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Abstract In this work, we investigate the boundary layer flow suggested by the Falkner-Skan
equation for different flow parameters. Using a stream function, the Falkner-Skan equation has
been converted into a strongly nonlinear third order ordinary differential equation. To solve the
obtained differential equation, we construct an efficient numerical algorithm based on nonpoly-
nomial quartic spline function. Skin friction co-efficent has also been calculated. Finally, to
validate the theoretical results obtained and to show the applicability of our constructed algo-
rithm, we have carry out numerical experiments for various parameters with the help of graphs
and tables.

1 Introduction

The boundary layer theory has been described by two groups of scholars: Falkner-Skan and
Prandtl. The main difference between these two theories is due the region of flow consid-
ered. When the boundary layer flow has been considered away the boundary then it becomes
Falkner-Skan boundary layer flow. While, when the boundary layer flow has been studied in
the vicinity of boundary then it is called Prandtl boundary layer flow [1]. The Falkner-Skan
equation is probably the most well-known nonlinear differential equations in fluid mechanics.
For the Falkner-Skan problem, Weyl [2] attempted to establish an existence and uniqueness hy-
pothesis, which Coppel [3] expanded to a more general situation and then demonstrated solution
which is for exclusive specific values of certain parameters. The Falkner-Skan equation results
through a similarity reduction of nonlinear partial differential equations describing boundary
layer flow on a flat plate with static velocity in the direction perpendicular to a uniform main-
stream. For Falkner-Skan problem, Liao [4] presented the method of homotopy analysis, which
produces a convergent series solution that is uniformly valid. By applying the finite difference
method, Asaithambi [5] numerically examined the Falkner-Skan problem and established the
second order accuracy. The other numerical attempts also made by this author [6]. Nowadays,
the Falkner-Skan equation has been examined in different contexts due to substantial applica-
tions in engineering science. The Falkner-Skan equation has subsequently been studied in a
variety of scenarios due to its extensive use in engineering research such as [7, 8].
The Blasius problem, i.e. stable flow over a moving wedge, and the Sakiadis problem, i.e. steady
flow over a continuous stretched sheet flowing past a quiescent ambient fluid are the two most
well-known forced convection problems. And they serve as the basis for boundary-layer equa-
tions in fluid mechanics. Sakiadis [9] initiated this investigation to look at the behaviour of
boundary-layer flow on continuous solid surfaces. By employing a perturbation technique, Datta
[10] introduced a fresh direction to study the Blasius problem. Numerous numerical and semi-
analytical solutions to this problem have occasionally been described in the literature (Abbas-
bandy [11], Khan et al. [12]).
There are various real-world scenarios where the stretching surface and surrounding fluid move
simultaneously. As an illustration, consider cooling metallic sheets, cylinders, polymer sheets
or films, etc. Due to the nonlinear component in the underlying differential equations regulating
fluid motion in hydrodynamics, an accurate solution is crucial. Finding the closed-form solu-
tion to the underlying differential equations becomes difficult, if not impossible. As a result,
the majority of researchers arrive to acquire the similarity solution. Numerous scholars, such as
[13, 14, 15, 16, 17, 18, 19, 20]have studied these type of problems with or without heat transfer
using various numerical techniques and resolved it.
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On the other hand, the spline interpolation approach for numerical analysis has been the subject
of substantial study during the last few decades. Different kinds of spline approaches have been
applied to solve differential equations such as [19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].
Over the past few years, there has been an increasing interest in utilising the quasilinearization
technique [32, 33] to investigate nonlinear situations. Researchers such as Saeed and Rehman
[34] and Jiwari [35] have successfully implemented quasilinearization technique for the numer-
ical solution of nonlinear differential equations.
In this paper, we propose to study the laminar flow problem of Falkner-Skan type. The govern-
ing system of equations is non-linear partial differential equations that cannot be solved exactly.
As a result, we propose a numerical method based on non-polynomial quartic spline. Using this
method, one can obtain numerical solution. First, we use similarity parameter to transform the
partial differential equation into third order nonlinear ordinary differential equation. Our goal
is to derive and then use the non-polynomial quartic splines technique to find the approximate
solution to our problem. We outline the derivation of the method along with the truncation error.
Using tables and graphs, we write the conclusions.

2 Formation of the problem

The Laminar boundary layer theory has the possible solution as self-similarity solution, so this
subject becomes high level research due to its usefulness in the laminar boundary layer flows.
The Falkner-Skan type boundary layer flow is modelled by the similarity transformation as

∂w

∂y
+
∂w̃

∂z
= 0 (2.1)

w
∂w

∂y
+ w̃

∂w

∂z
= γ

∂2w

∂z2 −
1
%
δ′, (2.2)

where δ′ is the pressure gradient, (y, z) is the plane of flow determined by y and z coordinates, w
and w̃ are the y and z components of velocity respectively, γ is the constant kinematic viscosity
and % is the fluid density. At the border of the boundary layer, the velocity W (y) is subjected to
the power-law relation W (y) =W∞y

k. The necessary end conditions are

z = 0, w(0) =Wu(y), w̃(0) = 0, (2.3)

z →∞, w(z)→W∞ (2.4)

where Wu is the stretching surface velocity which obeys the power law relation, Wu = W∞y
k.

Using the similarity transformation ϕ = ( 2γyW (y)
1+k K(ω))

1
2 , ω = z( (1+k)W (y)

2γy )
1
2 and α = 2k

1+k in
the equation (2.2-2.4), we have

K ′′′(ω) +K(ω)K ′′(ω) + α(1−K ′2(ω)) = 0, (2.5)

with relevant boundary conditions:

ω = 0,K(ω) = 0,K ′(ω) = β, (2.6)

ω →∞,K ′(ω) = 1, (2.7)

where β = − Wu

W∞
. For α ≥ 0, equation (2.5) reflects the symmetrical boundary layer flow over

a wedge along with an angle απ. For non-zero value of β, the boundary has a definite speed
and prescribed stretch. Equations (2.5),(2.6) and (2.7) constitute a non-linear boundary value
problem in an infinite domain. Our aim is to solve these equations using non-polynomial quartic
spline technique.

3 Quasilinearization Technique

With this method, the model problem is turned into a sequence of linear ODEs, and the solution
to the linear ODEs can be obtained by finding the limit of the sequence. Then, we will write the
model problem (2.5)-(2.7) in [0, 1] as:

K ′′′(ω) = H(ω,K(ω),K ′(ω),K ′′(ω)), 0 ≤ ω ≤ 1 (3.1)
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with boundary conditions

K(0) = 0, K ′(0) = β and K ′(1) = 1, (3.2)

where H(ω,K(ω),K ′(ω),K ′′(ω)) is continuous in [0, 1].
Using the quasilinearization technique in (3.1)-(3.2), we have

K ′′′t+1(ω) + pt(ω)K
′′
t+1(ω) + qt(ω)K

′
t+1(ω) + rt(ω)Kt+1(ω) = H(ω,Kt(ω),K

′
t(ω),K

′′
t (ω)) +

pt(ω)K
′′
t (ω) + qt(ω)K

′
t(ω) + rt(ω)Kt(ω), 0 ≤ ω ≤ 1(3.3)

which can be written as

K ′′′t+1(ω) + pt(ω)K
′′
t+1(ω) + qt(ω)K

′
t+1(ω) + rt(ω)Kt+1(ω) = ht(ω), 0 ≤ ω ≤ 1 (3.4)

subject to the boundary conditions

Kt+1(0) = 0, K ′t+1(0) = β and K ′t+1(1) = 1, (3.5)

where, ht(ω) = H(ω,Kt(ω),K ′t(ω),K
′′
t (ω)) + pt(ω)K ′′t (ω) + qt(ω)K ′t(ω) + rt(ω)Kt(ω),

pt(ω) =
(
∂H
∂K′′

)
H=Ht

, qt(ω) =
(
∂H
∂K′

)
H=Ht

and Rt(ω) =
(
∂H
∂K

)
H=Ht

.

For our convenience, we write Kl
t+1(ω) = Kl(ω), l = 0, 1, 2, 3, ht(ω) = h(ω),

pt(ω) = p(ω), qt(ω) = q(ω) and rt(ω) = r(ω), so that equation (3.5) becomes

K ′′′(ω) + p(ω)K ′′(ω) + q(ω)K ′(ω) + r(ω)K(ω) = h(ω), 0 ≤ ω ≤ 1 (3.6)

subject to boundary conditions

K(0) = 0, K ′(0) = β and K ′(1) = 1. (3.7)

4 Non-polynomial Quartic Spline Method

To obtain trigonometric quartic spline approximation of the equations (3.6) and (3.7), we divide
the interval [0, 1] into M equal subintervals as follows:

ωi = ih, i = 0(1)M, where h =
1
M
.

Now, using the non-polynomial spline Ri(ω) we construct a numerical algorithm to interpolate
the unknown function K(ω) at the grid points {ωi : i = 1, 2, ...,M} given as

Ri(ω) = ξ1isinκ(ω − ωi) + ξ2icosκ(ω − ωi) + ξ3i(ω − ωi)2 + ξ4i(ω − ωi) + ξ5i, (4.1)

where ξ1i, ξ2i, ξ3i, ξ4i and ξ5i are real finite constants and Ri ∈ C4∆ has been interpolated at the
mesh points ωi which depends on the parameter κ.
The coefficients ξ1i, ξ2i, ξ3i, ξ4i and ξ5i have been obtained by using the following interpolation
conditions:

Ri(ωi) = Ki, Ri(ωi+1) = Ki+1, (4.2)

R′i(ωi) = Si, R
′′′
i (ωi) = Li, R

′′′
i (ωi+1) = Li+1, i = 0(1)M (4.3)

Using (4.1), (4.2) and (4.3), we obtain the coefficients as

ξ1i =
1

κ3sinkh
(Li+1 − coskhLi),

ξ2i = −Li
κ3 ,

ξ3i =
Ki+1 −Ki

h2 +

(
1− coskh
h2κ3sinkh

)
Li+1 +

(
1− coskh− khsinkh

h2κ3sinkh

)
Li −

Si
h
,

ξ4i = Si +
Li
κ2 ,

ξ5i = Ki −
1

κ3sinkh
(Li+1 − coskhLi).
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Following the continuity condition defined for spline as well as its derivatives, the relations have
been obtained as:

Si + Si−1 = −
2(Ki−1 −Ki)

h
+ λ1Li−1 + λ1Li, (4.4)

Si − Si−1 =
Ki−1 − 2Ki +Ki+1

h
+ λ2Li−1 + λ3Li+ λ4Li+1, (4.5)

where

λ1 =
2− 2cosκh− khsinκh

hκ3sinκh
,

λ2 =
2cosκh+ 2κhsinκh− 2− κ2h2

2hκ3sinκh
,

λ3 = −
2κ2h2cosκh− 2κhsinκh

2hκ3sinκh
,

λ4 =
2− 2cosκh− κ2h2

2hκ3sinκh
.

From equations (4.4-4.5), we get the relation:

Si =
Ki+1 −Ki−1

2h
+ λ5Li−1 + λ6Li+ λ5Li+1, (4.6)

where

λ5 =
2− 2cosκh− κ2h2

4hκ3sinκh
,

λ6 =
2κ3hcosκh− 4κhsinκh− 4− 4cosκh

4hκ3sinκh
.

Substituting the value of Si in equation (4.5), we obtain

Ki−2 + 3Ki−1 − 3Ki +Ki+1 = h3[τ1 (Li−2 + Li+1) + τ2 (Li + Li−1)], i = 2(1)M − 1 (4.7)

where

τ1 =
2− 2cosκh− κ2h2

2κ3sinκh
,

τ2 =
2κ2h2cosκh+ 2cosκh− κ2h2 − 2

2κ3sinκh
.

The equations in (4.7) yield (M −2) linear equations involving M unknowns in Ki, i = 1(1)M .
In order to solve the system of equations, we need two additional equations, which can be ob-
tained as:

2∑
l=0

AlKl + C1hK
′

0 + h3
3∑
l=0

BlK
′′′

l = t1, i = 1 (4.8)

M∑
l=M−2

DlKl + CMhK
′

M + h3
M∑

l=M−3

ElK
′′′

l = tM , i =M (4.9)
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5 Truncation Error

To obtain the truncation error of the numerical algorithm, we use Taylor’s series expansion about
ωi in equation (4.7) so that

ti = [1− 2(τ1 + τ2)]h
3K

′′′

i +

[
−1
2

+ (τ1 + τ2)

]
h4K

(4)
i +

[
1
4
− (5τ1 + τ2)

2

]
h5K

(5)
i +[

−1
12

+
(7τ1 + τ2)

6

]
h6K

(6)
i +

[
1

40
− (7τ1 + τ2)

24

]
h7K

(7)
i +O(h8),

i = 2(1)M − 1. (5.1)

With the use of the aforementioned equations, the following family of methods is generated by
minimising the components of various powers of h for different values of τ1 and τ2,

Second-order methods

For (A0, A1, A2, C0, B0, B1, B2, B3) = (3,−4, 1, 2, −3
2 ,
−4
12 ,
−1
12 , 0), and

(DM−2, DM−1, DM , CM , EM−3, EM−2, EM−1, EM ) = (−3, 8,−5, 2, 0, −3
2 ,
−10
12 ,

−31
12 ), the lo-

cal truncation error is given as:

t1 = −
1
10
h5K

(5)
i +O(h6), i = 1,

tM =
1

10
h5K

(5)
i +O(h6), i =M. (5.2)

Case 1: When (τ1, τ2) = ( 1
12 ,

5
12), the truncation error is given by

ti = −
1
6
h5K

(5)
i +O(h6), i = 2(1)M − 1.

Case 2: When (τ1, τ2) = ( 1
4 ,

1
4), the truncation error is given by

ti = −
1
6
h5K

(5)
i +O(h6), i = 2(1)M − 1.

Case 3: When (τ1, τ2) = ( 1
2 , 0), the truncation error is given by

ti = −h5K
(5)
i +O(h6), i = 2(1)M − 1.

Fourth-order methods

For (A0, A1, A2, C0, B0, B1, B2, B3) = (3,−4, 1, 2, −8
60 ,
−35
60 ,

4
60 ,

1
60), and

(DM−2, DM−1, DM , CM , EM−3, EM−2, EM−1, EM ) = (−3, 8,−5, 2, 8
60 ,
−33
60 , 0,

−157
60 ), the lo-

cal truncation error is given as:

t1 = −
29

2520
h7K

(7)
i +O(h8), i = 1,

tM =
677
5040

h7K
(7)
i +O(h8), i =M. (5.3)

When (τ1, τ2) = (0, 1
2), the truncation error is given by

ti = −
1

240
h7K

(7)
i +O(h8), i = 2(1)M − 1.
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6 Numerical Experiments

Here, we show the performance of the presented numerical algorithm on the model problem (3.6)
subject to the conditions (3.7). For this, we compute the numerical solution of the linearized
model problem (3.6) and (3.7) at different grid points [0,1]. Tables are used to display the
numerical results of K ′(ω) for various values of the parameters α and β. Also, a graphical
representation of K ′(ω) is shown with the help of figures.

Figure 1. Velocity component K ′(ω) when the parameter β varies, taking α = 0.5

Figure 2. Velocity component K ′(ω) when the parameter β varies, taking α = 1
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Figure 3. Velocity component K ′(ω) when the parameter β varies, taking α = 1.5

Figure 4. Velocity component K ′(ω) when the parameter β varies, taking α = 2
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Figure 5. Velocity component K ′(ω) when the parameter β varies, taking α = −0.5

Figure 6. Velocity component K ′(ω) when the parameter β varies, taking α = −1
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Figure 7. Velocity component K ′(ω) when the parameter α varies, taking β = −1.4

Table 1. Comparison of coefficient K ′(ω) by our method with that of exact and numerical
solution of [36] for β = −1.4 and α = 1.

ω ES[36] NM[36] OurMethod

0 1.4 1.4 1.4
0.25 1.255714 1.255714 1.255711
0.5 1.157492 1.157492 1.157487

0.75 1.093224 1.093223 1.093218
1 1.052922 1.052920 1.052915

1.25 1.028759 1.028756 1.028751
1.5 1.014937 1.014931 1.014927

1.75 1.007405 1.007397 1.007394
2 1.003502 1.003491 1.003490

2.25 1.001575 1.001568 1.001567
2.5 1.000644 1.000668 1.000669

2.75 1.000114 1.000270 1.000271
3 1.000052 1.000102 1.000104

3.25 1.000006 1.000036 1.000037

The approximate solution of the Falkner–Skan equations (3.6)-(3.7) has been computed using
our proposed method. With the help of MATLAB, the graphical representation of the solution
for different values of α and β has been presented in Figures 1-7, which displays the velocity
function K ′(ω) when the parameters α and β vary. We observe from Figures 1-4, when α ∈
(0.5, 2), the approximate solutionsK ′(ω) of (3.6)-(3.7) with β = −1 shows qualitatively atypical
behavior of the solutions for β > −1 and β < −1. From Figures 5-6, we observe that as we take
α as negative value, the behavior of the approximate solutions K ′(ω) of (3.6)-(3.7) get changed
completely as compared to the solution when α is taken positive. Figure 7 shows the behavior of
the approximate solutions K ′(ω) when α varies with fixed β = −1.4. The numerical solutions
of (3.6)-(3.7) obtained for β = −1.4 and α = 1 are compared with the solutions given in [36]
and is displayed in Table 1.
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Blasius Equation

For α = 0, equations (2.5-2.7) reduce to the Blasius equation, which is given as

K ′′′(ω) +K(ω)K ′′(ω) = 0, (6.1)

subject to boundary conditions:

ω = 0,K(ω) = 0,K ′(ω) = β (6.2)

ω →∞,K ′(ω) = 1. (6.3)

This problem is associated with the boundary layer on a flat plate that has a constant velocity
opposite in direction to that of a uniform mainstream. Now, we solve equations (6.1-6.3) using
our proposed numerical algorithm to find the values of the function K ′(ω). In Table 2, we
compare our numerical results with that of the solution obtained by Numerical Method (NM)and
Exact Solution (ES) given in [36]for β = −1.4.

Table 2. Comparison of the function K ′(ω) for the equations (6.1-6.3) by our method with that
of Exact Solution (ES) [36] and Numerical Method (NM) [36] for β = −1.4 and α = 0.

ω ES[36] NM[36] Meksyn′sApproach[36] OurMethod

0 1.4 1.4 1.4 1.4
0.25 1.311931 1.311931 1.311964 1.311931
0.5 1.230934 1.230934 1.230940 1.230934

0.75 1.162099 1.162099 1.162100 1.162099
1 1.107794 1.107794 1.107793 1.107792

1.25 1.067872 1.067872 1.067878 1.067868
1.5 1.040443 1.040443 1.040442 1.040440

1.75 1.022795 1.022796 1.022794 1.022790
2 1.012146 1.012147 1.012146 1.012140

2.25 1.006113 1.006114 1.006127 1.006108
2.5 1.002900 1.002906 1.002859 1.002899

2.75 1.001285 1.001302 1.001121 1.001296
3 1.000500 1.000549 1.000501 1.000543

3.25 1.000011 1.000216 1.000084 1.000210

Figure 8. Velocity component K ′(ω) when the parameter β varies taking α = 0
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7 Skin Friction

On the plate, the formulation of wall shear stress is as follows:

τw = −γ
(
∂w

∂z

)
z=0

. (7.1)

Using the similarity transformation, we get

τw = −γWu

(
k

γ

) 1
2

K ′′(0), Wu =W∞y
k. (7.2)

As a result, the coefficient for skin friction can be derived as follows:

CK =
gw

%W 2
uG̃

= −(Re)−1
(
k

γ

) 1
2

K ′′(0), (7.3)

where Re = %WuG̃
γ and G̃ is the characteristic linear dimension.

Table 3. Comparison of skin friction coefficient K ′′(0) by our method with that of HWCM [37]
and HWQLM [37] for β = 0.

α HWCM[37] HWQLM[37] OurMethod

0.5 0.927680 0.927680 0.927718
15 1.232587 1.232587 1.232588
1.5 1.477233 1.477233 1.477221
2.5 1.874025 1.874027 1.874020

In Table 3, we have presented the value of skin friction coefficient K ′′(0) for different values
of α and β = 0. From this table we observe that the value of skin friction co-efficent is more
accurate as compared to the value obtained by HWCM [37] and HWQLM [37].

8 Discussions, Results and Conclusion

In the present paper, we have derived a numerical technique based on non polynomial quartic
spline technique with the help of a stream function. First we linearize the non linear flow problem
by using quasilinearisation. Then using the proposed technique, we solve the boundary layer
flow presented by the Falkner-Skan equation for different flow parameters α and β.
In Figure-1-4, we discuss the behavior of the velocity component K ′(ω) when the parameter
β varies and α ∈ (0.5, 2). Figures 5-6, show that as we take negative α, the behavior of the
approximate solutions K ′(ω) is different as compared to the solution when α is taken positive.
Figure 7 displays the value of K ′(ω) when α varies with fixed β = −1.4. Table 1 represents
the numerical solutions K ′(ω) of (3.6)-(3.7) obtained for β = −1.4 and α = 1 and Table 2
represents the numerical solutions K ′(ω) for β = −1.4 and α = 0 which are compared with the
solutions given in [36]. Also, we observe that skin friction coefficient is inversely proportional to
the Reynold’s number. Skin friction coefficient K ′′(0) for different value of α and β is discussed
in Table-3 and is compared with values given in [37].
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