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Abstract This paper looked into third order neutral differential equations by employing Her-
mite wavelet. In order to estimate the highest order derivative with regard to the Hermite wavelet,
the integral operator technique is applied. Then, to estimate the lower order derivatives and
unknown function, Hermite wavelet integrations are used. To develop an algebraic system of
linear or nonlinear equations, the unknown function’s and its derivative’s estimated values are
substituted in neutral differential equations. When the developed system is solved, we get unde-
termined wavelet coefficients and afterward the estimate solution. The error norm’s upper bound
is determined in order to assess the practicability of the technique from a theoretical standpoint.
Moreover, the theoretical results are verified through few numerical experiments.

1 Introduction

In describing the problem of environment, medicine and other areas of pure and applied sciences,
it is the differential equation which governs the behaviour of modeled system. For example, the
physical behaviour of fluctuating environment is governed by the third order differential equa-
tions [1]. Other problems which are modelled by third order differential equation with boundary
conditions are electromagnetic waves, study of aeroelasticity, theory of sandwich beams, fluid
mechanics of incompressible flow, thin film flow and obstacle problem (see [2],[3],[4],[5],[6]).

Ordinary differential equation fails to capture the nuances of these models, due to the fact that
there are often delays between the observation and control action, the word "delay" in differential
equations is coined. So we can say that a differential equation in which delay exists in unknown
variable and/or its derivatives, is known as delay differential equation. Moreover, if delay exist
in the highest order derivative, then it is called neutral delay differential equation (NDDE). In
contrast to ordinary differential equation, delay differential equation exhibit better picture of
phenomenon whether it is natural or artificial, particularly in biological sciences and physical
sciences.

We shall investigate the following type of NDDE:
...
C(ω) =F

(
ω,C(ω), C(ω − τ1(ω,C(ω))), Ċ(ω), Ċ(ω − τ2(ω,C(ω))), C̈(ω), (1.1)

C̈(ω − τ3(ω,C(ω))),
...
C(ω),

...
C(ω − τ4(ω,C(ω)))

)
, ω ∈ [α, β],

with initial and delay conditions
C(ω) = ξ, ω ≤ α,

and boundary conditions (BCs):

C(α) = ξ, Ċ(α) = ζ, C(β) = η,

where F : [α, β]×R8 −→ R is a differentiable function, τ1(ω,C(ω)), τ2(ω,C(ω)), τ3(ω,C(ω))
and τ4(ω,C(ω)) are continuous functions on [α, β]×R such that ω−τ1(ω,C(ω)), ω−τ2(ω,C(ω)),
ω − τ3(ω,C(ω)), ω − τ4(ω,C(ω)) < β.
Also, φ(ω) represents the initial function which is given in Vanani and Aminataei [7].
Many renowned researchers have discussed the boundedness, stability, and asymptotic behaviour
of solutions of DDEs of third order. For example, Timothy and Olutola [8] and Ademola et al.
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[9] discussed the uniform stability, asymptotic behaviour and boundedness of solution of third
order nonlinear DDEs. Gui [10] has discussed the existence of positive periodic solutions of
third order DDEs, and the existence of a periodic solution to a nonlinear differential equation
with numerous diverging parameters and delay has been discussed by Tunc [11]. In [12], the
authors have discussed about the criteria for the existence of periodic solution of third order and
fourth order DDEs having constant delay. In recent time, various researchers have put their ef-
forts in constructing uniformly convergent numerical algorithm to get the solution of third and
higher order BVPs (see [13],[14]). In contrary, there are few researchers who have put efforts in
developing numerical techniques for solving DDEs (see [15],[16]).

Wavelet theory is one of the emerging technique of the recent era, which is being applied
to solve various sort of natural and artificial problems (see [17],[18],[19],[21],[22], [20] ). This
paper aims to propose integral operator technique wherein Hermite wavelets are employed to
estimate the highest order derivative for solving third order NDDEs. The paper’s outline is
presented as follows. In the Section 2, we present definition of multiresolution analysis, basic
definition of wavelet, Hermite wavelet and approximation of functions by Hermite wavelet. In
Section 3, we discussed the method for solving NDDEs. We carried out the Hermite wavelet’s
convergence analysis in Section 4. Section 5, consist of two test problem to demonstrate the pro-
posed method’s validation using the maximum absolute errors. Moreover, we made a comparison
between exact solution and the solution obtained through proposed method in this section.

2 Wavelets

2.1 Preliminaries and Notations

Definition 2.1. The term "multiresolution analysis" (MRA), popularly known as the "wavelet’s
heart," first emerged in 1989. It plays a vital role in writing the wavelet in a broad sense. It gives
us the ability to write a function f(ω) ∈ L2(R) over the multiresolution approximation space.
MRA’s goal is to break down the entire function spaces into spaces, W  and V , namely wavelet
subspace and scaling function subspace, respectively. Any function f(ω) ∈ L2(R) is projectable
on V , if V  satisfies the following conditions:

(i) V ⊂ V +1,

(ii) The collection {φ(ω − k), k ∈ Z } serves as an orthonomal basis for scaling function
subspace V 0,

(iii)
⋃
∈Z V  = L2(R), i.e., {V}’s are dense in L2(R),

(iv) f(.) ∈ V  ⇐⇒ f(2.) ∈ V +1, ∀  ∈ N,

(v)
⋂
∈Z V  = {0}, i.e., there is nothing common in the all the subspaces.

The wavelet subspace is defined in the following manner:

W  = {ψk ; k,  ∈ Z},

where W  is perpendicular complement of V ’s in V +1 such that

V +1 = V  ⊕W .

On repeating the above steps, we get

V J = V J0 ⊕
J−1⊕
=J0

W , J > J0. (2.1)

If PvJ project any arbitrary function f(ω) ∈ L2(R) on V , we can conclude from dense criteria
of MRA that

PvJ f(ω) −→ f(ω), as J −→∞. (2.2)
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From (2.1) and (2.2), we can define scaling function projection and wavelet projection in the
following way

PvJ f(ω) ≈
∑
k

µ̃k φ
k
 (ω),

PvJ f(ω) ≈
∑
k

µ̃kJ0
φkJ0

(ω) +
∑
k

J−1∑
=J0

µkψ
k
 (ω),

where the coefficients µk and µ̃k can be evaluated by applying the orthogonal property of the
wavelet ψ(ω) and scaling function φ(ω) as

µ̃kJ0
=

∫ ∞
−∞

f(ω)φk (ω)dω, µk =

∫ ∞
−∞

f(ω)ψk (ω)dω.

2.2 Wavelet and Hermite wavelet

Definition 2.2. Mother wavelets are any orthogonal systems that result from MRA whose total
integration is essentially zero., i.e, ∫ ∞

−∞
ψ(ω)dω = 0.

The dilation and translation of mother wavelet produces a function’s group which is referred as
wavelet, and defined in the following manner:

ψT
D(ω) = D−

1
2ψ(

ω − T
D

), D 6= 0, T ∈ R,

where D is dilation and T is translation parameter ([23],[24]). On restricting the parameters
D = D−0 , T = kT0D−0 , where D0 > 1 and T0 > 1, we get the following family of discrete
wavelet:

ψk = (
√

D0)
(D

0ω − kT0).

Definition 2.3. The nth-order Hermite polynomials denoted by Hpn(ω), are defined as an or-
thogonal system over the domain (−∞,∞) with weight function e−ω

2
. These Hermite polyno-

mials are given by:

Hp0(ω) = 1, Hp1(ω) = 2ω,

Hpn+1(ω) = 2ωHpn(ω)− 2nHpn−1(ω), n = 1, 2, 3....

Hp′n(ω) = 2nHpn−1(ω).

Now, we define Hermite wavelet Hp
n,m

(ω) = Hp(k,m, n, ω) over the interval [0, 1) as [25],

Hp
n,m

(ω) =

{√
1

2n
√
πn! 2


2Hpn(2ω − λ), ω ∈

[
κ1, κ2)

0, otherwise,

where λ = 1, 2, ...2 − 1, κ1 = λ−1
2 , κ2 = λ+1

2 and ‘m’ denotes the order of the Hermite
polynomial vary from 0 to a fixed positive value M − 1. The collection of Hermite wavelets
generates an orthonormal basis for L2(R).
We can rewrite the Hermite wavelet for each pair of m and n in the the following way :

Hp
ı
(ω) = Hp

n,m
(ω),

where ı satisfies, ı = n+ 2−1m.
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Approximation of function by Hermite wavelet

Any arbitrary function C(ω) ∈ L2[0, 1) is capable of being expanded into Hermite wavelet’s
series as [26],

C(ω) =
∞∑
n=1

∞∑
m=0

µn,mHp
n,m

(ω) =
∞∑
ı=1

µıHp
ı
(ω). (2.3)

To get the best approximation, we can truncate the series given in equation (2.3) for a fixed
natural number N in the manner described below:

C(ω) ≈
2k−1∑
n=1

M−1∑
m=0

µn,mHp
n,m

(ω) =
N∑
ı=1

µıHp
ı
(ω) = µTHp(ω),

where

µT = [µ1,0, µ1,1, ...µ1,M−1, µ2,0, µ2,1...µ2,M−1, ....., µ2k−1,0, ...., µ2k−1,M−1],

µT = [µ1, µ2, ....µN ],

Hp(ω) = [Hp1,0(ω), ....,Hp1,M−1(ω),Hp2,0(ω), ....,Hp2,M−1(ω),Hp2k−1,0(ω), ...,

Hp2k−1,M−1(ω)]
T ,

Hp(ω) = [Hp1(ω),Hp2(ω), ....,Hp
N
(ω)]T ,

where N = 2−1M and collocation points are determined by ω(l) = l−0.5
N , where 1 ≤ l ≤ N,

N = 2J , J ∈ N.

2.3 Integration of Hermite wavelet

Let

Hp1
ı
(ω) =

∫ ω

0
Hp

ı
(ω̃)dω̃,

Hp2
ı
(ω) =

∫ ω

0
Hp1

ı
(ω̃)dω̃,

Hp3
ı
(ω) =

∫ ω

0
Hp2

ı
(ω̃)dω̃.

The above integrations can be obtained as :

I1Hp
ı
(ω) = Hp1

ı
(ω) =

{
( 1√

2
)%( 1

2m+2){Hpm+1(ω)−Hpm+1(−1)}, ω ∈ [κ1, κ2)

( 1√
2
)%( 1

2m+2){Hpm+1(1)−Hpm+1(−1)}, ω ∈ [κ2, 1)

I2Hp
ı
(ω) = Hp2

ı
(ω) =


( 1√

2
)3%( 1

2m+4){Hpm+2(ω)−Hpm+2(−1)}, ω ∈ [κ1, κ2)

( 1√
2
)3%( 1

2m+2){(
1

(2m+4)){Hpm+2(1)
−Hpm+2(−1)} − 2Hpm+1(−1) + (ω − 1){Hpm+1(1)
−Hpm+1(−1)}}, ω ∈ [κ2, 1)

I3Hp
ı
(ω) = Hp3

ı
(ω) =



( 1√
2
)5%( 1

2m+2)[(
1

2m+4){(
1

2m+6){Hpm+3(ω)

−Hpm+3(−1)} − (1 + ω)Hpm+2(−1)}
−(ω2 + ω + 1

2)Hpm+1(−1)], ω ∈ [κ1, κ2)

( 1√
2
)5%( 1

2m+2)[(
1

2m+4){(
1

2m+6){Hpm+3(1)
−Hpm+3(−1)} − 2Hpm+2(−1)} − 2Hpm+1(−1)
+(ω − 1){( 1

2m+4){Hpm+2(1)−Hpm+2(−1)}
−2Hpm+1(−1)}+ (ω

2

2 − ω + 1
2)

{Hpm+1(1)−Hpm+1(−1)}], ω ∈ [κ2, 1)

where % =
√

1
2n
√
πn! .
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3 Method for solution of NDDE

For the sake of convenience, we will use ‘
∑

’ instead of
∑n
ı=1 throughout the paper.

Now, approximate the higher order derivative in the form of Hermite wavelet
...
C(ω) ≈

∑
cıHp

ı
(ω). (3.1)

Now, integrate equation (3.1) thrice from 0 to ω, we get

C̈(ω) ≈
∑

cıI
1
ı (ω) + C̈(0), (3.2)

Ċ(ω) ≈
∑

cıI
2
ı (ω) + ωC̈(0) + Ċ(0), (3.3)

C(ω) ≈
∑

cıI
3
ı (ω) +

ω2

2
C̈(0) + ωĊ(0) + C(0). (3.4)

On putting ω = 1 in equation (3.4), we get

C(1) ≈ C(0) + Ċ(0) +
1
2
C̈(0) +

∑
cıI

3
ı (1),

C̈(0) ≈ 2(C(1)− C(0)− Ċ(0)−
∑

cıI
3
ı (1)).

On substituting C̈(0) in equations (3.2), (3.3) and (3.4), we get the following equations:

C̈(ω) ≈
∑

cıI
1
ı (ω) + 2(Λ−

∑
cıI

3
ı (1)), (3.5)

Ċ(ω) ≈
∑

cıI
2
ı (ω) + 2ω(Λ−

∑
cıI

3
ı (1)) + Ċ(0), (3.6)

C(ω) ≈
∑

cıI
3
ı (ω) + ω2(Λ−

∑
cıI

2
ı (1)) + C(0) + ωĊ(0), (3.7)

where Λ = C(1)− C(0)− Ċ(0).
Replace ω by (ω − τ4(ω,C(ω))), (ω − τ3(ω,C(ω))), (ω − τ2(ω,C(ω))) and (ω − τ1(ω,C(ω)))
in equations (3.1), (3.5), (3.6) and (3.7) respectively, we get

...
C(ω − τ4(ω,C)) ≈

∑
cıHp

ı
(ω − τ4(ω,C)), (3.8)

C̈(ω − τ3(ω,C)) ≈
∑

cıI
1
ı (ω − τ3(ω,C)) + 2(Λ−

∑
cıI

3
ı (1)), (3.9)

Ċ(ω − τ2(ω,C)) ≈
∑

cıI
2
ı (ω − τ2(ω,C)) + 2(ω − τ2(ω,C))(Λ−

∑
cıI

3
ı (1)) + ˙C(0),

(3.10)

C(ω − τ1(ω,C)) ≈
∑

cıI
3
ı (ω − τ1(ω,C)) + (ω − τ1(ω,C))

2(Λ−
∑

cıI
2
i (1))

+ C(0) + (ω − τ1(ω,C))Ċ(0). (3.11)

On substituting the values of equation (3.1) and equations (3.5)-(3.11), in equation (1.1) we get
the following system of equations:∑

cıHp
ı
≈F
(
ω,C(0) + ωĊ(0) +

∑
cıI

3
ı (ω) + ω2(Λ−

∑
cıI

2
ı (1)), C(0) + (ω − τ1(ω,C))

(3.12)

Ċ(0) +
∑

cıI
3
ı (ω − τ1(ω,C)) + (ω − τ1(ω,C))

2(Λ−
∑

cıI
2
ı (1)),

∑
cıI

2
ı (ω)

+ 2ω(Λ−
∑

cıI
3
ı (1)) + Ċ(0),

∑
cıI

2
ı (ω − τ2(ω,C)) + 2(ω − τ2(ω,C))

(Λ−
∑

cıI
3
ı (1)) + Ċ(0),

∑
cıI

1
ı (ω) + 2(Λ−

∑
cıI

3
ı (1)),

∑
cıI

1
ı (ω − τ3(ω,C))

+ 2(Λ−
∑

cıI
3
ı (1)),

∑
cıHp

ı
(ω),

∑
cıHı(ω − τ4(ω,C))

)
.

We determine the Hermite wavelet coefficients by solving the above system of equations. After
that we put these coefficients in equation (3.7) to determine the approximate solution. While
dealing with nonlinear NDDE, we employ Newton’s method to solve the resulting system of
nonlinear equations.
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4 Convergence Analysis

This section covers the convergence study of the suggested approach.
We use the analytical version of equation (3.7) to demonstrate the convergence analysis of the
suggested approach which is given below

C(ω) =
∞∑
ı=1

cıI
3
ı (ω) + ω2(Λ−

∞∑
ı=1

cıI
2
ı (1)) + C(0) + ωĊ(0).

Theorem 4.1. Suppose C(ω) is square integrable over [0, 1] in such a way that
∣∣...C(ω)∣∣ ≤ α0,

for all ω ∈ (0, 1) and α0 > 0. If
...
C(ω) =

∑∞
ı cıHp

ı
(ω), then we have the following inequality:∣∣cı∣∣ ≤ 2−


2 %α0=, (4.1)

where = is a constant defined in the proof below.

Proof. We have

...
C(ω) =

∞∑
ı=1

cıHp
ı
(ω), (4.2)

∣∣cı∣∣ =
∣∣∣ ∫ 1

0

...
C(ω)Hp

ı
(ω)dω

∣∣
≤ sup

ω∈[0,1]

∣∣...C(ω)∣∣ ∫ ω

0

∣∣Hp
ı
(ω)
∣∣dω

≤ α02−

2 %=.

Taking inner product of equation (4.2) and applying orthonormality condition of Hp
ı
(ω), we get

equation (4.1).

Mean value theorem for integral has been applied and = =
∫ 1
−1 |Hp

′
m+1(`)−Hp

′
m−1(`)|d`

2m+1 .
Therefore, we have ∣∣cı∣∣ ≤ 2−


2 %α0=.

Theorem 4.2. Let the analytic and estimate solution of equation (1.1) is denoted by C(ω) and
PvJC(ω), respectively and C(ω)is square integrable over [0, 1],

∣∣...C(ω)∣∣ ≤ α0, for all ω ∈ (0, 1)
with α0 > 0. If εJ is the estimation’s error, then we have the following inequality:∥∥∥εJ∥∥∥

2
≤ %2α0=2

(
2−(2J+1)

7
+
λ2−J+1

3

)
.

Proof. We have ∥∥∥εJ∥∥∥
2

=
∥∥∥C(ω)− PvJC(ω)∥∥∥

2

=
∥∥∥ ∞∑
=J+1

2J+1−1∑
ı=2J

cıI
3
ı (ω)−

∞∑
=J+1

2J+1−1∑
ı=2J

cıI
2
ı (1)

∥∥∥
2
.

On using Minskowski inequality, we get∥∥∥εJ∥∥∥
2
≤

∥∥∥ ∞∑
=J+1

2J+1−1∑
ı=2J

cıI
3
ı (ω)

∥∥∥
2
+
∥∥∥ ∞∑
=J+1

2J+1−1∑
ı=2J

cıI
2
ı (1)

∥∥∥
2

≤
∥∥∥ ∞∑
=J+1

2J+1−1∑
ı=2J

cıI
3
ı (ω)

∥∥∥
2
+
∥∥∥ ∞∑
=J+1

2J+1−1∑
ı=2J

cıI
2
ı (1)

∥∥∥
2

≤
∞∑

=J+1

2J+1−1∑
ı=2J

|cı|

(∫ 1

0
|I3
ı (ω)|2dω

) 1
2

+
∞∑

=J+1

2J+1−1∑
ı=2J

|cı|

(∫ 1

0
|I2
ı (1)|2dω

) 1
2

.(4.3)
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Now, Consider the Cauchy’s formula for repeating integration as

InHp
ı
(ω) =

1
(n− 1)!

∫ ω

0
(ω − s)n−1Hp

ı
(s)ds.

For n = 3, we get

I3Hp
ı
(ω) =

1
2!

∫ ω

0
(ω − s)2Hp

ı
(s)ds.

Now,

I3Hp
m
(ω) =

1
2!

∫ κ2

κ1

(ω − s)2%2

2 Hp

m
(2s− λ)ds

=
1
2!

∫ 1

−1
(ω − ς + λ

2
)2%2


2 2−Hp

m
(ς)dς

=
1
2!

∫ 1

−1

(2ω − ς − λ)2

22 %2−

2 Hp

m
(ς)dς

≤2
−5−2

2 %

max
−1≤ς≤1

|Hp′
m+1(ς)− Hp′

m−1(ς)|

2m+ 1

∫ 1

−1
(2ω − ς − λ)2dς

|I3Hp
m
(ω)| ≤ 2

−5−2
2 %=F, (4.4)

where ς = 2s−λ, = =
max
−1≤ς≤1

|Hp′
m+1(ς)−Hp′

m−1(ς)|

2m+1 and F = 1
3 max
ω∈[0,1]

|(2ω+1−λ)3−(2ω−1−λ)3|.

In similar fashion, we can get

|I2Hp
m
(1)| ≤ 2

−3+2
2 (λ− 2)%=, (4.5)

where = =
max
−1≤ς≤1

|Hp′
m+1(ς)−Hp′

m−1(ς)|

2m+1 .
Substituting equations (4.1),(4.4) and (4.5) in equation (4.3) and after simplifying, we get

∥∥∥εJ∥∥∥
2
≤

∞∑
=J+1

2J+1−1∑
ı=2J

%2α0=2
(

1
2(3+1) +

(λ− 2)
2(2−1)

)

≤
∞∑

=J+1

{
%2α0=2

(
1

2(3+1) +
(λ− 2)
2(2−1)

)}
(2J+1 − 1− 2J + 1)

≤ 2J
∞∑

=J+1

%2α0=2
(

1
2(3+1) +

(λ− 2)
2(2−1)

)
∥∥∥εJ∥∥∥

2
≤ %2α0=2

(
2−(2J+1)

7
+
λ2−J+1

3

)
. (4.6)

From equation (4.6) it is possible to claim that the error and resolution level J are correlated
to each other in a reverse fashion, which infers that as J →∞, then

∥∥∥εJ∥∥∥→ 0.
Hence, we draw the conclusion that when resolution levels are increased, the estimate solution
approaches to the exact solution.

5 Numerical Examples

Problem 1. Let: ...
C + C̈(

√
sin ω)− ωC = f(ω), (5.1)
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which satisfies the BCs:

C(0) = 0, Ċ(0) = 1, C(1) = 0.

The exact solution is

C(ω) = ω(1− ω)eω.

The source function f(ω) can be calculated with the help of exact solution.

We have employed Hermite wavelet series method (HWSM) for solving equation (5.1). The
obtained root mean square errors (RMSE) and maximum absolute errors (MAE) for various
convergence parameters (M, J) are reported in Table1. The table clearly demonstrates that the
RMSE and MAE progressively decline as we enhance the values of the convergence parameters
(M, J). A comparison of exact solution with HWSM solution is displayed in Figure 1, while
the effect of the convergence parameters on the behaviour of absolute errors is shown in Figures
2a and 2b.

Table 1. Error analysis of Problem 1

N (M,J) RMSE MAE

2 (2, 1) 6.12669937e− 05 4.88296275e− 05
8 (3, 1) 2.25249042e− 10 1.38766775e− 10
16 (4, 2) 4.20599746e− 11 1.66392316e− 11
32 (5, 3) 1.60497734e− 13 6.61901089e− 14

‘

Figure 1. Graph of exact and HWM solutions of Problem 1 for M = 8 and J = 3
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Figure 2. Effect of the convergence parameters M and J on the behaviour of the absolute errors

Problem 2. Let:

...
C(ω − sin(ω)) + C̈(ω) + Ċ(ω − sin(ω)) + 2e−3C(ω−sin(ω)) = f(ω), (5.2)

which satisfies the BCs:

C(0) = 0, Ċ(0) = 1, C(1) = ln(2).

The exact solution is

C(ω) = ln(1 + ω).

The source function f(ω) can be calculated with the help of exact solution.

We have applied HWSM for solving equation (5.2). The obtained RMSE and MAE for
various convergence parameters (M, J) are reported in Table 2. The table clearly demonstrates
that the RMSE and MAE progressively decline as we enhance the values of the convergence
parameters (M, J). A comparison of exact solution with HWSM solution is displayed in Figure
3, while the effect of the convergence parameters on the behaviour of absolute errors is shown in
Figures 4a and 4b.

Table 2. Error analysis of Problem 2

N (M,J) RMSE MAE

2 (2, 1) 1.02024306e− 03 7.91301587e− 04
8 (3, 1) 6.73726635e− 06 3.90098448e− 06
16 (4, 2) 9.47481042e− 08 4.29584032e− 08
32 (5, 3) 1.47686240e− 09 4.81675810e− 10
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Figure 3. Graph of exact and HWM solutions of Problem 2 for M = 8 and J = 3

Figure 4. Effect of the convergence parameters M and J on the behaviour of the absolute errors

Conclusion

In this paper, we have used HWSM to get the numerical solution of third order NDDEs. Integral
operator technique has been employed, i.e., the highest order derivative is estimated with regard
to the Hermite wavelet basis and integration of the same is utilized to estimate the unknown
variable and its lower order derivatives. The advantage of this technique is that we don’t need to
deal with the BCs separately. These conditions are automatically taken into consideration. We
approximate delay term directly by using Hermite wavelet. We have tabulated the obtained MAE
and RMSE in Tables 1 and 2. These tables demonstrate that the suggested method produces
good results and converges very fast to the exact solution. Moreover, the proposed method is
easy to execute. Figures 1 and 3, demonstrate the graphical comparison between the exact and
HWSM solutions, Figures 2a, 2b, 4a, and 4b depict that how absolute errors behave. For all
computational work we have used MATLAB 2021, intel i5 and windows 10.
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