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Abstract In this research work, we study the dynamical behavior of the proposed model
representing three cell populations (tumor cells and two types of macrophage cells) and the non-
linear activation rate (Michaelis-Menten dynamics) of tumor-immune interaction. The proposed
model is described by the system of three ordinary differential equations. To understand the
dynamic behavior of the proposed model, stability and bifurcation analysis are performed. Sta-
bility analysis is done at the biologically feasible equilibrium points obtained from the model.
For bifurcation analysis first, the proposed model is converted into its discrete version by im-
plementing Euler’s forward scheme, then the explicit criteria of Hopf-bifurcation analysis are
applied. Which demonstrates the long-term survival of M1-type of macrophages, M2-type of
macrophages, and tumor cells. Furthermore, with the help of numerical simulation, sensitivity
analysis is done for both dependence on initial conditions as well as dependence on parameters
by using MATLAB software.

1 Introduction

The tumor-immune interaction system is considered one of the most fascinating schemes in
the mathematical modeling of the biological system. The immune system is the most complex
system in our body, in which the effector cells can play a dual role and do multiple functions with
several metabolic pathways. Over the last few decades, the pro-tumor and anti-tumor activities
of effector cells especially macrophages gained much interest in tumor immunotherapy [4, 18,
30, 36]. Macrophages are developed by the body’s defense system and released from the bone
marrow as immature monocytes. These types of cells are engaged by chemokines into the tissue
and go through differentiation into macrophages after circulating in the blood [12]. Depending
on the pathologic position to which macrophages are recruited, they can show a collection of
phenotypes and functions. Macrophages are the white blood cells in the tissues, which help
in crunching bacteria invaders and healing injured tissues. Some macrophages are genetically
engineered effector cells that have great potential to kill tumor cells. Some macrophages can also
immigrate to tumors from the surrounding tissues [23]. Based on the macrophages’ activation
position, M1-type and M2-type of macrophages are the two different sub-types of these cells. [5,
7]. Numerous types of research have been conducted and have permitted categorizing M1-type
as cells capable of generating a huge amount of pro-inflammatory cytokines, showing soaring
levels of major histocompatibility complex molecules and implicated in the killing of tumor cells
and pathogens. In the meantime, the body’s immune system develops other activated M2-type
cells, which can decrease the pro-inflammatory response, eliminate cell wastes and stimulate
tissue repair [10, 24, 34, 37]. The immune system develops activated M2 cells because the anti-
tumor properties of M1 cells develop a long-lasting immunological reaction. This may result in
harm to tissues and DNA. The macrophages mainly belonging to the M2 population are present
in neoplastic tissues and are called tumor-associated macrophages [25].

In a recent study, it has been observed that tumor growth can lead to M1→M2 polarization
[3]. Another recent study has recommended a re-polarization of macrophage cells with regard
to the classically activated M1 macrophage cells as a successful treatment proposal to guarantee
tumor elimination [2]. A huge study has been done to help understand the tumor-macrophage
interaction system [13, 14, 15, 16, 17]. During the 1980s, De Boer et al. published a research
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paper on the mathematical model of interaction between T lymphocytes and macrophages that
induce an immunological response against tumors [29]. In 1998, Owen and Sherrate used a five-
dimensional ODE-based model to understand the roles of macrophages’ existence, invasion,
and capacity to destroy tumor cells specifically in avascular tumors [22]. They looked at how
macrophages responded to chemoattractants and the rate at which mutant cells produced regula-
tory substances. To assess the capacity of the modified macrophages to reverse tumor alterations
as model parameters are changed, In 2004, Byrne et al. [11] and Owen et al. [21] proposed two
mathematical models, depicting the dynamics among healthy cells, tumor cells, and invading
macrophages. Both investigations demonstrated the non-initiative sensitivity of such methods
to the tumor and therapeutic parameters. Additionally, Web et al. extended the research work
done in [21] to demonstrate how medicines with restricted diffusion rates or those that are not
cell cycle sensitive enable macrophages to efficiently target hypoxic tumor cells [33]. In order
to determine whether the variation in the M2/M1 ratio and the re-polarization of macrophages
records for the distinction in tumor formation or tumor decline, Den Breems and Eftimie de-
veloped a new non-spatial mathematical framework. This framework refers to the relationships
between tumor cells, M1 type of macrophages and M2 type of macrophages, and Th1 and Th2
cells. [27].

The remaining part of the research article is organized in the following manner: In section
2, we present the proposed model and explain how it is created. Next, non-dimensionalization,
linearization, and stability analysis of the proposed model are done. In section 3, Euler’s forward
method is implemented for the discretization of the model. Bifurcation analysis is done by using
explicit criteria of Hopf-bifurcation at the critical value of the bifurcation parameter. In section
4, numerical simulation and sensitivity analysis for the parameters and initial condition is done,
to support and prove analytical results. Finally, in section 5, concluding remarks are given.

2 Tumor-Macrophage Interaction Model

Consider an ODE-based tumor-macrophages interaction model proposed by S Yaqin et al. [32].

dx(t)

dt
= ax(t)(1− bx(t))− fx(t)y(t) + gx(t)z(t),

dy(t)

dt
= x(t)y(t)− d1y(t)− r1y(t) + r2z(t),

dz(t)

dt
= e2x(t)z(t)− d2z(t) + r1y(t)− r2z(t).

(2.1)

Inspired by the mathematical model (2.1), we have extended the work of S Yaqin et al. [32]
by applying the nonlinear activation rate or recruitment rate of macrophages by tumor cells in
the model. This positive nonlinear or heterogenetic activation rate is called Michaelis-Menten
Kinetics (MMK) based dynamics of the tumor-immune response system.

Mathematically, Michaelis-Menten Kinetics is defined by
ηϕ(t)ψ(t)

ε+ ψ(t)
, where ϕ(t) denotes the

no. of tumor cells at time t, ψ(t) denotes the no. of effector cells (macrophages) at time t. η
and ε are positive constants. Michaelis-Menten type of response rate is the same as the term
used by Kuznotsev et al. [35], Kieschner and Panetta [8] and Owen and Sherrat [20]. This
research work divides the effector cells into type-1 (M1) and type-2 (M2) macrophages. Where
M1 macrophage cells play anti-tumor activities and help in controlling the growth of tumor cells
and M2 macrophage cells play pro-tumor activities.

Now, to study the effects of type-1 macrophages (anti-tumor) and type-2 macrophages (pro-
tumor) on the growth and development of tumors, We take a look at a basic mathematical model
given by S Yaqin et al. [32]. Then, by applying Michaelis-Menten Kinetics-based activation rate
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to the model (2.1), we have

dT

dt
= aT (1− bT )− fTM1

a1 + T
+
gTM2
a2 + T

,

dM1
dt

=
e1TM1
a1 + T

− d1M1− r1M1 + r2M2,

dM2
dt

=
e2TM2
a2 + T

− d2M2 + r1M1− r2M2.

(2.2)

In this mathematical model, there are three variables or cell populations; the tumor cells (T),
the type-1 macrophages (M1), and the type-2 macrophages (M2). The following biological
presumptions have been used to develop the proposed model (2.2).

In the first equation, the logistic growth term is being used because the growth of the tumor
cells starts declining after reaching environmental carrying capacity due to a lack of nutrients in
the environment [1, 19]. Therefore, tumor cells multiply logistically at a rate a, till environmental
carrying capacity b−1. f is the rate at which tumor cells are killed by M1 macrophage cells
[6]. In the meantime, augmentation of tumor cells increases by the presence of M1 cells [7].
In the second equation, e1 is the activation rate of M1 macrophages due to pro-inflammatory
cytokines secreted by the tumor cells [2]. r1 is the rate at which re-polarization of M1 → M2
macrophage cells occurs by different types of immune cells. M1 cells have half-life span of
1
d1

. In the third equation, e2 is the rate at which M2 macrophages are activated with the help of
cytokines, which are connected with tumor-promoting environment [2]. r2 is the rate at which re-
polarization of M2 → M1 macrophage cells occurs by different types of immune cells present
in the surrounding environment. M2 cells have half-life span of 1

d2
. We will choose d1 = d2 in

the model analysis.
Now, we nondimensionalize the generalized model (2.2) by using the following substitutions:

x = T
T (0) , y = M1

M2(0)
, z = M2

M2(0)
, τ = e1T (0)t, α = a

e1T (0)
, β = bT (0), γ1 =

f
e1T (0)

, γ2 = g
e1T (0)

, α1 = a1
T (0) , α2 = a2

T (0) , δ1 = 1
T (0) , ω1 = d1

e1T (0)
, θ1 =

r1
e1T (0)

, δ2 =
e2

e1T (0)
, ω2 =

d2
e1T (0)

, θ2 =
r2

e1T (0)
.

Therefore, the required dimensionless form of the proposed model (2.2) is given by

dx

dt
= αx(1− βx)− γ1xy

α1 + x
+

γ2xz

α2 + x
,

dy

dt
=

δ1xy

α1 + x
− ω1y − θ1y + θ2z,

dz

dt
=

δ2xz

α2 + x
− ω2z + θ1y − θ2z.

(2.3)

2.1 Stability analysis of system (2.3)

System (2.3)’s equilibrium points can be used to conduct the stability analysis. The equilibrium
points can be obtained as follows:

dx

dt
= 0⇒ αx(1− βx)− γ1xy

α1 + x
+

γ2xz

α2 + x
= 0,

dy

dt
= 0⇒ δ1xy

α1 + x
− ω1y − θ1y + θ2z = 0,

dz

dt
= 0⇒ δ2xz

α2 + x
− ω2z + θ1y − θ2z = 0.

By solving these three equations simultaneously, we obtain two solution points given byE1(0, 0, 0),

E2(
1
β
, 0, 0) and a quadratic equation in x given by:

R(x) = Ax2 −Bx+ C = 0. (2.4)
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Where,
A = δ1δ2 − δ1(ω2 + θ2)− δ2(ω1 + θ1) + ω2(ω1 + θ1) + ω1θ2,

B = δ1α2(ω2 + θ2) + δ2α1(ω1 + θ1)− (α1 + α2)[ω2(ω1 + θ1) + ω1θ2],

C = α1α2[ω1(ω2 + θ2) + ω2θ1].

Its discriminant is given by: ∆ = B2 − 4AC.
By some calculations and substitutions, we get:

∆ = [(α2 − α1)l+ α2m+ α1n]2 + 4α1α2l(m− δ1δ2).

Where,
l = ω2(ω1 + θ1) + ω1θ2, m = δ1(ω2 + θ2), n = δ2(ω1 + θ1).

Therefore, ∆ 1 0, if m 1 δ1δ2. i.e., if ω2 + θ2 1 δ2.
Which implies there exist real roots for the quadratic equation (2.4).

Now, there exists at least one positive root for the quadratic equation (2.4), if the following
positivity condition is satisfied:

δ1α2(ω2 + θ2) + δ2α1(ω1 + θ1) > (α1 + α2)[ω2(ω1 + θ1) + ω1θ2].

Again, if there exists an interior equilibrium point E3(x̄, ȳ, z̄). Then the equilibrium point E3
needs to satisfy the system (2.3).

Let’s take x̄ = x∗, then from system (2.3), we obtain:

αx∗(1− βx∗)− γ1x
∗ȳ

α1+x∗ + γ2x
∗z̄

α2+x∗ = 0,
δ1x

∗ȳ

α1 + x∗
− ω1ȳ − θ1ȳ + θ2z̄ = 0,

δ2x
∗z̄

α2 + x∗
− ω2z̄ + θ1ȳ − θ2z̄ = 0.

Now, by solving the system of these three equations simultaneously for ȳ and z̄, we obtain:

ȳ =
α(1− βx∗)(α1 + x∗)[δ2x

∗ − ω2(α2 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
and

z̄ = − α(1− βx∗)(α2 + x∗)[δ1x
∗ − ω1(α1 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
.

Therefore, the equilibrium point E3(x̄, ȳ, z̄) of system (2.3) is given by:

E3(x̄, ȳ, z̄) = (x∗,
α(1− βx∗)(α1 + x∗)[δ2x

∗ − ω2(α2 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
,

− α(1− βx∗)(α2 + x∗)[δ1x
∗ − ω1(α1 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
).

For interior equilibrium point E3(x̄, ȳ, z̄) to be positive, we need to define positivity condi-
tions for E3(x̄, ȳ, z̄). So, we have obtained the following conditions on x∗, which needs to be
satisfied for positive interior equilibrium E3(x̄, ȳ, z̄) and the conditions are given by:

γ1ω2α2 + γ2ω1α1

γ1δ2 + γ2δ1 − ω2 − ω1
<

ω2α2

δ2 − ω2
< x∗ <

ω1α1

δ1 − ω1
<

1
β
. (2.5)



Dynamical Analysis of Tumor Model with Nonlinear Activation Rate 61

Table 1. System parameters and variables with numerical values used for Numerical Simulation

Dimensional
Parameters

Parameter Val-
ues and Units

Parameter Biological Meaning Dimensionless
Parameters

Parameter
Source

T (0) 106 cells(c) No. of initial T cells x0

M1(0) 106 cells No. of initial M1 cells y0

M2(0) 106 cells No. of initial M2 cells z0

a 0.565 /day Growth rate of T cells α

b−1 2× 109/cells Environmental carrying Ca-
pacity

β−1

d1 0.2 /day(d) Mortality rate of M1 cells ω1

d2 0.2 /day(d) Mortality rate of M2 cells ω2

f 2× 10−6/cd Death rate of T cells by M1
cells

γ1 [27, 32]

g 10−7/cd Death rate of T cells by M2
cells

γ1

e1 10−6/cd Enabling rate of M1 by T cells δ1

e2 9× 10−7/cd Enabling rate of M2 by T cells δ2

r1 0.05/day M1 to M2 conversion rate θ1

r2 0.04/day M2 to M1 conversion rate θ2

a1 0.002/day Half saturation constant α1

a2 0.004/day Half saturation constant α2
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Figure 1. Graphical time series analysis of the model (2.3) with respect to the initial conditions.
In a1, a2, and a3, the three different initial values of the tumor cells are taken respectively as
(x0, y0, z0)= (2, 460, 346), (4, 460, 346), (10, 460, 346). In b1, b2, and b3, the three different
initial values of the M1 cells are taken respectively as (2, 260, 300), (2, 360, 300), (2, 460, 300).
In c1, c2, and c3, the three different initial values of the M2 cells are taken respectively as (2, 360,
100), (2, 360, 300), (2, 360, 500).



62 Ausif Padder, A. Afroz and Ayub Khan

2.2 Linearization Process

To perform the stability analysis of the system (2.3), we first linearize the system at the general
equilibrium point E3(x̄, ȳ, z̄). For linearization of the system, we approximate the equations of
the system atE3(x̄, ȳ, z̄). This can be done by finding the tangent to these functions atE3(x̄, ȳ, z̄),
as follows:

dx

dt
= [α− 2αβx̄− α1γ1ȳ

(α1 + x̄)2 +
α2γ2z̄

(α2 + x̄)2 ](x− x̄)− [
γ1x̄

α1 + x̄
](y − ȳ) + [

γ2x̄

α2 + x̄
](z − z̄),

dy

dt
= [

α1δ1ȳ

(α1 + x̄)2 ](x− x̄) + [
δ1x̄

α1 + x̄
− ω1 − θ1](y − ȳ) + θ2(z − z̄),

dz

dt
= [

α2δ2z̄

(α2 + x̄)2 ](x− x̄) + θ1(y − ȳ) + [
δ2x̄

α2 + x̄
− ω2 − θ2](z − z̄).

(2.6)

This is the required linearized form of the system (2.3). The matrix representation of the
linearized system (2.6) is given by:

dx

dt
dy

dt
dz

dt

 =

r11 r12 r13

r21 r22 θ2

r31 θ1 r33


x− x̄y − ȳ
z − z̄

 .

Where,
r11 = α(1− 2βx̄)− α1γ1ȳ

(α1+x̄)2 +
α2γ2z̄

(α2+x̄)2 , r12 = −
γ1x̄

α1 + x̄
, r13 =

γ2x̄

α2 + x̄
,

r21 =
α1δ1ȳ

(α1 + x̄)2 , r22 =
δ1x̄

α1 + x̄
− ω1 − θ1, r31 =

α2δ2z̄

(α2 + x̄)2 , r33 =
δ2x̄

α2 + x̄
− ω2 − θ2.

The stability analysis of system (2.3) at equilibrium points E1(0, 0, 0) and E2(
1
β , 0, 0) by

considering its linearized form (2.6) can be done by using the following results:

Theorem 1: The tumor-free equilibrium point E1(0, 0, 0) of system (2.3) is always unstable.
Proof: Consider the linearized form of system (2.3). The Jacobean matrix of linearized system
(2.6) at the equilibrium point E1(0, 0, 0) is given by:α 0 0

0 −ω1 − θ1 θ2

0 θ1 −ω2 − θ2

 .

Its characteristic equation is: (α− λ)[(−ω1 − θ1 − λ)(−ω2 − θ2 − λ)− θ1θ2] = 0

or, (α− λ)[(ω1 + λ)(ω2 + λ) + θ1(ω2 + λ) + θ2(ω1 + λ)] = 0.

From the characteristic equation, it can be observed that one of the eigenvalues is positive.
So, we conclude that system (2.3) is unstable at the tumor-free equilibrium point E1(0, 0, 0).

Theorem 2: The tumor-dominant equilibrium point E2(
1
β , 0, 0) of the system (2.3) is locally

asymptotically stable if the following two conditions are satisfied:

1.
δ1

βα1 + 1
+

δ2

βα2 + 1
< (ω1 + ω2 + θ1 + θ2).

2.
δ2 − ω2(βα2 + 1)

βα2 + 1
> θ2(

δ1 − ω1(βα1 + 1)
δ1 − (ω1 + θ1)(βα1 + 1)

).

Proof: Consider the system (2.3) with equilibrium point E2(
1
β , 0, 0). The Jacobian matrix of the

system of equations is given by:
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
−α − γ1

βα1 + 1
γ2

βα2 + 1

0
δ1

βα1 + 1
− ω1 − θ1 θ2

0 θ1
δ2

βα2 + 1
− ω2 − θ2

 .

The characteristic equation of the matrix is given by:

(α+ λ)[(λ+ ω1 −
δ1

βα1 + 1
+ θ1)(λ+ ω2 −

δ2

βα2 + 1
+ θ2)− θ1θ2] = 0.

Either λ = −α or

λ2 − λ(r + a− θ2 − θ1) + ar − aθ2 − rθ1 = 0. (2.7)

Where, a =
δ1

βα1 + 1
− ω1, r =

δ2

βα2 + 1
− ω2.

Solving equation (2.7) for λ we get:

λ =
(r + a− θ2 − θ1)±

√
(θ2 − θ1 − r + a)2 + 4θ1θ2

2
.

Here, the discriminant of the above quadratic equation which is actually a characteristic equa-
tion of the Jacobian matrix is always positive. i.e.,

(θ2 − θ1 − r + a)2 + 4θ1θ2 > 0.

Now from the above analysis, it can be observed that the roots of a quadratic equation (2.7)
are negative if they will satisfy the following conditions, which are given by:

r + a− θ2 − θ1 > 0 and ar − aθ2 − rθ1 > 0.

i.e., if,

δ2 >
(βα2 + 1)[(βα1 + 1)(ω1 + ω2 + θ1 + θ2)− δ1]

(βα1 + 1)
= ε0. (2.8)

and

δ2 < (βα2 + 1)[
θ2(δ1 − ω1(βα1 + 1)) + ω2(δ1 − (ω1 + θ1)(βα1 + 1))

δ1 − (ω1 + θ1)(βα1 + 1)
] = ε1. (2.9)

The eigenvalues of the above matrix are negative reals if ε0 < δ2 < ε1. These are the local
asymptotic stability conditions for the equilibrium point E2(

1
β , 0, 0). Hence system (2.3) is con-

ditionally locally asymptotically stable for the tumor dominant equilibrium point.

From the above analysis, it can be observed there exists at most one positive interior equilib-
rium point for the system (2.3), if and only if (2.5) holds. Let us consider E3(x̄, ȳ, z̄), the unique
positive interior equilibrium point. Then, we have the following results for E3(x̄, ȳ, z̄) of system
(2.3).

Theorem 3: The positive interior equilibrium point E3(x̄, ȳ, z̄) of the system (2.3) is condition-
ally locally asymptotically stable.
Proof: Here we will consider the coefficient matrix from the linearized system (2.6), which is
the required Jacobian matrix of system (2.3) and is given by:

α(1− 2βx̄)− α1γ1ȳ
(α1+x̄)2 +

α2γ2z̄
(α2+x̄)2 − γ1x̄

α1 + x̄

γ2x̄

α2 + x̄
α1δ1ȳ

(α1 + x̄)2
δ1x̄

α1 + x̄
− ω1 − θ1 θ2

α2δ2z̄

(α2 + x̄)2 θ1
δ2x̄

α2 + x̄
− ω2 − θ2

 .
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To do a stability analysis of system (2.3) at the positive interior equilibrium point. We need
to find out the nature of the eigenvalues of the above matrix. Now the characteristic equation of
the above Jacobian matrix is given by:

λ3 +X1λ
2 +X2λ+X3 = 0. (2.10)

Where,

X1 = −α(1− 2βx̄) +
α1γ1ȳ

(α1 + x̄)2 −
α2γ2z̄

(α2 + x̄)2 −
δ1x̄

α1 + x̄
− δ2x̄

α2 + x̄
+ ω1 + ω2 + θ1 + θ2,

X2 = [α(1 − 2βx̄) − α1γ1ȳ

(α1 + x̄)2 +
α2γ2z̄

(α2 + x̄)2 ][
δ1x̄

α1 + x̄
− ω1 − θ1 +

δ2x̄

α2 + x̄
− ω2 − θ2] +

(
δ1x̄

α1 + x̄
−ω1− θ1)(

δ2x̄

α2 + x̄
−ω2− θ2)+ (

α1δ1ȳ

(α1 + x̄)2 )(
γ1x̄

α1 + x̄
)+ (

α2δ2z̄

(α2 + x̄)2 )(
γ2x̄

α2 + x̄
)− θ1θ2,

X3 = (
δ1x̄

α1 + x̄
− ω1 − θ1)[(

α2δ2z̄

(α2 + x̄)2 )(
γ2x̄

α2 + x̄
)− (

α1δ1ȳ

(α1 + x̄)2 )(
γ1x̄

α1 + x̄
)] + (α(1− 2βx̄)−

α1γ1ȳ

(α1 + x̄)2 +
α2γ2z̄

(α2 + x̄)2 )[θ1θ2−(
δ1x̄

α1 + x̄
−ω1−θ1)(

δ2x̄

α2 + x̄
−ω2−θ2)]−θ1(

α1δ1ȳ

(α1 + x̄)2 )(
γ2x̄

α2 + x̄
)+

θ2(
α2δ2z̄

(α2 + x̄)2 )(
γ1x̄

α1 + x̄
), and

x̄ = x∗, ȳ =
α(1− βx∗)(α1 + x∗)[δ2x

∗ − ω2(α2 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
,

z̄ = − α(1− βx∗)(α2 + x∗)[δ1x
∗ − ω1(α1 + x∗)]

γ1[δ2x∗ − ω2(α2 + x∗)] + γ2[δ1x∗ − ω1(α1 + x∗)]
.

Now we will discuss the nature of roots of equation (2.10) by using the following lemma:

Lemma 1: Consider a cubic equation of the form:

u3 + r1u
2 + r2u+ r3 = 0 ,

where, r1, r2, and r3 are the real coefficients (constants) with u as a variable. The system is
locally asymptotically stable at the positive interior equilibrium point, if and only if the following
conditions are satisfied:

r1 > 0 , r3 > 0 and r1r2 − r3 > 0.

These conditions are called the Routh-Hurwitz stability conditions, which guarantee: Re(u) < 0.

Now we will apply the same lemma to the cubic equation (2.10), which has been obtained
from the system (2.3) at the equilibrium point E3(x̄, ȳ, z̄).

Consider the cubic equation (2.10): λ3 +X1λ
2 +X2λ+X3 = 0.

Suppose that the positivity conditions defined by (2.5) are satisfied, then the interior equi-
librium point E3(x̄, ȳ, z̄) of the system (2.3) is locally asymptotically stable if and only if the
following conditions are satisfied:

X1 > 0, X3 > 0, X1X2 −X3 > 0. (2.11)

Where, X1, X2 and X3 are the coefficients of cubic equation (2.10).
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Figure 2. Sensitivity analysis of model (2.3) when parameters α, γ1, δ1, α1, δ2 and α2 are varied
in 1st, 2nd, 3rd, 4th, 5th and 6th graph respectively. All four parameters are given four different
values as shown in their respective figures. The initial conditions are chosen as (x0, y0, z0) =
(0.367, 0.643, 0.934) and the other parameter values are the same as in Table 1.

3 Bifurcation Analysis

3.1 Hopf-Bifurcation:

In this section, we analyze and study the existence of Hopf-bifurcation for system (2.3) at the
equilibrium point E3(x̄, ȳ, z̄). In order to find out the parametric conditions for the existence of
Hopf-bifurcation of the system (2.3), we use an explicit criterion of Hopf-bifurcation without
calculating the eigenvalues of the matrix obtained from the system (2.3) at the positive interior
equilibrium point [9, 26, 38]. The explicit criteria of Hopf bifurcation can be found in [39].

To discuss the bifurcation dynamics of the tumor-immune interaction model (2.3), we convert
it into its discrete counterpart by implementing Euler’s forward scheme (method) and obtain the
following discrete system:

x(n+ 1) = x(n) + h[αx(n)(1− βx(n))− γ1x(n)y(n)

α1 + x(n)
+
γ2x(n)z(n)

α2 + x(n)
],

y(n+ 1) = y(n) + h[
δ1x(n)y(n)

α1 + x(n)
− ω1y(n)− θ1y(n) + θ2z(n)],

z(n+ 1) = z(n) + h[
δ2x(n)z(n)

α2 + x(n)
− ω2z(n) + θ1y(n)− θ2z(n)].

(3.1)
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Figure 3. Graphical time series analysis of Discrete model (3.1). In graph a, the initial cell
population is chosen as (2, 300, 200). In graph b, the initial population is chosen as (2, 200,
200). In c, the initial condition is chosen as (1, 80, 50).

Now, applying Taylor series expansion on each equation of system (3.1) separately, we obtain
the required linearized version of the system (3.1) in matrix form given by:
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F1

F2

F3

 =

a11 a12 a13

a21 a22 hθ2

a31 hθ1 a33


u− x̄v − ȳ
w − z̄

 . (3.2)

Where, F1, F2, and F3 represent the first, second, and third equations respectively of the system
(3.2). Also,

a11 = 1 + h[α(1− 2βx)− γ1y
α1+x

+ γ2z
α2+x

], a12 = −
hγ1x

α1 + x
, a13 =

hγ2x

α2 + x
,

a21 =
hα1δ1y

(α1 + x)2 , a22 = 1 + h[
δ1x− (α1 + x)(ω1θ1)

α1 + x
], a31 =

hα2δ2z

(α2 + x)2 ,

a33 = 1 + h[
δ2x− (α2 + x)(ω2θ2)

α2 + x
].

The characteristic equation of the Jacobian matrix of linearized discrete system (3.1) at the
interior equilibrium point E3(x̄, ȳ, z̄) is given by:

λ3 + c2λ
2 + c1λ+ c0 = 0. (3.3)

Where,
c2 = −(a11 + a22 + a33),

c1 = a11(a22 + a33) + a22a33 − h2θ1θ2 − a12a21 − a13a31,

c0 = −a11a22a33 + a11h
2θ1θ2 + a12a21a33 − a12a31hθ2 − a13a21hθ1 +−a13a31a22.

Let us take n = 3, then the lemma given in [39], gives us the conditions on parameters under
which model (3.1) experiences Hopf-bifurcation. We will choose h as the bifurcation parameter
for analyzing the existence of Hoph- bifurcation of system (2.3) at the interior equilibrium point
E3(x̄, ȳ, z̄).

Theorem 4: [39] The coexistence positive equilibria E3(x̄, ȳ, z̄) of the discrete system (3.1)
experiences a Hopf bifurcation at the crucial value of the bifurcation parameter h = h0 if the
following conditions are satisfied:

1 Eigenvalue Criteria: D+
2 (h0) > 0, D−

2 (h0) = 0, ch0(1) > 0, (−1)3ch0(−1) > 0.

2 Transversality Condition: (
d

dh
(D−

2 (h)))h=h0 6= 0.

3 Resonance or non-resonance criteria: cos(
2π
k
) = 1 −

0.5ch0(1)D
−
0 (h0)

D+
1 (h0)

or cos(
2π
k
) 6=

1−
0.5ch0(1)D

−
0 (h0)

D+
1 (h0)

, k = 3, 4, 5, ...

Where c2, c1, c0 are the coefficients of the characteristic equation (3.3) and h0 is the possible
real root of:

1− c1(h) + c0(h)(c2(h)− c0(h)) = 0. (3.4)

Proof: Taking n = 3 and h as the bifurcation parameter, then from equation (3.3) we obtain:

D±
2 (h0) = det(R1 ±R2) . Where, R1 =

(
1 c2

0 1

)
and R2 =

(
c1 c0

c0 0

)
.

Therefore, D−
2 (h0) = det(R1 −R2) =

(
1− c1 c2 − c0

−c0 1

)
= 1− c1 + c0(c2 − c0) = 0

=⇒ D−
2 (h0) = 0,
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D+
2 (h0) = det(R1 +R2) =

(
1 + c1 c2 + c0

c0 1

)
= 1 + c1 − c0(c2 + c0) > 0

=⇒ D+
2 (h0) > 0.

Also, Ch0(1) = 1 + c2 + c1 + c0 > 0, =⇒ Ch0(1) > 0,

(−1)3Ch0(−1) = 1− c2 + c1 − c0 > 0 =⇒ (−1)3Ch0(−1) > 0,

( ddh(D
−
2 (h)))h=h0 =

d
dh(

(
1− c1 c2 − c0

−c0 1

)
)h=h0 =

d
dh(1− c1 + c0(c2 − c0))h=h0 6= 0

=⇒ ( ddh(D
−
2 (h)))h=h0 6= 0,

and 1−
0.5ch0(1)D

−
0 (h0)

D+
1 (h0)

=1− 0.5(1 + c2 + c1 + c0)

1 + c0
6= cos(

2π
k
)

=⇒ 1−
0.5ch0(1)D

−
0 (h0)

D+
1 (h0)

, k = 3, 4, 5, ...

All these conditions are verified for the set of parameter values chosen in the numerical
simulation section below. The critical value of the bifurcation parameter is h = h0 = 0.4137.

4 Numerical Simulation and Result Discussion

In this section, we discuss the dynamics of our proposed model (2.2), by using biologically suit-
able numerical values of parameters. The dimensionless form of model (2.2) vanishes the depen-
dence of variables and parameters on units. Therefore, the numerical values of non-dimensional
parameters have been used and are mentioned in table 1 with their respective numerical values.
Let us take:

α = 0.565, β = 0.0005, γ1 = 0.000002, γ2 = 0.0000001, α1 = 0.002, α2 =
0.004, δ1 = 0.6, δ2 = 0.2, ω1 = 0.2, ω2 = 0.022, θ1 = 0.05, θ2 = 0.444.

By using these numerical values of parameters in the analytic findings of the proposed model
(2.3), we obtain 0.0004 < x∗ < 0.001, ε0 = 0.1160, ε1 = 0.5294 and 0.1160 < δ2 < 0.5294
is also satisfied. By using these conditions, it can be observed that the equilibrium point E1 is
unstable, and E2 is locally asymptotically stable. This shows that our analytical results agree
with numerical simulation.

Again, the interior equilibrium points E3 exist only if 0.0004 < x∗ < 0.001 under the set of
values of parameters mentioned above. From equation (2.4), we obtain one positive root, which
satisfies the positivity conditions for interior equilibrium point E3. We take this positive root
of a quadratic equation (2.4) as the value of x∗ for calculating the interior equilibrium point.
Therefore, we have:

x̄ = x∗ = 0.000984, ȳ = 842.5901, z̄ = 788.7461.

By substituting the above-mentioned numerical values of parameters and the interior equilibrium
point E3(0.000984, 842.5901, 788.7461) in expression (2.11). We observe that all three condi-
tions for stability of the positive interior equilibrium point are satisfied. Hence it is numerically
also found that the interior equilibrium point E3 is locally asymptotically stable.

Furthermore, the roots of the characteristic equation (2.10) atE3(0.000984, 842.5901, 788.7461)
are given by λ1 = 0.3131 and two complex conjugate roots λ2,3 = −0.0679± 0.1738i.

For the numerical simulation of bifurcation analysis, the following numerical values of pa-
rameters are chosen for the analysis of the discrete model (3.1) [27, 32]:

α = 0.565, β = 0.0005, γ1 = 0.000002, γ2 = 0.0000001, α1 = 0.002, α2 = 0.004,
δ1 = 0.6, δ2 = 0.2, ω1 = 0.2, ω2 = 0.022, θ1 = 0.05, θ2 = 0.444, and h ∈ [0.1, 0.9].
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Initially, we choose h = 0.1 and the initial conditions as (u(0), v(0), w(0)) = (4.2, 0.2, 2.6)
[40, 41].
Also, the characteristic equation (3.3), is given by:

λ3 − 2.0534λ2 + 0.9886λ+ 0.000122 = 0.

Its roots are given by: λ = −0.00012, 0.7711, 0.9825.

Now, for the numerical simulation of bifurcation analysis, first, we must calculate the crit-
ical value of the bifurcation parameter, which is obtained from equation (3.4). While solving
equation (3.4), we obtain four different values of the bifurcation parameter. The suitable critical
value of the bifurcation parameter is chosen as h = h0 = 0.4134. With the help of the critical
value, all three conditions for the existence of Hopf bifurcation analysis are verified by using
MATLAB.

The existence of Hopf bifurcation is shown by defining the three conditions (see theorem 4) at
the coexistence equilibrium point. It is confirmed at the critical value of the bifurcation parameter
obtained from equation (3.4). The graphical analysis shows that the bifurcation parameter plays
an important role in controlling the growth of tumor cells. With the help of Michael’s-Menten
Kinetics, it is easy to understand and control the growth of tumor cells in the long run. The
limited response of macrophages to the tumor is the main function of Michael’s-Menten Kinetics,
which helps in controlling the growth of tumor cells.

The sensitivity analysis of our proposed model (2.3) is done in two ways. First, we choose
different initial conditions for plotting the growth curves, which shows that there is a great re-
sponse of tumor cells, M1, and M2 macrophages to initial conditions (see figure 1). Second,
we varied some important parameters within the small range and kept other parameters fixed to
understand the role of these important parameters on tumor growth and activation response rate
of macrophages (see figure 2).

Further, to check and analyse the effect of Michaelis-Menten kinetics on the population
growth of the proposed model (2.3), we vary the parameters involved in Michael-Menten ki-
netics. Firstly, we varied the parameters δ1 = [0.9, 0.8, 0.5, 0.4] and α1 = [0.02, 0.08, 0.4, 0.8],
separately for second equation of model (2.3). The effect of these two parameters on the pop-
ulation growth of M1 macrophages is shown graphically in figure 2. For M2 macrophages, we
vary the parameters δ2 = [0.1, 0.3, 0.5, 0.7] and α2 = [0.006, 0.04, 0.9, 0.8], separately in or-
der to analyse the effect of these two parameters on population growth of third equation in the
system (2.3). Which is again shown graphically in figure 2. Finally, we vary the parameters
γ1 = [0.0004, 0.008, 0.04, 0.8] and α = [0.365, 0.565, 0.765, 0.965], separately in the first equa-
tion of model (2.3) to check and analyse the effect of these two parameters on population growth
of tumor cells. Which is again shown graphically in figure 2. The initial conditions for all three
equations are chosen as (x0, y0, z0) = (0.367, 0.643, 0.934) for the above analysis of the model
(2.3).
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Figure 4. Bifurcation diagrams of the discrete model (3.1) with respect to the bifurcation pa-
rameter h. The diagram shows the effect of bifurcation parameter h separately on each variable
(cell population).

5 Conclusion

In this paper, we have studied the proposed model (2.2) by introducing the concept of Michael’s
Menten-based dynamics of tumor-immune interaction among three cell populations of M1-type
of macrophages, M2-type of macrophages, and tumor cells. The stability and dynamical analysis
of the proposed model is done by using the equilibrium points of the system (2.3). In order to
study and prove the existence of all three equilibrium points, we linearized system (2.3) to obtain
its Jacobian matrix. Then we used the same Jacobian matrix for the stability analysis of the
model (2.3). First, we studied the stability and existence of tumor-free equilibrium point E1. It
has been proved in theorem 1, that the tumor-free equilibrium point is always unstable. Secondly,
we studied the existence of tumor dominant equilibrium point E2. The stability analysis of E2
in proof of theorem 2 shows that the tumor dominant equilibrium point is locally asymptotically
stable if the activation rate of M2 macrophages by tumor cells is limited, i.e., (ε0 < δ2 < ε1).
So, we can say that Michael’s-Menten kinetics has a great role in limiting the activation rate of
M2 macrophages to tumor cells. Then thirdly, we studied the stability and existence of positive
interior equilibrium point E3 by using stability criteria defined by lemma 1. This shows that the
interior equilibrium is locally asymptotically stable (LAS) if the conditions defined by lemma 1
are satisfied. The LAS conditions are satisfied numerically as well.

Finally, we declare that our proposed model (2.2) with three cell populations (variables) and
the nonlinear activation rate of type-1 (M1) macrophages and type-2 (M2) macrophages by tu-
mor cells is an important feature for controlling and understanding the heterogenic and dual
character of immune cells and their role in tumor development. So, we suggest our readers use
this nonlinear activation (recruitment) concept of immune cells by tumor cells in other models
too, for a better understanding of the complex dynamics of the tumor-immune interaction sys-
tems. Further, in the future, we can use the time delay concept and fractional order derivatives
as well in such types of biological models.
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Figure 5. 3D phase portraits of population growth competition between all the three cell types
(tumor cells, M1 cells, and M2 cells) of the discrete system (3.1) for four different values of the
parameter h. The initial populations are chosen as (u(n), v(n), w(n)) = (0.0029, 5, 0.3).

Funding: The research work does not receive any funding from any organization.

Conflicts of interest: None.

Availability of data and material: Data availability is not applicable to this research work.

References
[1] A. Diefenbach, E.R. Jensen, A.M. Jamieson, D.H. Raulet, Rae1 and H60 ligands of the NKG2D receptor

stimulate tumor immunity, Nature 413 (6852) (2001) 165-71.

[2] A. Labonte, A. Tosello-Trampont, Y. Hahn, The role of macrophage polarization in infectious and inflam-
matory diseases, Mol. Cells 37 (4) (2014) 275-285.

[3] A. Mantovani, A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity, Curr.
Opin. Immunol. 22 (2) (2010) 231-237.

[4] A. Mantovani, P. Romero, A.K. Palucka, F.M. Marincola, Tumour immunity: effector response to tumor
and role of the microenvironment, Lancet 371 (9614) (2008) 771-783.

[5] A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage polarization: tumor-associated
macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends. Immunol. 23 (11) (2002)
549-555.

[6] A. Mantovani, T. Schioppa, C. Porta, P. Allavena, A. Sica, Role of tumor-associated macrophages in tumor
progression and invasion, Cancer Metast. Rev. 25 (3) (2006) 315-322.

[7] A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta, M.G. Totaro et al., Macrophage polarization in tumor
progression, Semin. Cancer Biol. 18 (5) (2008) 349-355.

[8] D. Kirschner and J. Panetta, Modelling immunotherapy of the tumor-immune interaction, Journal of Math-
ematical Biology 37 (3), 235-252 (1998).

[9] Din, Q., Elsadany, A.A., Khalil, H.: Neimark–Sacker bifurcation and chaos control in a fractional-order
plant-herbivore model. Discrete Dyn. Nat. Soc. 2017, 1–15 (2017).

[10] Gordon, S. (2003) Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35.



Dynamical Analysis of Tumor Model with Nonlinear Activation Rate 71

[11] H.M. Byrne, S.M. Cox, C.E. Kelly, Macrophage-tumour interactions: In vivo dynamics. Discrete Contin.
Dyn. Syst. Ser. B 4 (1) (2004) 81-98.

[12] Imhof, B. A., Aurrand-Lions, M. (2004) Adhesion mechanisms regulating the migration of monocytes.
Nat. Rev. Immunol. 4, 432–444.

[13] Niu, H.; Chen, Y.; West, B.J. Why Do Big Data and Machine Learning Entail the Fractional Dynamics?
Entropy 2021, 23, 297. https://doi.org/10.3390/e23030297.

[14] Pang, L., Liu, S., Liu, F., Zhang, X., & Tian, T. (2021). Mathematical modeling and analysis of tumor-
volume variation during radiotherapy. Applied Mathematical Modelling, 89, 1074-1089.

[15] Padder, M. A., Afroz, A., and Khan, A. (2022). Stability and Bifurcation Analysis of Tumor–Macrophages
Response Model and Inhibitory Role of Treg Cells. Iranian Journal of Science and Technology, Transac-
tions A: Science, 46(6), 1681-1695.

[16] Abd ElRaouf, H. M., Aref, A. M., Elsherif, A. K., and Khalifa, M. E. (2022, December). Stability and
Hopf Bifurcation Analysis of a Tumor Immune Model of virus infection with Time-delay. In 2022 10th
International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)
(pp. 133-137). IEEE.

[17] Ausif Padder, Rimpi Pal, Dr. Afroz, and Ayub Khan. Analysis of Tumor-immune Response Model by
Using Conformable Fractional-Order Derivative. South East Asian J. of Mathematics and Mathematical
Sciences, 2022. 18(3): 393-414.

[18] K.P. Wilkie, P. Hahnfeldt, Modeling the dichotomy of the immune response to cancer: cytotoxic effects
and tumor-promoting inflammation, Bull. Math. Biol. 79 (6) (2017) 1426-1448.

[19] L.A. Kane, Dynamics of tumor growth, Brit. J. Cancer 18 (3) (1964) 490-502.

[20] M. Owen and J. Sherratt, Modelling the macrophage invasion of tumors: Effects on growth and composi-
tion. IMA Journal of Mathematics Applied in Medicine and Biology 15, 165-185 (1998).

[21] M.R. Owen, H.M. Byrne, C.E. Lewis, Mathematical modeling of the use of macrophages as vehicles for
drug delivery to hypoxic tumor sites, J. Theor. Biol. 226 (4) (2004) 377-391.

[22] M.R. Owen, J.A. Sherratt, Modelling the macrophage invasion of tumors: effects on growth and compo-
sition, IMA J. Math. Appl. Med. Biol. 15 (2) (1998) 165-185.

[23] Mantovani, A., Allavena, P., Sica, A. (2004) Tumor-associated macrophages as a prototypic type II polar-
ized phagocyte population: role in tumor progression. Eur. J. Cancer 40, 1660–1667.

[24] Mantovani, A., Allavena, P., Sica, A. (2004) Tumor-associated macrophages as a prototypic type II polar-
ized phagocyte population: role in tumor progression. Eur. J. Cancer 40, 1660–1667.

[25] Mantovani, A., Sozzani, S., Locati, M., Allavena, P., Sica, A. (2002). Macrophage polarization: tumor-
associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23,
549–555.

[26] Matouk, A.E., Elsadany, A.A., Ahmed, E., Agiza, H.N.: Dynamical behavior of fractional-order Hast-
ings–Powell food chain model and its discretization. Commun. Nonlinear Sci. Numer. Simul. 27, 153–167
(2015).

[27] N.Y. den Breems, R. Eftimie, The re-polarisation of M2 and M1 macrophages and its role on cancer
outcomes, J. Theor. Biol. 390 (2016) 23-39.

[28] P. Allavena, A. Mantovani, Immunology in the clinic review series; focus on cancer: tumor-associated
macrophages: undisputed stars of the inflammatory tumor microenvironment. Clin. Exp. Immunol. 167
(2) (2012) 195-205.

[29] R.J. De Boer, P. Hogeweg, H.F. Dullens, R.A.D. Weger, W.D. Otter, Macrophage T lymphocyte interac-
tions in the anti-tumor immune response: a mathematical model, J. Immunol. 134 (4) (1985) 2748-2758.

[30] R.T. Prehn, The immune reaction as a stimulator of tumor growth, Science 176 (4031) (1972) 170-171.

[31] S. Rakoff-Nahoum, Why cancer and inflammation?, Yale J. Biol. Med. (2006) 123-130.

[32] S. Yaqin, H. Jicai, D. Yueping, T. Yasuhiro, Mathematical modeling and bifurcation analysis of pro and
anti-tumor macrophages, APM 13468, 2020.

[33] S.D. Webb, M.R. Owen, H.M. Byrne, C. Murdoch, C.E. Lewis, Macrophage-based anti-cancer therapy:
modeling different modes of tumor targeting, Bull. Math. Biol. 69 (5) (2007) 1747-1776.

[34] Sica, A., Schioppa, T., Mantovani, A., Allavena, P. (2006) Tumor-associated macrophages are a distinct
M2 polarized population promoting tumor progression: potential targets of anti-cancer therapy. Eur. J.
Cancer 42, 717–727.

[35] V. Kuznetsov, I. Makalkin, M. Taylor and A. Perelson, Nonlinear dynamics of immunogenic Tumor Pa-
rameter estimation and global bifurcation analysis, Bull. of Math. Bio. 56 (2), 295-321 (1994).

[36] M. A. Padder, Afroz, A. Khan, Analysis of Tumor-Immune Response Model by Differential Transforma-
tion Method. J. Sci. Res. 14 (1), 243-256 (2022).



72 Ausif Padder, A. Afroz and Ayub Khan

[37] Padder, M.A., Afroz, A., Khan, A. Solving and Analysing Tumor–Immune Interaction Model
by Generalized Differential Transformation Method. Int. J. Appl. Comput. Math 8, 64(2022).
https://doi.org/10.1007/s40819-022-01265-w.

[38] Waqas I, Qamar Din, Taj M, Iqbal M. A.: Bifurcation and chaos control in a discrete-time predator–prey
model with nonlinear saturated incidence rate and parasite interaction. Adv. in Difference Equations,
2019:28 (2019).

[39] Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 72, Article
ID 026201(2005).

[40] Mrinmoy Sardar et al., Exploring the dynamics of a tumor-immune interplay with time delay. Alexandria
Engineering Journal (2021) 60, 4875–4888.

[41] Padder A, Almutairi L, Qureshi S, Soomro A, Afroz A, Hincal E, Tassaddiq A. Dynamical Analysis
of Generalized Tumor Model with Caputo Fractional-Order Derivative. Fractal and Fractional. 2023;
7(3):258. https://doi.org/10.3390/fractalfract7030258.

Author information
Ausif Padder, A. Afroz, Department of Mathematics, Maulana Azad National Urdu University, Hyderabad,
Telangana-500032, India.
E-mail: ausif121@gmail.com, afroz.ahmad@manuu.edu.in

Ayub Khan, Department of Mathematics, Jamia Millia Islamia, New Delhi-110025, India.
E-mail: akhan12@jmi.ac.in


	1 Introduction
	2 Tumor-Macrophage Interaction Model
	2.1 Stability analysis of system (2.3) 
	2.2 Linearization Process 

	3 Bifurcation Analysis
	3.1 Hopf-Bifurcation:

	4 Numerical Simulation and Result Discussion
	5 Conclusion

