)

Ė16(t) = ẏs16 − α4(ẋm26 − ẋm16).

(4.5)
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Using equations (4.1), (4.2), (4.3), and (4.5) we obtain,

Ė11(t) = a11(ys13 − ys11 + ys13ys15) +Q11

− α1(a11(xm23 − xm21 + xm23xm25)) + α1(a11(xm13 − xm11 + xm13xm15))

Ė12(t) = a11(ys14 − ys12 + ys14ys15) +Q12

− α2(a11(xm24 − xm22 + xm24xm25)) + α2(a11(xm14 − xm12 + xm14xm15))

Ė13(t) = −ys13ys15 + b11ys13 + ys16 +Q13

− α3(−xm23xm25 + b11xm23 + xm26 + xm13xm15 − b11xm13 − xm16)

Ė14(t) = −ys12ys15 + b11ys14 +Q14

− α4(−xm22xm25 + b11xm24 + xm12xm15 − b11xm14)

Ė15(t) = ys11ys13 + ys12ys14 − c11ys15 +Q15

− α5(xm21xm23 + xm22xm24 − c11xm25 − xm11xm13 − xm12xm14 + c11xm15)

Ė16(t) = −d11ys11(t− τ1) +Q16

− α6(−d11xm21(t− τ1) + d11xm11(t− τ1)). (4.6)

To design the controllers, we prove the following theorem:

Theorem 4.1. If the controllers and parameter updated laws are chosen as,

Q11(t) = −k1E11(t)− â11(ys13 − ys11 + ys13ys15)

+ α1(â11(xm23 − xm21 + xm23xm25)) + α1(â11(xm13 − xm11 + xm13xm15))

Q12(t) = −k2E12(t)− â11(ys14 − ys12 + ys14ys15)

+ α2(â11(xm24 − xm22 + xm24xm25)) + α2(â11(xm14 − xm12 + xm14xm15))

Q13(t) = −k3E13(t) + ys13ys15 − b̂11ys13 − ys16

+ α3(−xm23xm25 + b̂11xm23 + xm26 − xm13xm15 − b̂11xm13 − xm16)

Q14(t) = −k4E14(t) + ys12ys15 − b̂11ys14

+ α4(−xm22xm25 + b̂11xm24 + xm12xm15 − b̂11xm14)

Q15(t) = −k4E14(t)− ys11ys13 − ys12ys14 + ĉ11ys15

+ α5(xm21xm23 + xm22xm24 − ĉ11xm25 − xm11xm13 − xm12xm14 + ĉ11xm15)

Q16(t) = −k4E14(t) + d̂11ys11(t− τ1) + α6(−d̂11xm21(t− τ1) + d̂11xm11(t− τ1)), (4.7)

and updated parameters laws,

˙̂a11 = E11(ys13 − ys11 + ys13ys15)

− α1((xm23 − xm21 + xm23xm25)− (xm13 − xm11 + xm13xm15))

+E12(ys14 − ys12 + ys14ys15)− α2((xm24 − xm22 + xm24xm25)

− (xm14 − xm12 + xm14xm15)) +K7(a11 − â11),

˙̂b11 = E13(ys13 − α3(xm23 − xm13)) +E14(ys14

− α4(xm24 − xm14)) +K8(b11 − b̂11),

˙̂c11 = E15(−ys15 − α5(−xm25 + xm15)) +K9(c11 − ĉ11)

˙̂d11 = E16(−ys11(t− τ1)− α6(−xm21(t− τ1) + xm11(t− τ1))) +K10(d11 − d̂11), (4.8)

note that Kj > 0, ∀ j = 1, 2, ...., 10 are real numbers.
Then the two identical delay systems and one slave delay system are in the hybrid projective
combination difference synchronization.
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Proof. Consider the Lyapunov function as,

V =
1
2
[E2

11 +E2
12 +E2

13 +E2
14 +E2

15 +E2
16 + ã2

11 + b̃2
11 + c̃2

11 + d̃2
11], (4.9)

V̇ = E11Ė11 +E12Ė12 +E13Ė13 +E14Ė14 +E15Ė15 +E16Ė16 + ã11 ˙̃a11

+ b̃11
˙̃b11 + c̃11 ˙̃c11 + d̃11

˙̃d11, (4.10)

where ã11 = a11 − â11, ˙̃a11 = − ˙̂a11 and b̃11 = b11 − b̂11,
˙̃b11 = −˙̂b11 and c̃11 = c11 − ĉ11,

˙̃c11 = − ˙̂c11 and d̃11 = d11 − d̂11,
˙̃d11 = − ˙̂d11,

V̇ = E11Ė11 +E12Ė12 +E13Ė13 +E14Ė14 +E15Ė15 +E16Ė16 − ã11 ˙̂a11

− b̃11
˙̂b11 − c̃11 ˙̂c11 − d̃11

˙̂d11. (4.11)

Using equations (4.6), (4.7), (4.8), and (4.11), it reduces to,

V̇ =−K1E
2
11 −K2E

2
12 −K3E

2
13 −K4E

2
14 −K5E

2
15 −K6E

2
16 −K7ã

2
11

−K8b̃
2
11 −K9c̃

2
11 −K10d̃

2
11, (4.12)

V̇ ≤ 0,

where Ki > 0 for i = 1, 2, ...., 10.
Clearly, V̇ is a negative definite function. Applying the Lyapunov stability theory, for every
initial condition E1j(0), the error states Eij(t) approach to zero whenever t → ∞, ∀ i = 1, j =
1, 2, 3, 4, 5, 6, which means that error states are asymptotically globally stable. It proves that
two hyperchaotic master time-delay systems (4.1), (4.2) and one hyperchaotic slave time-delay
system (4.3) have achieved the required HPCDS.

5 Numerical Simulation

Mainly, we talk about the numerical simulations to demonstrate the impact of the investigated
HPCDS among two identical master time-delay system and one slave time-delay system through
adaptive control technique. To carry out the simulation, we apply the Runge–Kutta formula to
delay-differential equations.

For the parameter values, a11 = 70, b11 = 15, c11 = 12, d11 = 5 and initial state vec-
tors of master systems (4.1), (4.2) as, (xm11, xm12, xm13, xm14, xm15, xm16) = (2, 1, 5, 3, 4, 7),
(xm21, xm22, xm23, xm24, xm25, xm26) = (−1,−2, 5, 2, 1, 4) with initial state vector of slave sys-
tem (4.3) are taken as (ys11, ys12, ys13, ys14, ys15, ys16) = (−1,−2, 5, 2, 1, 4) exhibit the chaotic
behavior.
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Figure 3.

Fig.(1) displays the phase portraits of hyper chaotic complex Lü time-delay system in 2D-
plane. While Fig.(2) displays the phase portraits of hyper chaotic complex Lü time-delay system
in 3D-space, where u1jm = xm1j ∀ j = 1, 2, 3, 4, 5, 6. For required formulation, control gains
are selected as Ki = 4 for i = 1, 2, 3, 4, 5, 6 and time delay τ1 = 0.5, whereas the scaling func-
tions are selected as (α1, α2, α3, α4, α5, α6) = (1,−1, 2,−2, 3,−3). Fig.(3) represents the state
trajectories of two master systems (4.1), (4.2) and one slave system(4.3) which are synchronized
as t tend to infinity.
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Figure 4. Updated parameter law

Fig.(4) exhibit the estimated values (â11, b̂11, ĉ11, d̂11) of unknown parameters which approach
asymptotically and globally to required values as t tends to infinity. We can seen that Fig.(5) dis-
plays the synchronization error states (E11, E12, E13, E14, E15, E16) = (1,−3, 7,−2, 4, 1) goes
to zero as t → ∞. Hence, it proves that the proposed synchronization scheme for two hyper-
chaotic time-delay master systems (4.1), (4.2) and one hyperchaotic time-delay slave system
(4.3) computationally justified.

Figure 5. Synchronized error states

6 A comparative analysis

In this section, a thorough comparative study between the work we’ve just provided and previ-
ously published work is conducted.



Combination Difference Synchronization 157

Table 1. Comparison between various results
Methods Synchronization time(approx.)
Combination synchronizing method [27] t = 20

Synchronizing method using adaptive control [28] t = 10.5

Combination synchronization using scaling matrix [29] t = 30

Combination synchronization in Caputo–Hadamard [30] t = 14

Combination synchronization using adaptive SMC [31] t = 6

Present Method t = 5

As a result, shown in the Table 1, the synchronization time attained in our research combina-
tion difference synchronization in the end of table, strategy is the shortest in comparison to all
the aforementioned techniques.

7 Conclusion

We have designed the principle of HPCDS for hyperchaotic complex time-delay systems using
an adaptive control technique. The synchronization scheme has been achieved among two iden-
tical hyperchaotic complex Lü master time-delay systems and hyperchaotic complex Lü slave
time-delay system. Required controllers have been developed, and according to the Lyapunov
stability theory, we have stabilized the error states and delay-differential equations. Due to time-
delay, our systems exhibits more complexity in their behavior which may help to secure the
messages, which can be treated as exceptional application in the field of secure communication
and image encryption. In the future, we can exercise to time-delay systems which are interrupted
by model uncertainty and disturbance.
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