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Abstract In this paper, we investigate the compactness and cardinality of the space C'(X,Y")
of continuous functions from a topological space X to Y equipped with the regular topology. We
prove that different forms of compactness, such as sequential compactness, countable compact-
ness, and pseudocompactness, coincide on a subset of C'(X, Y') with regular topology. Moreover,
we prove the comparison and coincidence of regular topology with the graph topology on the
space C(X,Y). Furthermore, we examine various cardinal invariants, such as density, character,
pseudocharacter, etc., on the space C(X,Y") equipped with the regular topology. In addition, we
define a type of equivalence between X and Y in terms of C(X) and C(Y) endowed with the
regular topology and investigate certain cardinal invariants preserved by this equivalence.

1 Introduction

First of all, for the convenience, we use the following notations throughout the paper. The space
X is always a Tychonoff space and Y is a metric space. The spaces C,.(X,Y") and Ci(X,Y) are
spaces of continuous functions endowed with the regular and compact-open topology, respec-
tively. The space C..(X) is space of continuous real-valued function endowed with the regular
topology. The space UC(X,Y) is the space of uniformly continuous functions from X to Y, and
C*(X) represents the set of bounded real-valued continuous functions on X. The abbreviations
LSC(X)and NLSC(X) represent the lower semi-continuous and normal lower semicontinuous
real valued functions on X respectively.

The space C'(X,Y) has been endowed with various topologies, including intrinsic topolo-
gies like the point-open topology, compact-open topology, and uniform topology. However,
stronger topologies than the uniform topology, such as the fine topology (also known as the
m-topology) and the graph topology, have also been studied. The fine topology on the space
C(X), along with its topological properties, was studied by Hewitt [6]. The basis elements for
the fine topology on C(X,Y’), where (Y, d) is a metric space, are of the form: B(f,¢) = {g €
C(X,Y):d(f(z),9(x)) < e(z),Vz € X}, where f € C(X,Y) and € is a positive unit of the ring
C(X). Later, the topological properties associated with the fine topology were also discussed in
[14]. In [5], Darani introduces a concept of weakly prime and weakly prime z-filters on a space
X, and shows that there exists a one-one correspondence between the weakly prime z-filters on
X and weakly prime ideals of C'(X). The relation between the class of z-filters on X and the
class of primal ideals of C'(X) is also discussed.

Iberklied et al. introduced a stronger topology than the fine topology on the space C'(X) in
[9] and named it the regular topology or the r-topology. This topology is defined in a manner
such that the positive unit in the basis elements of the fine topology is replaced by a positive
regular element of the ring C'(X). That is, the basis elements for the regular topology on the
space C(X) are of the form: R(f,r) = {g € C(X): |f(z) — g(z)| < r(z),Yz € coz(r)},
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where f € C(X), and r is a positive regular element (non-zero divisor) of the ring C'(X), and
coz(r) = {z € X: r(z) # 0}. They studied the character of the space C,(X) and calculated
it in terms of D-dominating number of X. Afterwards, Azarpanah investigated compactness,
connectedness, and countability of the space C'(X) endowed with the regular topology in [3].
Azarpanah proved that the space C.(X) is connected or locally connected if and only if X is a
pseudocompact almost P-space. Moreover, it was also shown that various forms of compactness
and countability coincide with the finiteness of the space X.

Later, Jindal et al. explored this regular topology on a more general space C'(X,Y), where Y’
is a metric space with a non-trivial path, in [10]. They used the same idea as before to define the
basis element for the regular topology on C(X,Y) as: R(f,r) = {g € C(X,Y): d(f(z),9(x)) <
r(z),Vx € coz(r)}, where f € C(X,Y), and r is a positive regular element (non-zero divisor) of
the ring C'(X). The space C(X,Y") equipped with the regular topology is denoted as C,.(X,Y).
Moreover, they studied various topological properties like metrizability, countability and several
completeness properties.

The study of compactness for the space C(X,Y") endowed with Krikorian, fine, and graph
topology has been conducted in [7], along with the characterization of compact subsets of the
same space. Recently, Aaliya and Mishra examined the study of submetrizability, separation
axioms, and various maps corresponding to the regular topology on the space C(X,Y) in [1].
The space C,.(X,Y’) has been proven to be submetrizable, and various conditions have been
shown to be equivalent to its submetrizability, along with several equivalent conditions for the
metrizability of the space C,(X,Y). Additionally, when Y is considered as a normed linear
space, C.(X,Y') has been proven to be a topological group. Moreover, in [2], Aaliya and Mishra
explored the notion of regular topology on a homeomorphism space H(X), for a metric space
X and show that it forms a subspace of C'(X, X). They study compactness, metrizability and
connectedness of the same and prove that the space H(X) forms a topological group under the
regular topology.

The paper is organized as follows. In Section 2, we mention some preliminaries that are used
throughout the paper. In Section 3, we study the compactness of the space C(X,Y") as a topo-
logical property and characterize its compact subsets when endowed with the regular topology.
We prove that different forms of compactness coincide on C,.(X,Y) when X is finite and YV
is separable and locally compact. We also establish the necessary and sufficient conditions for
the compactness of C,.(X,Y). Furthermore, we investigate how different forms of compactness
coincide for a subset of the space C,.(X,Y). Notably, we demonstrate that paracompactness
is countably additive in C,.(X) under certain conditions. In Section 4, we investigate various
cardinal invariants such as character, weight, density, etc., for the space C,.(X,Y). We calcu-
late the density of C,.(X,Y) in terms of the densities of X and Y. In the last Section 5, we
define an equivalence between the spaces X and Y in terms of their richer spaces C,.(X) and
C,(Y), respectively, and further investigate the cardinal invariants that remain invariant under
this equivalence.

2 Preliminaries

Definition 2.1. [14] A topology 7 on C(X,Y) is said to be an w-type topology if whenever
(fn) is a sequence in C(X,Y") with cluster point f and (z,) is a sequence in X having no
cluster point, then there exists a strictly increasing sequence (ny,) of positive integers such that
foi (@) = f(xy,) forall k € N.

Definition 2.2. [7] The subset S (or sequence in) of C'(X,Y") said to be compactly supported if
there exists a compact subset C' of X such that for all f, g € S, fjx\c = gjx\c- In more general
terms, a subset S of C'(X,Y) is called almost compactly supported if it can be written as the
union of finitely many compactly supported subsets of C'(X,Y).

Definition 2.3. [4]

(i) For a function f € C*(X), the lower limit function I(f) and upper limit function of f are
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respectively defined as

I(f): X >R, I(f)(z) = sup inf f(y),z € X
VeN, Y€V

S(£): X = R,5(f)(z) = inf :ggf(y),x eX

where NV, is the set of all neighborhoods of the point € X. It is clear that I(f)(z) <
f(z) < S(f)(x),z € X.

(i1) For lower lower-semicontinuous function f, the normal lower-semicontinuous function as

NLSC(X) ={f € LSC(X): I(S(f)) = f}

Definition 2.4. [13] A space X is said to be a weak cb-space if each locally bounded, lower
semicontinuous function on X is bounded above by a continuous function. Moreover, it is
equivalent to say that a space X is weak cb-space if and only if for a given positive normal lower
semicontinuous function g on X, there exists f € C(X) such that 0 < f(z) < g(x), for each
r e X.

3 Compactness of C,.(X,Y)
In this section, we investigate various forms of compactness of the space C,.(X,Y).

Theorem 3.1. For any space X and a metric space (Y, d) with a non-trivial path, the following
are equivalent for the space C,.(X,Y)

(i) C.(X,Y) is separable locally compact.
(ii) C.(X,Y) is hemicompact.
(iii) C.(X,Y) is o-compact.
(iv) X is finite and Y is separable locally compact.

Proof. (4) = (1),(2),(3). Let X be finite. Then, C,.(X,Y) is homeomorphic to Y™ for some
positive integer n. Therefore, if Y is separable and locally compact, it implies that C,.(X,Y")
is separable and locally compact, which in turn implies that C.(X,Y") is Lindel6f and locally
compact [10]. Hence, C,.(X,Y) is hemicompact, and since every hemicompact space is o-
compact as well, this shows that (4) = (1), (2), (3).

(1) = (2) = (3) = (4). Suppose C,.(X,Y) is separable and locally compact. Then,
according to [10], C.(X,Y) is Lindelof and locally compact. Consequently, C,.(X,Y") being
hemicompact implies that it is o-compact and thus Lindelof. Thus, X is finite and Y is separable
according to [10]. The finiteness of X implies that C,.(X,Y") is homeomorphic to Y for some
positive integer n. Therefore, Y™ is separable and locally compact, which implies that Y is
separable and locally compact. O

Theorem 3.2. The space C,.(X,Y) is compact if and only if X is finite and Y is compact.

Proof. Suppose the space C.(X,Y") is compact. Then C,.(X,Y) is o-compact and hence Lin-
delof. Therefore, according to [10], X is finite and Y is separable. The finiteness of X implies
that C,.(X,Y") is homeomorphic to Y™ for some positive integer n. Thus, Y™ is compact and
consequently Y is compact.

Conversely, let X be finite and Y be compact. Then, the finiteness of X implies that C,.(X,Y)
is homeomorphic to Y for some positive integer n. Moreover, the Tychonoff theorem implies
that Y™ is compact. Thus, C,.(X,Y") is compact. o

Corollary 3.3. If the space C,.(X,Y) is compact then X is compact.

Example 3.4. Consider X = {1,2,3} with a topology 7 = {X, ¢, {1}, {2}, {3}, {1,2},{2,3},
{1,3}} and Y = [0, 1]. Then X is finite and Y is compact, and hence C,.(X, [0, 1]) is compact,
and vice versa.
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Corollary 3.5. If the space C.(X,Y) is compact then Y is second countable.

Corollary 3.6. If the space C,.(X,Y') is compact. Then the space C.(X,Y') can be embedded in
Cp(K(X),K(Y)) as a closed subspace.

Proof. The compactness of C.(X,Y’) implies that the space X is finite, which in turn implies
that X is compact. Therefore, the regular topology coincides with the compact-open topology
on C(X,Y). Hence, the embedding theorem proved in [15] is also applicable to C\.(X,Y). O

Now we characterize various compact subsets of the space C,.(X,Y).
Proposition 3.7 ([16, 11]). A pseudocompact submetrizable space is metrizable.

In the upcoming result, we describe the equivalence among various forms of compactness on
a subspace of C,.(X,Y).

Theorem 3.8. For any space X and a metric space (Y,d), the following are equivalent for a
subset S of C.(X,Y) :

(i) S is compact.
(ii) S is sequentially compact.
(iii) S is countably compact.

(iv) S is pseudocompact.

Proof. (2) = (3) = (4) are all immediate. Since Cy(X,Y) < C,(X,Y) and C.(X,Y) is
submetrizable [1], S is submetrizable. Then, by Proposition (3.7), if S is pseudocompact, it is
also metrizable. In metrizable spaces, all these types of compactness coincide. Hence, (1) = (2)
and (4) = (1). o

To further characterize some other forms of compactness on a subset of C,.(X,Y"), we con-
sider a particular class of topology on C(X,Y) called an w-type topology. As proved in [7], the
fine topology is an w-type topology for a countably paracompact space X and a metric space
(Y,d), and every topology finer than an w-type topology is also an w-type topology. Since the
regular topology is finer than the fine topology on C(X,Y), we conclude that the regular topol-
ogy is also an w-type topology for a countably paracompact space X and a metric space (Y, d).
Thus, based on the results regarding compactness proved in [7] for an w-type topology, we can
further establish the following important result for the function space C,.(X,Y) :

Theorem 3.9. Let X be a paracompact locally hemicompact k-space, and (Y, d) be a metrizable
space. Then the following are equivalent for a subset Q in C.(X,Y).

(i) Q is countably compact in C.(X,Y).
(ii) Q is compact in C.(X,Y).
(iii) Q is sequentially compact in C,(X,Y).
(iv) Q is almost compactly supported and Q is compact in C,(X,Y).

Now we prove that the paracompactness is additive in C,.(X); before proving the main theo-
rem, we first need to establish the following result :

Theorem 3.10. For any space X, the space C,.(X) is a Suslin space.

Proof. Consider an identity map I: Cy(X) — C,.(X). Since an identity map is always a bijec-
tion, and since the graph topology is finer than the regular topology, I is continuous. As Cj(X)
is a Baire space and also a Polish space [14], we conclude that the space C,.(X) is a continuous
image of a Polish space and hence is a Suslin space. O

Theorem 3.11. If C.(X) = |JC;, where i € w and C; are open or closed paracompact sub-
spaces of C,.(X), then C,.(X) is also paracompact.
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Proof. Suppose C,.(X) = |J Ci, where ¢ € w and C; are open or closed paracompact subspaces
of C.(X). From the above result, we have that C,.(X) is a Suslin space. Then C;, for i € w,
are also Suslin spaces. This implies that C;, for ¢ € w, are separable and thus have the countable
chain condition (ccc). Since a paracompact space with the ccc property is Lindelof, each C; is
Lindel6f. Recall that Lindel6fness is closed with respect to a countable union. Therefore, | C;,
for i € w, is Lindelof. Thus, C,.(X) is Lindel6f. Additionally, C,.(X) is regular [1], and we
know that a regular Lindel6f space is paracompact. Thus, C,.(X) is paracompact. O

Theorem 3.12. Let X be an arbitrary space. Then C.(X) is paracompact if and only if it is
Lindeldf.

Proof. Since every Lindelof space is paracompact, we will prove the converse. Suppose C,.(X)
is paracompact. Since C,.(X) is a Suslin space, it is separable and hence has the countable chain

condition. Remember that a paracompact space with the countable chain condition is Lindelof.
Hence, C,.(X) is Lindel6f. O

Now we study the comparison and coincidence of the regular topology with that of the graph
topology on the space C..(X,Y).

Theorem 3.13. For a Tychonoff space X and a metric space (Y, d) with a non-trivial path, we
have C,.(X,Y) < Cy(X,Y).

Proof. The basis elements for the regular topology on C,(X,Y) are of the form R(f,r) =
g€ C(X,Y): d(f(z),9(x)) < r(x),z € coz(r), where r is the regular element of the ring C'(X).
For the graph topology, the basis elements are of the form

B(f,1) =g € C(X,Y): d(f(x), 9(x)) < l(x),z € X,

where [ is the lower semi-continuous function of C'(X). Since every continuous function is also
lower semi-continuous and every regular element is also continuous, we have that the regular
topology on C.(X,Y’) is weaker than the graph topology on it. O

Theorem 3.14. For a Tychonoff space X and a metric space (Y, d) with a non-trivial path, we
have C,.(X,Y) = Cy(X,Y) if and only if X is a weak cb-space.

Proof. First, suppose that C,.(X,Y) = Cy(X,Y). Let n € NLC"(X) and h: [0,1] - Y
be a continuous function such that h(z) # h(0) for all z # 0. Define f(z) = h(0) for all
z € X. Then, f € C(X,Y), and if A = min{n, d(h(0), h(1))/2}, then A € NLC*(X). Since
Cr(X,Y) = Cy(X,Y), there exists an r € 7 (X)) such that B,.(f,r) C By(f,\). We claim that
r(z) < A(x), otherwise, A(zo) < 7(x¢) for some ¢ € X. Let O(x() be some open neighborhood
of xo such that \(zg) < r(x) for every x € O(zy). Since {z € [0, 1]: d(h(0), h(z)) > A(zo)} is
a non-empty compact subset of [0, 1], it has a minimum b > 0. Note that d(h(0), h(z)) < (o)
for all z € [0, 0] open, and d(1(0), h(b)) = A(zo).

Since X is a Tychonoff space, there is a continuous function H: X — [0,b] such that
H(zp) =band H(z) = 0forall z ¢ O(zo). Define the function G: X — Y as G(z) = h(H (z))
for all z € X. Then, G is a continuous function that is different from f. Since for z € O(xy),
d(f(z),G(z)) = d(h(0), h(H (2))) < M) < r(x), and for z ¢ O(wo), d(f(z), G(z)) =
d(h(0),h(0)) = 0 < r(z), G € B.(f,r) = G € By(f,\), which is a contradiction since
d(f(zo),G(x0)) = d(h(z0), (b)) = A(zp). Consequently, we have found that r € 7 (X) with
r < XA <. Thus, X is a weak cb-space.

Conversely, suppose that X is a weak cb-space. To prove that C,.(X,Y) = Cy(X,Y), it is
sufficient to prove that Cy(X,Y) < C,.(X,Y). Let B,.(f,r) be an open set in C,.(X,Y) and
let g € B,.(f,r). Thus, we have d(f(z),g(z)) < r(z) for all z € coz(r), where r € r*(X).
Since X is a weak cb-space, that is, for all | € NLC*(X) there exists ¢ € U™ (X) such that
o(xz) < I(z) for all z € X. Then, for some | € LSC*(X), there exists ¢ € UT(X) such that
o(z) < I(z) forall z € X. Since UT(X) C r™(X), we can write, for some | € LSCt(X),
r(z) < l(z) for r € r*(X). Therefore, we have d(f(x),g(x)) < I(x). Hence, g € B,y(f,1) and
s0 Cr(X,Y) = Cy(X,Y). o

Example 3.15. Consider X = [0, 1] and Y = R. Since [0, 1] is Tychonoff and compact and hence

pseudocompact. Remind that a pseudocompact Tychonoff space is weak cb-space. Therefore,
we have C.,.([0,1]) = C,([0, 1])
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4 Cardinal functions on C,.(X,Y)

To study the cardinal invariants of the space C,.(X,Y’), we need to make certain assumptions
that will hold throughout, namely, the space X is a Tychonoff space that is also pseudocompact
and almost a P-space, while (Y,d) is a metric space with a non-trivial path. Consequently,
the space C,.(X,Y) is always metrizable with the supremum metric on it [10]. Moreover, for
metrizable spaces, the weight, density, Lindelof number, and cellularity coincide. Hence, it is
sufficient to focus on the density when considering the space C,.(X,Y'). Throughout, the symbols
w(X),d(X),(X), and ¢(X) represent the weight, density, Lindelof number, and cellularity of
the space X respectively.

Theorem 4.1. The space C,.(X,Y) has the character x(C.(X,Y)) = w.
Theorem 4.2. For a finite space X and a separable space (Y, d),
w(Cr(X,Y)) =wandd(C(X,Y)) =w

Example 4.3. For a real line R, let SR denotes its Stone-Cech compactification. Let X =
BR —R, the X is an almost P-space [12] and since R is locally compact, so it is open in SR, and
BR — R is therefore compact, thus pseudocompact. Then C,.(SR — R) is metrizable and hence
has countable weight, density and cellularity.

Theorem 4.4. [1] The space C,.(X,Y) is countably tight.

Before moving ahead to calculate the density of C,.(X,Y) in terms of the density of X and
Y, we will require the following results:

Definition 4.5. For a metric space (X, d) and € > 0, a non-empty subset £ of X is called e-
uniformly discrete if for any a,b € E such that a # b, we have d(a,b) > e.

Let & be the family of e-uniformly discrete subsets of X, and let £ be the family of all
uniformly discrete subsets of X. Let £ be the subfamily of &, containing all the elements
which are maximal with respect to the set-theoretic inclusion. Then V' in £, in addition to
being e-uniformly discrete, is e-dense, meaning that for each = € X, there exists v € V such that
d(z,v) <e.

Definition 4.6. A metric space (X, d) is called generalized totally bounded (GTB) if for every
e > 0, there exists an e-dense subset G of X with |G| < d(X).

Proposition 4.7. [ 4] A metric space Y is generalized totally bounded if and only if every uni-
formly discrete subset V of Y satisfies |V | < d(Y).

Definition 4.8. A topological space X is said to be generalized compact (GK) if every open
cover & of X has a subcover g such that |p| < d(X).

Theorem 4.9. [ /4] A metrizable space attains its extent if and only if it is not GK.

Lemma 4.10. [ /4] Let C be a closed and discrete subset of a metrizable space X, let 0 < ¢ < 1,
and U be an e-uniformly discrete subset of a pathwise connected metric space (Y, p). Then there
exists an e-uniformly discrete subset of C(X,Y) of cardinality |U| 11,

Theorem 4.11. Let X be a metrizable space, and (Y, d) be a pathwise connected metric space
with d(X) =vand d(Y) = ~. If X is not GK and Y is not GTB, then d(C,.(X,Y)) = ~".

Proof. Consider a dense subset D of X such that | D| = v. Since d(Y') =~y and (Y, d) is a metric
space, we have |Y| = %, Hence, |Y?| = |Y|IPl < 4*. Define amap v: C.(X,Y) — Y as
¥(f) = fip- Since D is dense, ¢ is one-to-one. Therefore, |C,.(X,Y)| < [YP| < 4*. Hence,
d(Cr(X,Y)) < |CH(X,Y)| < 7*.

Now we show that d(C,(X,Y)) < |C.(X,Y)| > 4. Since X is not GK, then by the
Proposition (4.9), there exists a closed and discrete subset D of X such that |D| = v. Since YV’
is not GTB, then by the Proposition (4.7), there exists a uniformly discrete subset U of Y with
|Y| = 5. Therefore, by using the Lemma (4.10), we have that there exists a uniformly discrete
subset V of C.(X,Y") with |[V| = 4*. Thus, d(C,.(X,Y)) > +. i
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Theorem 4.12. For a space X and a normed linear space (Y, ||.||), we have

X(fa C’I‘(X7Y)) = X(CT(X’ Y)) - WX(CT(X7Y)) = 7T)((f7 Cr(va))

and

(f,Cr(X,Y)) = 9(Cr(X,Y)) = A(CH(X,Y))
where x, 1, and A signify character, pseudocharacter, and diagonal degree respectively.

Proof. Tt has been proven that for a space X and a normed linear space (Y, ||.||), the space
C-(X,Y) is a topological group [1]. Also, for a topological group X, the following hold:
x(z,X) = x(X) =1 (X) = my (2, X) and (2, X) = (X)) = A(X). ]

Example 4.13. Lets consider X as (0,1) and Y as a real line R with Euclidean norm, then
C,(X,Y) is a topological group [1, Theorem 3.5] and thus we have for some f € C((0,1)),
x(£,C((0,1))) = x(C((0,1))) = m(C((0,1))) = my(f,C((0,1))) and &(f,C((0,1))) =
$(C((0, 1)) = A(C((0,1))).

Theorem 4.14. For every X, w(C(X)) = x(Cr(X)) - d(Cr(X)).

Proof. Since w(Y') > x(Y')-d(Y) forany Y, it is sufficient to show that w(C, (X)) < x(Cr(X))-
d(Cy(X)). Let & be a base at Ox in C,.(X) such that |3 = x(C, (X)), where Ox is the constant
element in C,.(X). Also, let S be a dense subset of C,.(X) such that |S| = d(C,(X)). We
may assume that each B € 7 looks like B = B(0x,r) for some r € r*(X). Define ® =
B(f,r): f€S,BeS. Clearly, |R| = x(C-(X)) - d(C-(X)). Now we show that R is a base for
Cr(X). Letg € C(X) and s € rT(X). As S is dense in C,.(X), there is an h € SN B(g, s).
Then there exists ¢ € 77 (X) such that b € B(h,¢) C B(h,s). Also, there is a B € S, so that
B(0x,r) € B(0x,¢). To see that B(h,r) C B(h,¢),lett € B(h,r),thent —h € B(0x,r) C
B(0x,¢). Thus ¢t € B(h, ¢). Hence it follows that R is a base for C,.(X). i

Theorem 4.15. Let X be a metrizable space and (Y, p) be a metric space with d(X) = v and
d(Y)=¢( Thend(C(X,Y)) < |C(X,Y)| < ¢".

Proof. Fix a dense subset F of X with |E| = v. Since d(Y') = ¢, by a well-known property
of metrizable spaces, we have |Y| < (M. Therefore, [Y¥| = |V|IFl < (¢R)Y = ¢¥. For
every f € C(X,Y), consider ¢(f) = f|g. Then ¢ is one-to-one, because two continuous
functions which coincide on a dense subset of the domain must coincide everywhere. Therefore,
ICX V) < [YF< ¢V o

Theorem 4.16. Let (X, d) be a non-empty finite metric space and (Y, p) be a non-trivial pathwise
connected metric space, and let d(Y) = (. Then d(UC(X,Y)) = d(C(X,Y)) = (.

Proof. Consider a fixed dense subset D of Y with | D| = (. Let F be the set of all functions from
X to D. Then |F| = ¢IX|. Every element of F is trivially continuous and uniformly continuous.
Since F is dense in C'(X,Y"), we have that d(UC(X,Y)) < d(C(X,Y)) < ¢. On the other hand,
the set of all constant functions from X to Y is a subset of UC/(X,Y") homeomorphic to Y and
isometric to (Y, min(p, 1)). Thus, d(UC(X,Y)) = d(C(X,Y)) = (. i

5 t, — equivalence

To characterize the properties of X using its richer space C'(X) and to investigate the properties
of X and Y by defining a homeomorphism between their richer spaces C'(X) and C(Y') is of
great interest in the theory of function spaces. In this section, we define a form of equivalence
between the spaces X and Y and determine the properties preserved by that equivalence.

Definition 5.1. Topological spaces X and Y are said to be ¢,-equivalent if the spaces C,.(X) and
C,(Y') are homeomorphic. We write it as X ~!" Y.

Definition 5.2. A property P is said to be ¢,-invariant if it remains preserved during ¢,.-equivalence.

Theorem 5.3. If X is a metrizable, non-GK space with d(X) = v, and if the space X is t,-
equivalent to Y, then the density is t,.-invariant.
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Proof. Given that X ~' Y and d(X) = v, let d(YV ) = \. This implies that C,.(X) = C,(Y).
From Theorem (4.11), we have d(C,(X)) = d(R)¥*) = R¥. Since C,.(X) = C,(Y), then
d(Cr(X)) = d(C,(Y)). This means Ry = ¥, which implies v = A, where v, A\ > N;. Thus,
d(X) = d(Y). Hence, density remains invariant under ¢,-equivalence. ]

Theorem 5.4. If X is a pseudocompact, almost P-space and X ~' Y, then weight is t,-
invariant.

Proof. Given that X ~' Y = C,(X) 2 C.(Y). As we have already proved in the Theorem
(4.14) that for every X, w(C,(X)) = x(C,(X)) - d(C-(X)). The space X being an almost P-
space implies that x(C,.(X)) = dn(X), [9, Corolary 1.12]. Furthermore, X being pseudocom-
pact implies that dn(X) = Ry, [8, Theorem 3.3]. Therefore, we have w(C,(X) = d(C,(X)) =
NI Since € (X) = C.(Y), then d(C (X)) = w(Cp(X)) = w(Cp(Y)) = d(Co(Y)). As we
proved above that the density remains invariant under ¢,-equivalence under certain conditions,
the same can be proved for weight as well. O

By allowing X to be an almost P-space, the space C,(X) turns out to be equal to C(X).
Assuming the same, then from [8, Theorem 3.2 and 3.4], we have the following equalities, and
now we prove that all these below are ¢,.-invariant.

Theorem 5.5. Let X be a Tychonoff space, then
u(Cr (X)) = x(Cr(X)) = m (Cr (X)) = 1(Cr(X)) = dn(X)

and

ue(Cr (X)) = ¢(Cr(X)) = d(Cr (X)) = L(Cr(X)) = e(Cr(X)) = s(Cr(X))
= m(Cr(X)) = nw(Cr(X)) = w(Cr (X)) = d(Cr(X)) = dn(X)

and all these cardinal invariants are t,.-invariant.

Proof. For the first equality, we prove that the dominating number is preserved under the t,.-
equivalence. Suppose X ~' Y = C,(X) = C,(Y). Considering X to be an almost P-space,
we have x(C-(X)) = dn(X) [9, Corollary 1.12]. The homeomorphism between C,.(X) and
C,(Y) implies that dn(X) = x(C-(X)) = x(C,(Y)) = dn(Y) = dn(X) = dn(Y). Thus,
X, Ty, t, u are all ¢,-invariant.

For the second equality, since we have shown earlier that the weight also remains preserved
under t¢,.-equivalence when X is an almost P-space, all other cardinal functions in the second
equality are also ¢,.-invariant. O
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