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Abstract In this article, using half-step discretization, we recommend a novel compact 3-
time level implicit approximation of order 2 in time and 4 in space on a time variable mesh for
the solution of 1D quasilinear second order hyperbolic partial differential equations (HPDEs).
We have used variable mesh in time direction which is more general than uniform mesh and it
controls spurious oscillations in time direction. Its benefit is that the solution does not fluctuate
throughout the solution domain and is relatively smoother near the dense points. The suggested
approximation when applied to transmission line equation which is an important HPDE of great
physical significance is revealed to be stable on a time variable mesh for all choices of grid
sizes in space direction. The proposed approximation is also applicable directly to solve HPDEs
irrespective of coordinates on the time variable mesh. The proposed approximation is also ap-
plicable to solve fourth order HPDEs. The computational results show good performance on six
numerical benchmark problems.

1 Introduction

Hyperbolic partial differential equations (HPDEs) occur in various physical models of wave
phenomena where information is propagated at finite speeds. Gravitational and seismic waves,
traffic flow and acoustic waves, electromagnetic and chemical waves, water and tsunami waves,
planetary and ship waves are examples of physical waves. These waves are either linear which
are depicted by linear equations or nonlinear which are elucidated by nonlinear equations. There-
fore, the superposition principles are not applicable for nonlinear wave equations. The approx-
imate results of 1D second order quasilinear HPDE plays an active role in numerous sectors
of engineering and physical sciences. Mathematically, nonlinear HPDEs are more difficult to
handle, and there are no common techniques available for solving such HPDEs. Therefore, the
application of stable numerical schemes is the only way to knob such problems. Let us consider
the 1D quasilinear HPDE

wtt = B(t, x, w)wxx +Q(t, x, w,wx, wt), a < x < b, t > 0, (1.1)

with conditions at t = 0 are

w(x, 0) = g(x), wt(x, 0) = h(x), a ≤ x ≤ b, (1.2)

and the values at x = a and x = b are prescribed by

w(a, t) = f0(t), w(b, t) = f1(t), t > 0. (1.3)

It is supposed that B(t, x, w) is positive in the solution domain Ω = {(t, x) : a < x <
b, t > 0}. Let w(x, t) ∈ C6, B(t, x, w) ∈ C4, f0(t) and f1(t) ∈ C0on the boundary Γ of Ω.
Further, we assume that the initial values g(x) and h(x) are sufficiently differentiable and the
initial-boundary value problem (IBVP) (1.1)-(1.3) has a unique solution. Necessary information
are given in [1].
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A boundary value technique was introduced to obtain the approximate solution of the HPDE
in [2]. Later on, the fourth order compact implicit finite difference method (FDM) was studied in
[3-4]. An approximation for the HPDE with an extended stability interval was discussed in [5].
Stability intervals for multi-dimensional 3-level schemes for HPDEs using the additive operator
technique were obtained in [6]. A 3-parameter family of FDMs for solving HPDEs were studied
in [7-8]. Fourth order compact FDMs for the IBVP (1.1)-(1.3) were derived in [9-10]. An order
two approximation for HPDE with nonlinear term in exponential form has been introduced in
[11]. A bivariate spectral collocation method was presented in [12] to solve HPDEs defined
over a large time domain. Jiwari et al. [13-16] used differential quadrature algorithms to solve
HPDEs. Pandit et al. [17] employed Haar wavelet technique to solve wave equations.

It is not an easy task for engineers and research scientists to attain stability intervals of a nu-
merical approximation for the IBVP (1.1)-(1.3). Stability investigation for second order initial-
value problems were discussed in [18-20]. Many physical problems such as the voltage in coax-
ial transmission lines,the propagation of current-signals, parallel viscous Maxwell fluid flow,
and the transmission of acoustic waves are illustrated by one dimensional Telegraphic equation.
Implicit stable approximations for the solution of the transmission line (or Telegraphic equation
on a constant mesh established by many researchers [21-32] using the knowledge used for initial
value problems. High accuracy numerical methods using three grid points for the solution of
two-point nonlinear BVPs on graded mesh were discussed by many scholars [33-35]. Mohanty
& Gopal [36-38], and Mohanty & Khurana [39-41] have added spline techniques based on half-
step discretization for the solution of 1D nonlinear HPDEs. Singh and Lin [42] have introduced
higher order variable mesh off-step method for the solution of 1D non-linear HPDEs. In recent
times, Mohanty et al. [43-45] have proposed absolute stability conditions on a variable mesh for
a certain initial-value problem.

It has been repeatedly demonstrated on model problems that high order methods provide
tremendous practical advantages in terms of reducing the required number of storages and over-
all computational time for desired solution in comparison with the lower order method. This
motivates us to develop high accuracy method in order to solve model problems related to sec-
ond order HPDEs. To our knowledge, no high accuracy approximations on a time variable mesh
based on half-step space discretization has been discussed as on date. To fill this gap, we propose
a new 3-level half-step implicit methods of order of accuracy 2 in t-direction, 4 in x-direction for
the solution of IBVP (1.1)-(1.3) on a variable mesh in t-direction.The suggested approximation
controls the fluctuations of numerical solution throughout the computation, especially around
the dense points.The paper is segregated as follows: In Section 2, we describe the formulation
of the half-step methods based on a variable mesh in t-direction for the approximation of IBVP
(1.1)-(1.3). In section 3, we give the complete derivation of the numerical approximations. We
study the application of the proposed approximations to the uniform transmission line equation
and the stability of the corresponding difference equation in Section 4. Six benchmark problems
have been computed in section 5 to verify the utility of the proposed method. Final remarks and
future work are suggested in Section 6.

2 Conceptualization of the method

We consider 1D HPDE in nonlinear form

wtt = B(x, t)wxx +Q(x, t, w,wx, wt), (2.1)

where B(x, t) is positive in the domain Ω = {(x, t) : a < x < b, t > 0} which is roofed
by a set of points (xi, tn), where ∆x > 0 is the uniform grid spacing in x-direction with grid
points xi = a + i∆x, i = 0, 1, 2, ..., N + 1, b − a = (N + 1)∆x and non-uniform grid spacing
∆tn = tn− tn−1 > 0 with t0 < t1 < t2 < · · · < tN . Let η =

(
∆tn+1
∆tn

)
> 0, so that ∆tn+1 = η∆tn.

For η = 1, the mesh lengths in t-direction are constant throughout the computation.
We consider Bni = B(xi, tn), Bx

n
i = Bx(xi, tn), . . . etc. Again, let Wn

i = w(xi, tn) and
wni ≈Wn

i .
We consider the subsequent approximations:
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Further, We need the following approximations for Q(x, t, w,wx, wt)
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Now, we define the approximation
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Next, we define the approximation for space derivative
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and the approximation for the time derivative
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Then the HPDE (2.1) at each grid point (xi, tn) is approximated by
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where the local truncation error (LTE) = T
n

i = O(∆t2n + ∆tn∆x2 + ∆x4).

3 Deducing the numerical methods

To derive the approximation (2.30), we use variable approximations for time derivatives and
Numerov type constant mesh approximations for space derivatives.
We denote:

Wαβ =

(
δα+βW

δxαδtβ

)n
i

, ψni =

(
δQ

δW

)n
i

, φni =

(
δQ

δWx

)n
i

, Φ
n
i =

(
δQ
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)n
i

. (3.1)

At (xi, tn), the nonlinear HPDE (2.1) takes the form

Wtt
n
i −Bni Wxx

n
i = Q (xi, tn,W

n
i ,Wx

n
i ,Wt

n
i ) ≡ Qni . (3.2)
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It is easy to demonstrate that
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Simplifying (2.2)-(2.20), we get
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With the help of (3.4) – (3.17), simplifying (2.21)-(2.25), we get
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where
T1 = 3W20ψ

n
i +W30φ

n
i + 3W21Φn

i .

Q
n

i− 1
2
= Qn

i− 1
2
+

∆x2

24
T1 +O(∆t2n + ∆x3). (3.25)

Q
n+1
i = Qn+1

i +
∆x2

6
W30φ

n
i +O(∆t2n + ∆tn∆x2). (3.26)

Q
n−1
i = Qn−1

i +
∆x2

6
W30φ

n
i +O(∆t2n + ∆tn∆x2). (3.27)

Now, we define the new approximations:
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where a1, b1, b2, b3, and c1 are variable quantities to be calculated.

With the help of (3.6), (3.11), (3.19), (3.20), (3.21), (3.24), (3.25) from (3.28), (3.29), and
(3.30), we get
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With the aid of (2.30), (3.3)-(3.22), (3.24)-(3.27), (3.34), the LTE can be written as
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The proposed method (2.30) to be of O(∆t2n + ∆tn∆x2 + ∆x4), the factors associated with
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∆x2of LTE must be vanish and we get
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Consequently, on solving above set of equations (3.36)-(3.40), we obtain the values of parame-
ters
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and the LTE (3.35) reduces to T
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For quasilinear differential equation (1.1), i.e. whenever B = B(t, x, w), the method (2.30)

requires to be amended which is done by employing following approximations:
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Employing (3.41)-(3.43) into (2.30), we achieve the numerical method of O(∆t2n+∆tn∆x2 +
∆x4) for the quasilinear HPDE (1.1) and LTE preserves its order. For η = 1, i.e. ∆tn = ∆tn+1 =
∆t, the method (2.30) set off of O(∆t2 + ∆t2∆x2 + ∆x4).

Incorporating the prescribed initial and boundary values (1.2)-(1.3), the algorithm (2.30) can
be revealed in a 3-diagonal matrix shape at every time level. The Gauss-elimination procedure
and Newton-Raphson method [46-51] are used to solve linear and nonlinear difference equations,
respectively.

4 Stability consideration

The transmission line equation is represented by

wtt + 2pwt + q2w = wxx + g(x, t), p > 0, q ≥ 0, (4.1)

which is defined in the region [a < x < b] × [t > 0], where p, q are constants. For q = 0,
the equation (4.1) reduced to damped wave equation. Let Xn = p2∆t2n, Yn = q2∆t2n and λn =
∆tn
∆x > 0.
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With the application of (2.30) the HPDE (4.1) is consistent with

W tt
n

i −W xx
n

i −
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η − 1

3

)
∆tnW xxt

n

i +
∆x2

12
W xxtt

n

i

+
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+
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)]
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3
+O(∆t2n + ∆tn∆x2 + ∆x4), (4.2)

where
gni = g(xi, tn) and

∑
g =

(
gn
i+ 1

2
+ gn

i− 1
2
+ gni

)
+ (η−1)

η(η+1)

(
gn+1
i − (1− η2)gni − η2gn−1

i

)
.

Let us signify: δxWn
i =Wi+ 1

2
−Wi− 1

2
be the central difference approximation in x-direction.

This implies δ2
xW

n
i =Wn

i+1 − 2Wn
i +Wn

i−1. To simplify (4.2), we use the following:

W t
n

i+ 1
2
+W t

n

i− 1
2
+W t

n

i =

[
(6 + δ2

x)

η(1 + η)2∆tn
− ηδ2

x

4η(1 + η3)∆tn

] [
Wn+1
i − (1− η2)Wn

i − η2Wn−1
i

]
.

(4.3)
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Multiplying η(1+η)
2 ∆t2n throughout (4.2), using the relations (4.3) − (4.6) and simplifying, we

get[
1 +

δ2
x

12
+

2(η − 1)
3

√
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] [
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+
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+
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The scheme (4.7) is stable under certain restrictions on the choices of grid sizes. In order to
avoid these difficulties, we can modify the scheme (4.7) as[
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where γ1, γ2 are parameters independent of step lengths to be find out and the extra added higher
order term

[
γ1Yn − γ2λ

2
nδ

2
x

] [
Wn+1
i − (1 + η)Wn

i + ηWn−1
i

]
does not affect the accuracy of

the modified scheme.
Let εni =Wn

i − wni be an error defined at each (xi, tn). Then the error equation is expressed
as[
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Neglecting error term and using εni = ζn. exp(θi
√
−1) in the equation (4.9), the characteristic

equation is obtained as

A1ζ
2 +B1ζ + C1 = 0, (4.10)

where
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For |ζ| < 1, the conditions are A1 +B1 + C1 > 0, A1 − C1 > 0 and A1 −B1 + C1 > 0.
Now the condition

A1 +B1 + C1 = 2η(1 + η)λ2
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2
+
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3
sin2 θ

2

)
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2
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is fulfilled for all θ ∈ (0, 2π), p > 0, q ≥ 0 excluding θ = 0, 2π and q = 0.
The constraint
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must be satisfied for all p > 0, q ≥ 0 provided 0 < η ≤ 1, γ1 ≥ 1+η2

6 , γ2 ≥ 1+η2

6 .
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must be satisfied for all p > 0, q ≥ 0 provided 0 < η ≤ 1 and γ1 ≥ 2η2−η+2
12 , γ2 ≥ 2η2−η+2

12 .
For q = 0 and θ = 0 or 2π, the equation (4.10) becomes[

1 +
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If ζ1 and ζ2 are two roots of (4.17), we have the relations
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On solving (4.18) and (4.19), we get ζ1 = 1, ζ2 =
η[1−( 2+η

3 )
√
Xn]

1+( 1+2η
3 )
√
Xn

. In this situation also |ζ| ≤ 1,
subject to 0 < η ≤ 1.

Because 1+η2

6 > 2−η+2η2

12 , the conditions (4.14)-(4.16) are contended for all varying angle
θ, p > 0, q ≥ 0 subject to 0 < η ≤ 1, γ1 ≥ 1+η2

6 , γ2 ≥ 1+η2

6 . Thus for p > 0, q ≥ 0,
0 < η ≤ 1, γ1 ≥ 1+η2

6 , γ2 ≥ 1+η2

6 , the approximation (4.8) is stable for all values of ∆tn > 0,
∆x > 0.

5 Numerical results

With the aid of (2.4), (2.7)-(2.9), (2.14)-(2.18), (2.21), (2.24)-(2.25), a time-variable method of
O(∆t2n + ∆x2) may be written as
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+O(∆t2n + ∆x2). (5.1)

The following 6 important problems are solved. We can compute the homogeneous right-
hand side functions, initial & boundary values from the analytical solution as trial procedure.
The Gauss-elimination procedure (tri-diagonal solver) is used to solve directly linear difference
equations, whereas for nonlinear HPDEs the resulting nonlinear difference equations are solved
using Newton-Raphson method [46-51]. We have chosen zero vectors as the initial approxima-
tions for all nonlinear cases. For this choice, the method indeed converges to the exact solution
for sufficiently small values of ∆tn and ∆x. MATLAB codes are used to obtain all the numerical
results.

The methods (2.30), (4.8), and (5.1) are all 3-level schemes. For computation, it is mandatory
to obtain the approximate solution at t = ∆t1.

The values of w, wt at t = 0 are given in explicit manner. This implies, the values of
(w,wx, wxx, ..., wt, wxt, wxxt, . . . )0

i are calculated automatically at t = 0.
At t = ∆t1, an approximate value of w can be calculated using the formula

W 1
i =W 0

i + ∆t1(Wt)
0
i +

∆t21
2

(Wtt)
0
i +O(∆t31). (5.2)

From Eq. (1.1), we calculate

(Wtt)
0
i = [B(t, x,W )Wxx +Q(t, x,W,Wx,Wt)]

0
i . (5.3)

With the aid of initial values of w,wt, wx, wxx, from (5.3) it is easy to calculate (Wtt)0
i and

then from (5.2) the numerical solution of w at t = ∆t1. The maximum absolute errors (MAEs)
and corresponding CPU time are computed at final time level in each case.
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We solve the Eq. (4.1) in the region 0 < x < 1, t > 0. The exact solution in closed
form is given by w(x, t) = exp(−2t) sinhx. In Table 1, at t = 5 the MAEs are tabulated for
∆x = 1/64, γ1 = 1.0, γ2 = 1.5 for η = 0.85. Figs. 1a & 1b portrayed the analytical & numerical
approximation at t = 5.0 for (p, q) = (20, 10) and η = 0.85.

Table 1. The MAEs at t = 5 for η = 0.85, γ1 = 1.0, γ2 = 1.5

(p, q) Proposed Method Method (5.1)
(20, 2) 1.1882(-03) 1.2001(-02)

CPU time in secs 0.4956 0.3304

(50, 5) 1.2694(-04) 1.5043(-03)
CPU time in secs 0.4841 0.3227

(15, 6) 1.0507(-05) 1.3357(-04)
CPU time in secs 0.4561 0.3040

(20, 10) 5.5523(-06) 5.6859(-05)
CPU time in secs 0.4486 0.2990

(15, 3) 2.9946(-07) 2.2451(-06)
CPU time in secs 0.4586 0.3057

(a) Plot of exact solution (b) Plot of numerical solution

Figure 1. Graph of exact vs. numerical solutions at t = 5 for (p, q) = (20, 10), η = 0.85, γ1 =
1.0, γ2 = 1.5 of Problem 1.

(Wave equation in polar form)

δ2w

δt2
=
δ2w

δr2 +
α

r

δw

δr
+ f(r, t), 0 < r < 1, t > 0 (5.4)

The Eq. above is solved with the assistance of technique used in [9] and [42], where w(r, t) =
coshr sinht. In Table 2, the MAEs are compiled for n = 200,∆x = 1/20, and for α = 1 & 2.The
analytical & numerical solution curves are displayed in Figs. 2a and 2b for n = 200, α = 1 and
η = 1.07.
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Table 2. The MAEs for ∆x = 1/20, n = 200

α = 1 α = 2

η ProposedMethod Method(5.1) ProposedMethod Method(5.1)
0.94 3.1916(-07) 3.0787(-06) 5.1823(-07) 4.4045(-06)

CPU time in secs 0.0221 0.0147 0.0202 0.0134

0.96 2.6347(-07) 1.3338(-06) 4.1649(-07) 1.8994(-06)
CPU time in secs 0.0217 0.0145 0.0196 0.0130

0.98 2.6419(-07) 3.4578(-07) 2.2361(-08) 4.8937(-07)
CPU time in secs 0.0211 0.0140 0.0190 0.0124

1.03 2.6390(-07) 1.0344(-06) 2.1164(-07) 1.1038(-06)
CPU time in secs 0.0214 0.0144 0.0198 0.0132

1.06 2.6322(-07) 3.9817(-06) 4.5184(-07) 4.2473(-06)
CPU time in secs 0.0224 0.0148 0.0205 0.0136

1.07 3.1832(-07) 5.3647(-06) 4.8834(-07) 5.7222(-06)
CPU time in secs 0.0232 0.0152 0.0209 0.0139

(a) Plot of exact solution (b) Plot of numerical solution

Figure 2. Graph of exact vs. numerical solutions for n = 200, α = 1, η = 1.07 of Problem 2.

(Van der Pol equation)

δ2w

δt2
=
δ2w

δx2 + α(w2 − 1)
δw

δt
+ f(t, x), t > 0, 0 < x < 1 (5.5)

where w(x, t) = exp(−αt) sin(πx). In Table 3, for n = 200,∆x = 1/20, and for α = 1 & 2, the
MAEs are computed. Figures 3a & 3b correspond to the analytical & numerical solution curves
for n = 200, α = 2, η = 1.06.
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Table 3. The MAEs for ∆x = 1/20, n = 200

α = 1 α = 2

η ProposedMethod Method(5.1) ProposedMethod Method(5.1)
0.93 5.3432(-06) 1.4896(-03) 4.7700(-05) 8.0056(-04)

CPU time in secs 0.0450 0.0299 0.0419 0.0279

0.95 3.5545(-06) 1.4874(-03) 2.3910(-05) 7.7861(-04)
CPU time in secs 0.0444 0.0296 0.0415 0.0275

0.98 2.1082(-06) 1.4851(-03) 4.6629(-06) 7.6154(-04)
CPU time in secs 0.0440 0.0292 0.0411 0.0272

1.03 2.4042(-06) 1.4846(-03) 9.3143(-06) 7.6722(-04)
CPU time in secs 0.0446 0.0298 0.0416 0.0278

1.06 4.0307(-06) 1.4860(-03) 3.3156(-05) 7.9109(-04)
CPU time in secs 0.0452 0.0305 0.0422 0.0281

1.08 7.3634(-06) 1.4874(-03) 5.71533(-05) 8.1503(-04)
CPU time in secs 0.0458 0.0308 0.0428 0.0284

(a) Plot of exact solution (b) Plot of numerical solution

Figure 3. Graph of exact vs. numerical solutions for n = 200, α = 2, η = 1.06 of Problem 3.

(Dissipative nonlinear wave equation)

δ2w

δt2
=
δ2w

δx2 − 2w
δw

δt
+ f(t, x), t > 0, 0 < x < 1 (5.6)

where w(x, t) = sin(πx) cosht. The MAEs are compiled in Table 4 for n = 200,∆x = 1/20
and 1/25. Figs. 4a & 4b portrayed the analytical & numerical solution curves for n = 200, η =
1.04,∆x = 1/20.



184 Bishnu Pada Ghosh, Urvashi Arora and R.K. Mohanty

Table 4. The MAEs for n = 200

∆x = 1/20 ∆x = 1/25

η ProposedMethod Method(5.1) ProposedMethod Method(5.1)
0.92 3.3406(-05) 2.1295(-03) 3.9743(-05) 1.3446(-03)

CPU time in secs 0.0338 0.0225 0.0390 0.0260

0.94 1.7025(-05) 2.1458(-03) 1.8468(-05) 1.3592(-03)
CPU time in secs 0.0334 0.0221 0.0385 0.0257

0.96 5.9008(-06) 2.1576(-03) 7.3557(-06) 1.3706(-03)
CPU time in secs 0.0328 0.0218 0.0378 0.0253

0.98 4.2371(-07) 2.1649(-03) 1.1299(-06) 1.3774(-03)
CPU time in secs 0.0321 0.0212 0.0374 0.0250

1.02 2.0618(-06) 2.1635(-03) 3.6558(-06) 1.3756(-03)
CPU time in secs 0.0324 0.0215 0.0379 0.0252

1.04 1.4884(-05) 2.1502(-03) 1.6513(-05) 1.3624(-03)
CPU time in secs 0.0331 0.0219 0.0388 0.0255

1.06 3.5964(-05) 2.1284(-03) 3.7651(-05) 1.3408(-03)
CPU time in secs 0.0339 0.0223 0.0392 0.0259

1.08 6.4696(-05) 2.0987(-03) 6.2088(-05) 1.3115(-03)
CPU time in secs 0.0344 0.0229 0.0398 0.0263

(a) Plot of exact solution (b) Plot of numerical solution

Figure 4. Graph of exact vs. numerical solutions for n = 200, η = 1.04, ∆x = 1/20 of Problem
4.
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(Quasilinear equation)

δ2w

δt2
= (1 + w2)

δ2w

δx2 + w
δw

δx
+ f(t, x), t > 0, 0 < x < 1 (5.7)

where w(x, t) = exp(−2t) sin(πx). In Table 5, the MAEs are compiled for n = 200,∆x = 1/20
and 1/25. Figures 5a & 5b represented the numerical and analytical solution curves for n =
200, η = 1.06,∆x = 1/20.

Table 5. The MAEs for n = 200

∆x = 1/20 ∆x = 1/25

η ProposedMethod Method(5.1) ProposedMethod Method(5.1)
0.92 9.0421(-03) 2.4201(-02) 5.7682(-03) 5.8054(-02)

CPU time in secs 0.0430 0.0286 0.0492 0.0328

0.94 2.2259(-03) 2.3751(-02) 2.9284(-03) 2.3064(-02)
CPU time in secs 0.0424 0.0282 0.0488 0.0324

0.96 2.1786(-03) 2.3282(-02) 2.1646(-03) 2.2598(-02)
CPU time in secs 0.0418 0.0278 0.0482 0.0320

0.98 2.0197(-03) 2.1674(-02) 2.0068(-03) 2.1008(-02)
CPU time in secs 0.0414 0.0274 0.0473 0.0316

1.02 6.8477(-04) 7.2930(-03) 6.7854(-04) 7.0505(-03)
CPU time in secs 0.0416 0.0276 0.0484 0.0318

1.04 9.0145(-03) 8.9228(-02) 8.9560(-03) 8.8964(-02)
CPU time in secs 0.0422 0.0280 0.0490 0.0322

1.06 1.5085(-02) 1.4867(-01) 1.4660(-02) 1.4859(-01)
CPU time in secs 0.0428 0.0284 0.0495 0.0326

1.08 5.0831(-02) 1.6415(-01) 5.5835(-02) 8.4005(-01)
CPU time in secs 0.0436 0.0288 0.0498 0.0332

(Fourth-order nonlinear HPDE)(
δ2

δt2
− δ2

δx2

)2

w = w
δw

δx
+ f(x, t), t > 0, 0 < x < 1. (5.8)

The initial and boundary values associated with (5.8) are given by

w(x, 0) = cos(πx), wt(x, 0) = −πcos(πx),

wtt(x, 0) = π2cos(πx), wttt(x, 0) = −π3cos(πx), 0 ≤ x ≤ 1. (5.9)

w(0, t) = exp(−πt), wxx(0, t) = −π2exp(−πt),

w(1, t) = −exp(−πt), wxx(1, t) = π2exp(−πt), t > 0. (5.10)

To solve (5.8), we substitute(
δ2

δt2
− δ2

δx2

)
w = v, t > 0, 0 < x < 1. (5.11)(

δ2

δt2
− δ2

δx2

)
v = w

δw

δx
+ f(x, t), t > 0, 0 < x < 1. (5.12)
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(a) Plot of exact solution (b) Plot of numerical solution

Figure 5. Graph of exact vs. numerical solutions for n = 200, η = 1.06, ∆x = 1/20 of Problem
5.

Note that, the grid lines and the coordinate axes are parallel to each other. This implies, the
tangential and normal derivatives of w are known on the boundary. Therefore, the initial and
boundary values associated with the system of equations (5.11)-(5.12) can be re-written as

w(x, 0) = cos(πx), wt(x, 0) = −πcos(πx),

v(x, 0) = 2π2cos(πx), vt(x, 0) = −2π3cos(πx), 0 ≤ x ≤ 1. (5.13)

w(0, t) = exp(−πt), v(0, t) = 2π2exp(−πt),

w(1, t) = −exp(−πt), v(1, t) = −2π2exp(−πt), t > 0. (5.14)

Employing the approximation (2.30), the coupled systems (5.11)-(5.12) can be solved.
w(x, t) = exp(−πt) cos(πx) is the exact solution of Eq. (5.8). In Table 6, the MAEs are reported

for n = 200,∆x = 1/20, and 1/15. Figures 6a and 6b correspond to the graphs of exact vs
approximate solution for n = 200, η = 1.04,∆x = 1/20.

6 Final remarks

In the present article, using 3 variable grid points in t-direction and two half-step constant mesh
points in x-direction, we have considered two new stable approximations ofO(∆t2n+∆x2) and of
O(∆t2n+∆tn∆x2+∆x4) for the solution of the IBVP (1.1)-(1.3). The proposed scheme is revealed
to be stable for all choices of grid sizes when applied to the transmission line equation. We have
numerically solved six remarkable HPDEs to illustrate the utility of the suggested approxima-
tions. The effectiveness of the projected approximation is demonstrated from the computational
results.

References
[1] W.D. Li, Z.Z. Sun and L. Zhao, An analysis for a high order difference scheme for numerical solution to

utt = A(x, t)uxx + f(x, t, u, ux, ut), Numerical Methods for Partial Differential Equations, 23 (2007)
484-498.

[2] D. Greenspan, Approximate solution of initial boundary wave equation problems by boundary values
techniques, Comm. ACM, 11 (1968) 760 – 763.



A High Resolution Half-step Numerical Approximation for 1D Quas... 187

Table 6. The MAEs for n = 200

∆x = 1/20 ∆x = 1/15

η ProposedMethod Method(5.1) ProposedMethod Method(5.1)
0.94 1.4521(-05) 6.0737(-04) 1.4138(-04) 9.3127(-04)

CPU time in secs 0.1685 0.1023 0.1248 0.0832

0.96 1.2859(-05) 6.5769(-04) 1.2927(-04) 9.9499(-04)
CPU time in secs 0.1674 0.1017 0.1238 0.0825

0.98 1.2184(-05) 6.8723(-04) 1.2252(-04) 1.0359(-03)
CPU time in secs 0.1662 0.1011 0.1227 0.0819

1.02 1.4335(-04) 4.8316(-03) 1.4416(-04) 4.9185(-03)
CPU time in secs 0.1668 0.1015 0.1229 0.0822

1.04 4.4393(-03) 1.4312(-02) 4.4651(-03) 1.4398(-02)
CPU time in secs 0.1678 0.1020 0.1241 0.0828

1.06 7.8739(-03) 2.4816(-02) 7.8634(-03) 2.4936(-02)
CPU time in secs 0.1689 0.1025 0.1251 0.0836

[3] M. Ciment, S.H. Leventhal, Higher order compact implicit schemes for the wave equation, Math. Comp.,
29 (1975) 985 – 994.

[4] M. Ciment and S.H. Leventhal, A note on the operator compact implicit method for the wave equation,
Math. Comp., 32 (1978) 143 – 147.

[5] E.H. Twizell, An explicit difference method for the wave equation with extended stability range. BIT, 19
(1979) 378 – 383.

[6] R.K. Mohanty, Stability interval for explicit difference schemes for multi-dimensional second order hy-
perbolic equations with significant first order space derivative terms, Applied Mathematics and Compu-
tations, 190 (2007) 1683-1690.

[7] J.I. Ramos, Numerical methods for nonlinear second-order hyperbolic partial differential equations I –
Time-linearized finite difference methods for 1-D problems, Applied Mathematics and Computation, 190
(2007) 722–756.

[8] J.I. Ramos, Numerical methods for nonlinear second-order hyperbolic partial differential equations II –
Rothe’s techniques for 1-D problems, Applied Mathematics and Computation, 190(2007) 804–832.

[9] R.K. Mohanty, M.K. Jain and K. George, On the use of high order difference methods for the system
of one space second order non-linear hyperbolic equation with variable coefficients, J. Comp. Math., 72
(1996) 421 – 431.

[10] R.K. Mohanty and Ravindra Kumar, A new fast algorithm based on half-step discretization for one space
dimensional quasilinear hyperbolic equations, Applied Mathematics and Computations, 244 (2014) 624-
641.

[11] L. Wang, W. Chen and C.Wang, An energy-conserving second order numerical scheme for nonlinear
hyperbolic equation with an exponential nonlinear term, Journal of Computational and Applied Mathe-
matics, 280 (2015) 347–366.

[12] F.M. Samuel and S.S. Motsa, Solving hyperbolic partial differential equations using a highly accurate
multi-domain bivariate spectral collocation method, Wave Motion, 88(2019) 57–72.

[13] R. Jiwari, S. Pandit and R.C. Mittal, A differential quadrature algorithm to solve the two dimensional
linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Applied Mathe-
matics and Computation, 218 (2012) 7279-7294.

[14] R. Jiwari, S. Pandit and R.C. Mittal, A differential quadrature algorithm for the numerical solution of
the second-order one dimensional hyperbolic telegraph equation, Int. J. Nonlinear Sciences, 13(2012),
259-266.

[15] R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving
hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions, Computer
Physics Communications, 193 (2015) 55-65.



188 Bishnu Pada Ghosh, Urvashi Arora and R.K. Mohanty

(a) Plot of exact solution (b) Plot of numerical solution

Figure 6. Graph of exact vs. numerical solutions for n = 200, η = 1.04, ∆x = 1/20 of Problem
6.

[16] Anjali Verma and R. Jiwari, Cosine expansion based differential quadrature algorithm for numerical
simulation of two dimensional hyperbolic equations with variable coefficients. International Journal of
Numerical Methods for Heat and Fluid Flow, 25(2015)574-1589.

[17] S. Pandit, R. Jiwari, K. Bedi and M.E. Koksal, Haar wavelets operational matrix based algorithm for
computational modelling of hyperbolic type wave equations, Engineering Computations, 34 (2017)
2793-2814.

[18] M.M. Chawla, Super stable two-step methods for the numerical integration of general second order initial
value problem, J. Comput. Appl. Math., 12 (1985) 217–220.

[19] A.S. Rai and U. Ananthakrishnaiah, Additive parameters methods for the numerical integration of y′′ =
f(x, y, y′), J. Comput. Appl. Math., 67 (1996) 271–276.

[20] G. Saldanha and D.J. Saldanha, A class of explicit two-step superstable methods for second-order linear
initial value problems, Int. J. Comput. Math., 86 (2009) 1424–1432.

[21] R.K. Mohanty, An unconditionally stable difference scheme for the one space dimensional linear hyper-
bolic equation, Applied Mathematics Letters, 17 (2004) 101-105.

[22] R.K. Mohanty, An unconditionally stable finite difference formula for a linear second order one space
dimensional hyperbolic equation with variable coefficients, Applied Mathematics and Computations,
165 (2005) 229-236.

[23] F. Gao and C. Chi, Unconditionally stable difference schemes for a one-space dimensional linear hyper-
bolic equation, Appl. Math. Comput., 187 (2007) 1272-1276.

[24] M.S. El-Azab and M. El-Gamel, A numerical algorithm for the solution of the telegraphic equation,
Appl. Math. Comput., 190 (2007) 757-764.

[25] M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraphic equation, Numer.
Meth. Partial Diff. Eq., 24 (2008) 1080 – 1093.

[26] A. Mohebbi and M. Dehghan, High order compact solution of the one-space dimensional linear hyper-
bolic equation, Numer. Meth. Partial Diff. Eq., 24 (2008) 1222 – 1235.

[27] R.K. Mohanty, New unconditionally stable difference schemes for the solution of multi-dimensional
telegraphic equations, I. J. Comp. Math., 86 (2009) 2061-2071.

[28] H. Ding and Y. Zhang, A new unconditionally stable compact difference scheme of O(τ 2 + h4) for the
1D linear hyperbolic equation, Appl. Math. Comput., 207 (2009) 236 – 241.

[29] M. Dehghan and A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equa-
tion by using the dual reciprocity boundary integral equation (DRBIE) method, Engineering Analysis
with Boundary Elements, 34 (2010) 51–59.



A High Resolution Half-step Numerical Approximation for 1D Quas... 189

[30] R.C. Mittal and R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph
equation by cubic B-spline collocation method, Applied Mathematics and Computation, 220 (2013)
496–506.

[31] S. Pandit, M. Kumar and S. Tiwari, Numerical simulation of second-order hyperbolic telegraph type
equations with variable coefficients, Computer Physics Communications, 187(2015) 83–90.

[32] Z. Hong, Y. Wang and H. Hao, Adaptive Monte Carlo methods for solving hyperbolic telegraph equation,
J. Comp. Appl. Math., 345(2019) 405–415.

[33] M.K. Jain, S.R.K. Iyengar and G.S. Subramanyam, Variable mesh methods for the numerical solution of
two point singular perturbation problems, Comput. Methods Appl. Mech. Eng., 42 (1984) 273-286.

[34] R.K. Mohanty, A family of variable mesh methods for the estimates of (du/dr) and the solution of
nonlinear two point boundary value problems with singularity, J. Comput. Appl. Math., 182 (2005) 173-
187.

[35] R.K. Mohanty, A class of non-uniform mesh three point arithmetic average discretization for y′′ =
f(x, y, y′) and the estimates of y′, Appl. Math. Comput., 183 (2006) 477-485.

[36] R.K. Mohanty and Venu Gopal, High accuracy cubic spline finite difference approximation for the solu-
tion of one-space dimensional non-linear wave equations, Appl. Math. Comput., 218 (2011) 4234-4244.

[37] R.K. Mohanty and Venu Gopal, A fourth order finite difference method based on spline in tension ap-
proximation for the solution of one-space dimensional second order quasi-linear hyperbolic equations,
Advances in Difference Equations, 70 (2013).

[38] R.K. Mohanty and Venu Gopal, High accuracy non-polynomial spline in compression method for one-
space dimensional quasi-linear hyperbolic equations with significant first order space derivative term,
Appl. Math. Comput., 238 (2014) 250-265.

[39] R.K. Mohanty and G. Khurana, A new spline in compression method of order four in space and two in
time based on half-step grid points for the solution of the system of 1D quasi-linear hyperbolic partial
differential equations, Advances in Difference Equations, 97 (2017).

[40] R.K. Mohanty and G. Khurana, A new spline-in-tension method of O(k2 + h4) based on off-step grid
points for the solution of 1D quasi-linear hyperbolic partial differential equations in vector form, Differ-
ential Equations and Dynamical Systems, 27 (2019) 141-168.

[41] R.K. Mohanty and G. Khurana, A new high accuracy cubic spline method based on half-step discretiza-
tion for the system of 1D non-linear wave equations, Engineering Computations, 36 (2019) 930-957.

[42] S. Singh and P. Lin, High order variable mesh off-step discretization for the solution of 1D non-linear
hyperbolic equation, Appl. Math. Comput., 230 (2014), 629–638.

[43] R.K. Mohanty and Sean McKee, On the stability of two new two-step explicit methods for the numerical
integration of second order initial value problem on a variable mesh, Applied Mathematics Letters, 45
(2015) 31-36.

[44] R.K. Mohanty and B.P. Ghosh, Absolute stability of an implicit method based on third-order off-step
discretization for the initial-value problem on a graded mesh, Engineering with Computers, 37 (2021)
809-822.

[45] R.K. Mohanty and B.P. Ghosh, Sean McKee, On the absolute stability of a two-step third order method
on a graded mesh for an initial-value problem, Comput. Appl. Math., 40 (2021) 35.

[46] R.K. Mohanty, G. Manchanda, A. Khan and G. Khurana, A new high accuracy method in exponential
form based on off-step discretization for non-linear two point boundary value problems, J. Diff. Equ.
Appl., 26 (2020)171-202.

[47] R.K. Mohanty, G. Manchanda, A. Khan and G. Khurana, A new high accuracy method in exponential
form based on off-step discretization for non-linear two point boundary value problems, J. Appl. Anal.
Comput., 10 (2020) 1741-1770.

[48] N. Setia and R.K. Mohanty, A third order finite difference method on a quasi-variable mesh for non-
linear two point boundary value problems with Robin boundary conditions, Soft Computing, 25 (2021)
12775-12788.

[49] N. Setia and R.K. Mohanty, A high accuracy variable mesh numerical approximation for two point
nonlinear BVPs with mixed boundary conditions, Soft Computing, 26 (2022) 9805-9821.

[50] C.Y. Kelly, Iterative Methods for Linear and Non-linear Equations, SIAM Publications, Philadelphia,
1995.

[51] L.A. Hageman and D.M. Young, Applied Iterative Methods, Dover Publication, New York, 2004..



190 Bishnu Pada Ghosh, Urvashi Arora and R.K. Mohanty

Author information
Bishnu Pada Ghosh, Department of Mathematics, Jagannath University, Dhaka, 1100, Bangladesh.
E-mail: bishnu@math.jnu.ac.bd

Urvashi Arora, Department of Mathematics, Rajdhani College, University of Delhi, New Delhi, 110015, India.
E-mail: urvashi.arora@rajdhani.du.ac.in

R.K. Mohanty, Department of Mathematics, South Asian University, Maidan Garhi, New Delhi, 110068, India.
E-mail: rmohanty@sau.ac.in


	1 Introduction
	2 Conceptualization of the method 
	3 Deducing the numerical methods
	4 Stability consideration 
	5  Numerical results
	6 Final remarks

