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Abstract. We consider Taylor Goldstein problem in 8- plane under Boussineq approxima-
tion, which deals with incompressible, inviscid stratified shear flows. In this paper, first we
obtained upper and lower bounds of neutral phase speed. Second , we obtained the bound for
complex phase speed which depends on parameter like vorticity function, minimum and maxi-
mum of velocity profile and stratification parameter. Also, we obtained a criterion for stability
and illustrated with examples.

1 Introduction :

The stability analysis of stratified shear flows under normal mode approach has been studied
extensively (see [15], [1] & [11]). Parallel shear flow problem is a classical hydrodynamic
stability problem and attracts many researchers. [6] considered inviscid homogeneous parallel
shear flow in - plane, which is the standard homogeneous shear flow problem. [6] derived
Rayleigh inflexion point theorem. [3] derived upper bound for the growth rate. [9] proved the
phase velocity lies inside the upper half of the semi circle which is the extension of [4] semi
circle.

For stratified shear flows known as Taylor-Goldstein problem, [4] derived semi- circle theo-
rem and [8] derived sufficient condition for stability. [5] extended works of [4] and derived
semiellipse theorem depends on stratification parameter. [2] derived parabolic instability region
depending on certain condition. [12] proved Howard’s conjecture. [14] extended semiellipse the-
orem to extended Taylor-Goldstein problem. [14] proved that neutral waves are bounded. [13]
derived instability region for extended Taylor-Goldstein problem. [10] obtained sharper estimate
for growth rate and derived long wave stability criterion.

In this paper, we consider incompressible, inviscid, density varying fluid streaming in the hori-
zontal direction in /3- plane under Boussineq approximation known as Taylor-Goldstein problem
in - plane. For this problem, we derived upper and lower bound for neutral waves and ob-
tained and semielliptical instability region where major axis depends on stratification parameter,
vorticity function and curvature . Also, we derived a condition for stability.

2 Bounds on Neutral Phase speed:

The Taylor Goldstein problem in - plane is given by

D* () + — ~ K| 6=0, 2.1)

with boundary conditions
¢ (Z]) =0= qb (22) . (2.2)

where U is the basic velocity profile, ¢ is the eigen function, ¢ = ¢, + ic; phase velocity, k£ > 0
is the wave number, 3 coriolis parameter given by 5 = (%) cosf , where a is the radius of earth,
Q is the earth’s rotation rate,d is the latitude [7], [9].
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Theorem 2.1. The upper and lower bound for neutral waves ¢ = c, with ¢; = 0 is given by

g B Zs D2 (U) — Zs 2 4k2 N2
Unin((22) + : (U)2k2 2 )] - \/K . 2@( I <c<
(D2 (U) - 6) (2s) \/[(D2 (U)-p) (ZS)]Z 4 4k2N2
Unmax(25) + T ] , + o

Proof. Multiplying (2.1) by conjugate of ¢, integrating over [z, z;]and using (2.2), we get

2 2 2 2 23 2
D (o) dz+- k> 2d D) - 5) 2o [N Pa=0. 2
[ p@Pas [Clopass [T e [T ke =0, 3)

Since first term is positive, dropping the term, we get

/ )
Z1

T [1& (U = o) + (D*(U) - B) (U —¢) — Nﬂ %dz <0.

K+ (ng]_);)ﬁ) - (U]i)z] 6 dz < 0;

There exist a point z = z, € [z1, 23] such that
K2 (U (25) — ¢)* + (D*(U) = B) (25) (U (25) — ¢) = N2 < 0;
k2 — [2K*U (25) + (D* (U) — B) (25)] ¢
+ [K2U? (25) + (D* (U) = B) (25) U (25) — N*] <0.

Solving for c, we get

D*(U)—B)(2s) D2(U)—B)(zs )P 14k2 N2
e [ [

D*(U)—B)(zs) DU —B) (2. P N?
Unax(25) + {(%2) 4 | Vi2w) e

min max

3 Semi Elliptical Region

Theorem 3.1. If | D (U) |ﬁ]in # 0 then the range of complex phase speed c = c, + ic; is
¢ — Umin+Umax 2+Ci2+ JO 2sz_ < |:Umax_Umin:|27
2 (1 + Al) 2
where 5 ) )
A% — ‘N ‘max - ’N ’min + ’D (U) - Blmax IUmax — Uminl
2

Proof. Equating real parts of (2.3), we get

2 2 2 2 _ —c
[ipwpee [Cptas [FEOZATE) e,

Z1 21 21 ‘U — C|2

} |6|* dz = 0.

/zz N? {(U - cr)2 -
. U —c
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Applying triangular inequality, we get

[ p@Pai [ ok

1 z

>

2 N? [(Ufcr)2 fcﬂ 5 2 (D2(U) - B) (U - ¢)
dz — " 42 d
s/m G ke / o el

/zz D (qb)\z s 4 K2 /Zz o2 dz < /zz N2 {(U — c7~)2 _ cﬂ o dz

21 2| 2] |U_C|4
2 (D*(U)-B)(U—c)
d.
+/Zl oo PR

Using the inequalities,

2 2 2 2 012
U—-c.) <+ U=¢) =|U—=¢",|U—¢| <|Unaz — Unin| and <1,

2 =
U =

we have

/ CID(@)de 4 K / "ol dz

2 2
<IN~ |IN?|. + (D? (U) — B). |Unax — Unin] / |U|¢’| C|2dz. 3.1)
Applying ¢ = (U — ¢) ¢, we get
1D (@) > |U —c* D ()] —2|U —¢[|D(U)] |¢| D ()] + D (U))* |of - (3.2)

Applying Cauchy-Schwartz inequality , we get

1 1

“w—d D@l D@ < | [ D@ 1elas] | [T 0D )P
/ / I'l/

Z1 Z] 1

Let

22
B? = / 1D (U) | dz; (3.3)
21
c = / U = e [ID (@) + K1l d. (3.4)
Then .
/ U — o] ID (U || 1D ()| d= < BC. (3.5)

Using (3.3),3.4),(3.5) in (3.2), we get
/:2 [ID () + ¥ |¢I2] dz > [C - BJ. (3.6)
Substituting (3.6) in (3.1) we get
€ = BP < [18?] = 1Ny + (D (0) = By [Oms = Unil] [ IRtz G

1

From (3.3), we have
2 2
B2 D)o [ o
Z1
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ie.,

BZ 22
e
D)~ -

Substituting (3.8) in (3.7), we have

BZ
€~ BP < [|N?. —|N?|  +|D*(U) = B|, [Unas — Uninl] ————
D U);
C 2
B’ {B - 1] < ATB?
where , )
A2 — | |max — |N2|min + |D (U) - 5|max |Umax — Unin|
1 — .
D (U)o
{g - 1] < Ay
2
jems O
[1 +A1]
2 2 2
N |pldz> |———— / 1D (U)[* || dz;
/z] (D)), /=

2
ze/ N2 |g|*dz > JoB?,
z]

where Joz[ N } ., substituting (3.9) in (3.10), we get

DO | mi
22 2
[Nz R

Using the inequality |U — ¢[* > ¢Z in (3.3), we have

2
c?> 63/ [\D (90)|2 + K2 |g0\2} dz.

Z1

Substituting (3.12) in (3.11), we have

= Joci = 2 2
N pfdz > % / D () + K o] d=.
/z1 [1 + Al]2 21 { :|

From [4], we have the equation

Umin + Umax ? Umax - Umin 2 =2
Hcr - ] +e? - [} / 1D () + K2 |l dz

21

2 2

z
—|—/ N2 |p|*dz < 0.
21

Substituting (3.13) in (3.14), we get

“:CT . Umin + Umax]2 + Ciz _ [Umax - Umin:|2

[ D@ +#26] as

2 2 :
J002 /z2 2 ) )
t— 1D (@)|” +E~ [gl"| dz < 0;
1+ 4, /- [ }
i.e.,
2 (1+4)) 2

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Theorem 3.2. If k < k., critical wave number k. > O then the flow is stable.

Proof. Using the inequality |U — c|2 > c?in (3.4), we get

22
2
czé [ [ID@)P + ol i

Z1

The first term inside the integral is positive, hence dropping the term, we get

22 5 02
dz < —= 3.15
[ et < (3.15)
Substituting (3.15) in (3.7), we get
2
2 2 2 2 c”
[C - B] < HN |max - |N |min + |D (U) - ﬂ|max |Umax B Umin” k2c2°
‘ B]* A2
1.€., |:1 — C:| S ?,
where 5 5 5
A2 _ |N ‘max B |N |min + |D (U) B 6|max |Umax B Umin|
2 kz .
Now, we have
2
< B -
-
: 2 < B? < B?
Since C* < [1+f—3]2 < [1—%2}2’ we have
2 A1
C |1+ —=| < B (3.16)
(&)
Substituting (3.16) in (3.10), we
2 2 A7
/ N?|g|* dz > JyC? {1 + Cl . (3.17)

Substituting (3.17) in (3.14), we get

|:C B Umax + Unin Umax — Umin:| g .

2
] + 2+ Jo (cf +240¢; + A3) < [

2 2
Unax + Unin | Unax — Unin >
i.e., l: = maxzrnm:| + Ciz (1 + J()) + 2A5Jyc; < |:nwx2mm:| — J()A%.

From the above equation, we get

2

J()A% Z Umin:|

Umax -
2

implies stability;
i.e., k S kc’

where

k. < \/JO [lNZ‘maX - |N2‘min + |l)2 (U) - 6|max ‘Umax - Umin”
¢ = (Umax;Umin)

implies stability.
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Let us consider the standard examples plane Poiseuille flow and Coutte flow as
basic velocity profiles.

Examples:

) U=1-2%2€[0,1,N*=5=z

for the above flow, k£ < 1.732 implies stability.

(i) U=1-2%2¢€]0,1], N> = 2, 8 = constant.

for the above flow, k£ < 2 implies stability.

(ili) U =1- 222 €[0,1], N?> = constant, 3 = z.

for the above flow, k£ < 1.4142 implies stability.

(iv) U=1-222¢€[0,1], N> = 3 = constant.

for the above flow, k£ < 1.732 implies stability.

v) U:Z,ZG[O,”,szﬂ:Z.

for the above flow, k£ < 2 implies stability.

(vi) U = 2,2 € [0,1], N?> = 2, B = constant.

for the above flow, & < 2.828 implies stability.

4 Concluding Remarks:

We consider Taylor- Goldstein problem in 5 - plane for this problem. First we derived upper
and lower bound for neutral phase speed. Second, we obtained a semielliptical instability where
major axis depends on stratification parameter, curvature and basic velocity profile. Also, we
obtained a criterion for stability and illustrated with examples.
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