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Abstract In this paper, we investigate anisotropic extensions of the classical Buffon’s nee-
dle problem. In particular, we study the cases where the angle between the needle and a fixed
reference direction follows a triangular, a trapezoidal, a wrapped exponential, or a Von Mises dis-
tribution law. Within the first two cases, we examine both the oriented and non-oriented needle
problems, while within the latter two cases, we study the oriented needle problem exclusively.
For the examined distributions, we also determine the minimum and the maximum probability.

1 Introduction and Notations

The classical Buffon’s needle problem [10] consists in finding the probability that a “short”
needle of length 2l, dropped onto a ruled paper, crosses one of the lines. This probability depends
on the distance d between the lines, or, more precisely, on the ratio l

d . A “short” needle has length
2l ≤ d, i.e. it cannot cross two lines simultaneously. The answer to this problem is:

p =
4l
πd

(1.1)

To obtain this probability, it is possible to evaluate a single straightforward integral. However,
Barbier [3] (see also [1]) proposed an alternative proof, which eliminates the need for integrals.

In Barbier’s paper [3] there are also extensions of the original Buffon’s problem to different
bodies such as circles, ellipses, etc..

For a comprehensive historical overview and an extensive bibliography, we recommend con-
sulting to Mathai’s book [13], Santaló’s book [14], and the paper [8].

1.1 The Buffon’s Needle Problem

In Buffon’s problem a “needle”, which is a segment of length 2l, is randomly dropped onto a
set of parallel and equidistant lines in the plane. In this context, “randomly” is defined such that
the distance v between the center M of the needle and a line, as well as the angle φ between
the needle and the direction of the parallel lines, are independent random variables that follow
a specified distribution law (see Figure 1). The distance between the parallel lines is d, with
2l < d.

To determine the probability of the needle intersecting one of the lines, we assume that point
M lies within the strip bounded by the lines y = kd and y = (k+ 1)d (k ∈ Z). It is worth noting
that, for a given angle φ = α, the needle does not intersect the lines when point M lies in the
strip between the lines y = kd+ l sinα and y = (k + 1)d− l sinα (see Figure 2).

Assuming that the distance v and the angle φ follow independent probability distributions
f(v) and g(φ) respectively, the probability that the needle does not intersect any line is then
given by:

q =

∫
I

dφ
∫
J′
g(φ)f(v) dv∫

I

dφ
∫
J

g(φ)f(v) dv
(1.2)
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Figure 1. Short needle on parallel lines
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Figure 2. Limit position for the needle in
Buffon’s problem

where J = [kd, (k + 1)d] J ′ = [kd+ l sinφ, (k + 1)d− l sinφ] and I = [0, π] if the needle is
not oriented and I = [0, 2π] if the needle is oriented.

If both the distance v and the angle φ are uniformly and independently distributed, then this
probability is given by (1.1).

However, some papers consider problems in which either the position of the needle’s center
or the orientation of the needle does not follow a uniform distribution, (see, for example, [4, 7,
5, 15, 6, 16, 12, 11, 9, 2].)

In this paper, we examine anisotropic Buffon’s problem, i.e. when the angle between the
needle and the parallel lines is not uniformly distributed. Specifically, we will examine triangular,
trapezoidal, wrapped exponential, and Von Mises distributions.

2 The triangular distribution

2.1 The non-oriented needle

In this section, we suppose that the random variable φ follows a triangular distribution of support
[0, π] and mode c. In other words, the density function of φ is given by:

g(φ) =


2φ
πc

for 0 ≤ φ ≤ c

2(π − φ)

π(π − c)
for c < φ ≤ π

(2.1)

and the random variable v is uniformly distributed in [kd, (k + 1)d].
In this case, the numerator in Equation (1.2) is:

π∫
0

g(φ) dφ

(k+1)d−l sinφ∫
kd+l sinφ

1
d

dv =
π∫

0

g(φ)

(
1 − 2l

d
sinφ

)
dφ

=

π∫
0

g(φ) dφ−
c∫

0

2l
d

2φ
πc

sinφ dφ−
π∫
c

2l
d

2 (π − φ)

π(π − c)c
sinφ dφ = 1 − 2l

d

2 sin c
c(π − c)

So we obtain that the probability that the needle crosses one of the lines if the angle φ follows
the distribution law (2.1) is

p =


4l
d

sin c
c(π − c)

for 0 < x < π

4l
πd

for x = 0 and x = π

(2.2)

It is evident that, for a fixed ratio l
d , this probability attains its maximum for c = π

2 , with the
maximum value being 16l

dπ2 . Conversely, the minimum occurs at c = 0 and c = π, with a value
equal to the classical Buffon’s probability 4l

dπ .
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2.2 The oriented needle

Let us assume that the random variable φ follows a triangular distribution of support [0, 2π] and
mode c, implying the following probability density function:

g(φ) =


φ

πc
for 0 ≤ φ ≤ c

2π − φ

π(2π − c)
for c < φ ≤ 2π

(2.3)

and the random variable v is uniformly distributed in [kd, (k + 1)d]. In this case, the numerator
in Equation (1.2) is:

2π∫
0

g(φ) dφ

(k+1)d−l |sinφ|∫
kd+l |sinφ|

1
d

dv =
2π∫

0

g(φ)

(
1 − 2l

d
|sinφ|

)
dφ =

2π∫
0

g(φ) dφ−
2π∫

0

2l
d
g(φ) |sinφ| dφ = 1 −

2π∫
0

2l
d
g(φ) |sinφ| dφ

and the probability that the needle intersects a line is given by:

p =

2π∫
0

2l
d
g(φ) |sinφ| dφ (2.4)

To evaluate this integral we consider separately the cases c ∈ [0, π] and c ∈ (π, 2π].
If 0 ≤ c ≤ π Equation (2.4) becomes:

2π∫
0

2l
d
g(φ) |sinφ| dφ

=

c∫
0

2l
d

φ

πc
sinφ dφ+

π∫
c

2l
d

(2π − φ)

π(2π − c)
sinφ dφ+

2π∫
π

2l
d

(2π − φ)

π(2π − c)
(− sinφ) dφ

=
4l (sin (c) + c)

(2π − c) dc

If π < c ≤ 2π Equation (2.4) becomes:

2π∫
0

2l
d
g(φ) |sinφ| dφ

=

π∫
0

2l
d

φ

πc
sinφ dφ+

c∫
π

2l
d

φ

πc
(− sinφ) dφ+

2π∫
c

2l
d

(2π − φ)

π(2π − c)
(− sinφ) dφ

=
4l (2π − c− sin (c))

(2π − c) dc

The probability that the needle intersects one line is:

p =


4l
d

|sin(c)|+ min{c, 2π − c}
(2π − c) c

for 0 < c < 2π

4l
πd

for c = 0 and c = 2π
(2.5)
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Figure 3. Triangular distribution

The function p = p(c) is symmetric about π. By conducting computer simulations using a
mathematical software such as Maxima or Mathematica, it is observed that the function p = p(c)
achieves its minimum value at c = 0, c = π, and c = 2π where p = 4l

πd , i.e. the classical
Buffon’s probability. Conversely, the function attains its maximum at c = β1 ≈ 1.22134468 and
c = β2 = 2π − β1, with p(β1) = p(β2) ≈ 1.398134685 ld as depicted in Figure 2.2.

3 The trapezoidal distribution

3.1 The non-oriented needle

Now, we suppose that the random variable φ follows a trapezoidal distribution of support [0, π],
lower mode c1 and upper mode c2, i.e. the density function of φ is:

g(φ) =



2
π + c2 − c1

φ

c1
for 0 ≤ φ ≤ c1

2
π + c2 − c1

for c1 ≤ φ ≤ c2

2
π + c2 − c1

π − φ

π − c2
for c2 < φ ≤ π

(3.1)

and the random variable v is uniformly distributed in [kd, (k + 1)d]
In this case the numerator in Equation (1.2) is:

π∫
0

g(φ) dφ

(k+1)d−l sinφ∫
kd+l sinφ

1
d

dv =
π∫

0

g(φ)

(
1 − 2l

d
sinφ

)
dφ =

π∫
0

g(φ) dφ− 2l
d

2
π + c2 − c1

 c1∫
0

φ

c1
sinφ dφ−

c2∫
c1

sinφ dφ−
π∫

c2

πφ

π − c2
sinφ dφ

 =

1 − 4l
d

π sin c1 + c1 sin c2 − c2 sin c1

c1(π − c2)(π + c2 − c1)

The probability that the needle crosses one of the lines, if the angle φ follows the distribution
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law (3.1), is:

p =



4l
d

π sin c1 + c1 sin c2 − c2 sin c1

c1(π − c2)(π + c2 − c1)
for 0 < c1 ≤ c2 < π

4l
d

π + sin (c2)− c2

(π − c2) (π + c2)
for c1 = 0, 0 ≤ c2 < π

4l
d

c1 + sin (c1)

(2π − c1) c1
for c2 = π, 0 < c1 ≤ π

4l
πd

for c1 = 0 and c2 = π

(3.2)

This probability reduces to the triangular case with mode c2 if c1 = c2 or c1 = π − c2, and to the
classical case if c1 = c2 = 0, c1 = c2 = π, or c1 = 0 and c2 = π.

3.2 The oriented needle

Now we suppose that the random variable φ follows a trapezoidal distribution of support [0, 2π],
lower mode c1 and upper mode c2 i.e. its density is:

g(φ) =



2
2π + c2 − c1

φ

c1
for 0 ≤ φ ≤ c1

2
2π + c2 − c1

for c1 ≤ φ ≤ c2

2
2π + c2 − c1

2π − φ

2π − c2
for c2 < φ ≤ 2π

(3.3)

and the random variable v is uniformly distributed in [kd, (k + 1)d].
As above, we obtain the probability

p =
2l
d

2π∫
0

g(φ) |sinφ| dφ (3.4)

To evaluate the integral in Equation (3.4) we have to consider three cases: (i) 0 < c1 < c2 <
π; (ii) 0 < c1 < π < c2 < 2π, and (iii) 0 < c1 < π < c2 < 2π.

In the case (i) we obtain:

2π∫
0

g(φ) |sinφ| dφ =

2l
d

2
2π + c2 − c1

[∫ c1

0

φ

c1
sin(φ) dφ+

∫ c2

c1

sin(φ) dφ+

∫ π

c2

2π − φ

2π − c2
sin(φ) dφ+

∫ 2π

π

2π − φ

2π − c2
sin(φ) dφ

]
=

4l
d

2π c1 + 2π sin (c1) + sin (c2) c1 − sin (c1) c2

(2π − c2) (2π + c2 − c1) c1
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In the case (ii) we obtain:

2π∫
0

g(φ) |sinφ| dφ =

2l
d

2
2π + c2 − c1

[∫ c1

0

φ

c1
sin(φ) dφ+

∫ π

c1

sin(φ) dφ−
∫ c2

π

sin(φ) dφ−

∫ 2π

c2

2π − φ

2π − c2
sin(φ) dφ

]
=

4l
d

4π c1 + 2π sin (c1)− sin (c2) c1 − 2 c2c1 − sin (c1) c2

(2π − c2) (2π + c2 − c1) c1

In the case (iii) we finally obtain:

2π∫
0

g(φ) |sinφ| dφ =

2l
d

2
2π + c2 − c1

[∫ c1

0

φ

c1
sin(φ) dφ+

∫ π

c1

sin(φ) dφ−
∫ c2

π

sin(φ) dφ−

∫ 2π

c2

2π − φ

2π − c2
sin(φ) dφ

]
=

4l
d

4π2 − 2π c2 − 2 sin (c1)π + sin (c1) c2 − c1 sin (c2)

(2π − c2) (2π + c2 − c1) c1

So, the probability that the needle intersects one line is:

p =



4l
d

2π c1 + 2π sin (c1) + sin (c2) c1 − sin (c1) c2

(2π − c2) (2π + c2 − c1) c1

for 0 < c1 ≤ c2 ≤ π

4l
d

4π c1 + 2π sin (c1)− sin (c2) c1 − 2 c1c2 − sin (c1) c2

(2π − c2) (2π + c2 − c1) c1

for 0 < c1 ≤ π ≤ c2 < 2π

4l
d

4π2 − 2π c2 − 2π sin (c1) + sin (c1) c2 − c1 sin (c2)

(2π − c2) (2π + c2 − c1) c1

for π ≤ c1 ≤ c2 < 2π

4l
d

2(2π − c2) + min{c2, 2π − c2}+ |sin(c2)|
(2π − c2) (2π + c2)

for c1 = 0 ≤ c2 ≤ 2π

4l
d

2c1 + |sin(c1)|+ min{c1, 2π − c1}
(4π − c1) c1

for 0 < c1 ≤ c2 = 2π
4l
πd

for c1 = 0 and c2 = 2π

(3.5)

This probability reduces to the triangular case with mode c2 if c1 = c2 and if c1 = 2π− c2, and it
reduces to the classical Buffon’s probability for c1 = 0, c2 = 2π, c1 = c2 = 0, or c1 = c2 = 2π.

4 The wrapped exponential distribution

A wrapped exponential distribution is a wrapped probability distribution that results from the
“wrapping” of the exponential distribution around the unit circle. Its support is the interval
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[0, 2π] and its density function is expressed as:

g(φ) =
λe−λφ

1 − e−2πλ (4.1)

where λ > 0. If the angle φ follows a wrapped exponential distribution, it is necessary to use an
oriented needle. We consider φ ∈ [0, 2π) and, as before, we assume that the random variable v
is uniformly distributed in [kd, (k + 1)d]. Consequently, the numerator in Equation (1.2) takes
the form:

∫ 2π

0
dφ

(k+1)d−l |sinφ|∫
kd+l |sinφ|

g(φ)f(v) dv =

1 − 2l
d

∫ 2π

0
|sin(φ)| λe−λφ

1 − e−2πλ dφ

(4.2)

Therefore, the probability is given by:

p =
2l
d

∫ 2π

0
|sin(φ)| λe−λφ

1 − e−2πλ dφ =
2l
d

λ
(
eλπ + 1

)
(eλπ − 1) (λ2 + 1)

(4.3)

As λ→ 0, the probability converges to the classical Buffon’s one since the wrapped exponential
distribution tends to the uniform distribution.

λ

p
4l
πd

Figure 4. Wrapped exponential distribution

5 The Von Mises distribution

The Von Mises distribution, also called the circular normal or Tikhonov distribution, is a con-
tinuous probability distribution with support [0, 2π) (or any interval of length 2π). Its density
function is defined as:

g(φ) =
eκ cos(φ−µ)

2πI0(κ)
(5.1)

where µ ∈ R represents the mean direction of the distribution, κ > 0 is a shape parameter called
the “concentration”, and I0(κ) denotes the modified Bessel function with order zero defined for
all κ as:

I0(κ) =
∞∑
0

κ2i

22i(i!)2

When κ = 0, the distribution becomes uniform. For large values of κ, it approaches a normal
distribution in φ with mean µ and variance 1

κ .
If the angle φ follows a Von Mises distribution, it is necessary to use an oriented needle, and

we will take φ ∈ [0, 2π) and, as above, we will suppose that the random variable v is uniformly
distributed in [kd, (k + 1)d].
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Consequently, the numerator in Equation (1.2) becomes:

∫ 2π

0
dφ

(k+1)d−l |sinφ|∫
kd+l |sinφ|

g(φ)f(v) dv =

1 − l

d

1
πI0(κ)

∫ 2π

0
|sin(φ)| eκ cos(φ−µ) dφ

(5.2)

Thus the probability is given by:

p =
l

d

1
πI0(κ)

∫ 2π

0
|sin(φ)| eκ cos(φ−µ) dφ (5.3)

It is possible to evaluate the probability in a closed form only for µ = 0 and µ = π and we show
the graphics for some other case.

When κ = 0 the Von Mises distribution reduces to the uniform distribution, yielding the
classical Buffon’s probability.

In the case µ = π, the distribution is symmetric about π and we have:

p =
l

d

1
πI0(κ)

∫ 2π

0
|sin(φ)| e−κ cos(φ) dφ =

l

d

1
πI0(κ)

[∫ π

0
sin(φ)e−κ cos(φ) dφ−

∫ 2π

π

sin(φ)e−κ cos(φ) dφ

]
=

2l
πd

eκ − e−κ

κI0(κ)

(5.4)

For µ = 0, we obtain the same probability as above.
In Figure 5 we show some graphics for different values of µ.
When considering the probability (5.3) for a fixed κ as a function of the mean direction µ we

can obtain some more information.
Let:

h(µ) =

∫ 2π

0
|sin(φ)| eκ cos(φ−µ) dφ (5.5)

First of all let us note that h(µ) is symmetric about π, indeed:

h(2π − µ) =

∫ 2π

0
|sin(φ)| eκ cos(φ+µ) dφ =

(with the substitution ψ = 2π − φ)
∫ 2π

0
|sin(ψ)| eκ cos(ψ−µ) dψ = h(µ)

The derivative of h(µ) is:

h′(µ) =

∫ 2π

0
|sin(φ)|κ sin(φ− µ)eκ cos(φ−µ) dφ

Applying integration by parts, we obtain:

h′(µ) =

∫ π

0
cos (φ) eκ cos(φ−µ) dφ−

∫ 2π

π

cos (φ) eκ cos(φ−µ) dφ

It is easy to check, integrating by parts again, that h′
(
π
2

)
= 0 and, by symmetry,∫ π

0
cos (φ) eκ cos(φ) dφ =

∫ 2π

π

cos (φ) eκ cos(φ) dφ

and so also h′0) = h′(π) = 0.
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(a) µ = π
6 (b) µ = π

4

(c) µ = π
2 (d) µ = π

Figure 5. Some cases of Von Mises distribution in function of κ

The second derivative of the function h(µ) is:

h′′(µ) =

∫ π

0
κ cos (φ) sin (φ− µ) eκ cos(φ−µ)dφ−∫ 2π

π

κ cos (φ) sin (φ− µ) eκ cos(φ−µ)dφ

By integration by parts we obtain:

h′′(µ) = 2 e− cos(µ)κ + 2 ecos(µ)κ −
∫ 2π

0
|sin (φ)| eκ cos(φ−µ)dφ

As ∫ 2π

0
|sin (φ)| eκ cos(φ)dφ =

2 (eκ − e−κ)
κ

we obtain

h′′(0) = h′′(π) =
2(κeκ + κe−κ − eκ + e−κ)

k
> 0

Since ∫ 2π

0
|sin (φ)| eκ cos(φ−π

2 )dφ =

∫ π

0
sin (φ) eκ sin(φ)dφ−

∫ 2π

π

sin (φ) eκ sin(φ)dφ =

(with the substitution φ = π + ψ in the second integral)∫ π

0
sin (φ)

(
eκ sin(φ) + e−κ sin(φ)

)
dφ >

∫ π

0
2 sin (φ) dφ = 4
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we have

h′′
(π

2

)
= 4 −

∫ 2π

0
|sin (φ)| eκ cos(φ−π

2 )dφ < 0

So, as expected, the points µ = 0 and µ = π are of minimum for the probability, with

p =
2l
πd

eκ − e−κ

κI0(κ)
,

as the points µ = π
2 and µ = 3π

2 are of maximum for p. The behavior of the function is shown in
Figure 6.

Figure 6. Von Mises distribution as a function of µ
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