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Abstract In the present paper, we obtain the fourth Laplace-Beltrami operator of rotational
hypersurfaces about spacelike, timelike, and lightlike axes separately in 4-dimensional Lorentz-
Minkowski space and prove theorems about fourth Laplace-Beltrami minimality of them. Also,
we construct some examples for these rotational hypersurfaces, obtain their fourth Laplace-
Beltrami operators and give their visualizations into 3-spaces.

1 General Information and Basic Concepts

It is known that a rotational hypersurface is defined as a hypersurface rotating a curve around an
axis. In this context, if « : I C R — 7 is acurve in a plane 7 of Ei‘ and [ is a straight line in E4,
then a rotational hypersurface is defined by a hypersurface rotating the profile curve « around
the axis [. With the aid of this definition, the differential geometry of rotational (hyper)surfaces
in 3 or higher-dimensional Euclidean, Minkowskian, Galilean, and pseudo-Galilean spaces have
been studied by mathematicians. For instance, finite type surfaces of revolution in a Euclidean
3-space have been classified in [8] and some properties about surfaces of revolution in four di-
mensions have been given in [21]. The general rotational surfaces in Minkowski 4-space and the
third Laplace-Beltrami operator and the Gauss map of the rotational hypersurface in Euclidean
4-space have been studied in [12] and [13], respectively. In [4], Arslan and his friends have con-
sidered generalized rotational surfaces imbedded in a Euclidean space of four dimensions and
also they have given some special examples of these surfaces in £*. In [24], Yoon has studied on
rotational surfaces with finite type Gauss maps in Euclidean 4-space. The explicit parameteriza-
tions of rotational hypersurfaces in Lorentz-Minkowski space E} have been given and rotational
hypersurfaces in £} with constant mean curvature have been obtained in [11]. For more studies
about different types of curves and (hyper)surfaces in different spaces, we refer to [1], [2], [5],
[6], [71, [9], [10], [14], [15], [16], [18], [19], [20], [22], [23], [25], and etc.

Now, let us recall some fundamental notions for hypersurfaces in Lorentz-Minkowski 4-
space.

Let 7 = (1,22, 73, 74), Y = (y1,¥2,Y3,y4) and 7 = (21, 22, 23, 24) be three vectors in
4-dimensional Lorentz-Minkowski space E}. Then, the inner product and vector product are
defined by

(@, Y) = —21y1 + 2292 + 233 + Tada (1.1)
and
—€] €2 €3 €4
FxPxZD=det| 1 T T (1.2)
Y Y2 Yz Y
Z1 z2 z3 z4
respectively. Also, the norm of the vector 7 is | 7| = /|(Z, )]

The Gauss map (i.e., the unit normal vector field), the matrix forms of the first, second and
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third fundamental forms of a hypersurface
v: g — (1.3)
(ur,uz,u3) — W(ur, uz, uz) = (W1 (ur, uz, uz), Palur, ua, uz), ¥s(ur, uz, us), Walur, uz, u3))

in B} are
Wy, X Wy, X Wy,

N= :
Wy X Wiy X o

(1.4)

g1 912 913
9] = | 921 92 923 |, (1.5)
g31 932 933

hir hia his
(hij] = | har ha hos (1.6)
hs1 hizy  has
and
mip mi M3
[mii] = | mar ma ma |, (1.7

m3r M3z M33

respectively. Here, we state that g;; = (Wy,, Wy, ), hij = (Pusu;s N), mig = (Nuy, Nu,y )
W, = P W, = P, N, = 2] e {1,2,3).

 Ouuj’ u; >
If we denote the inversia matrix of [g;;] as [g;;] !, then the shape operator of the hypersurface
(1.3) is given by
S = lgi]~ " [hig)- (1.8)
From (1.4)-(1.6) and (1.8), the Gaussian and mean curvatures of the hypersurface (1.3) in Ei‘
are defined by

- det[hij]
K= gdet[gij] (1.9)
and
3cH = tr(S) (1.10)

respectively. Here, e = (IV, N). For more details about hypersurfaces in 4-dimensional spaces,
one can see [3], [14], [16], and etc.

If we denote fourth fundamental form of the hypersurface (1.3) in E{ by [n;;], then we have
[17]

[hij] = [9i5]-5,
[mi;] = [hij].S = [gi5].5.5,

Also, the inverse of an arbitrary matrix
Ay Ap Ap
[Aij] = | Au An  Ax (1.12)
Az Az Az

in B} is
AnAszy — Ap3Azy ApzAszp — ApAss ApAxp — Ay

Ax3Asz) — ApiAszz AnAszz — AizAsi AizAy —AnAx |, (1.13)
Ax1 Az — An Az ApAs — Andszn AnAxp — Apds

- 1

AV = ——

[ ] det[Aij}
where

det[A;;] = —A13An A3 + AinAx Az + Ai3Ar Asy — A1 Az Ay — ApAsi Ass + A1 AnAss.
(1.14)
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2 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Spacelike Axis in E}

In this section, firstly we obtain the fourth fundamental form of rotational hypersurfaces about
spacelike axis in E{ with the aid of first, second and third fundamental forms and shape operator.
After that, we reach the fourth Laplace-Beltrami (LB'V) operator of this hypersurface and give
some results and examples for LBV operator.

Letf:ICR— R,v — f(v), (v € R—{0}) be a smooth function. If we rotate the profile
curve av) = (1,0,0, f(v)) about spacelike axis (0,0,0, 1), then the rotational hypersurfaces
about spacelike axis in E is given by

cosh?coshf sinhdcoshé sinhf O v
WS (1,19, 0) = s1nh.19 . cosh'19 0 0 ' 0
coshd¥sinhf sinhdsinhéd coshfd O 0
0 0 0 1 fv)
= (vcoshdcoshf, vsinhd,vcoshdsinh 6, f(v)). 2.1

We must note that, from now on, the superscripts S T and L denote the rotation axes.
From (1.5), the first fundamental form of rotational hypersurface (2.1), its inverse matrix and
determinant are

-1 0 0

[9:]° = 0 2 0 : 2.2)
0 0 1%cosh®¥

» =g 00
[g7]° = 0o 5L 0 (2.3)

1

0 0 v2 cosh? 9
and

det[g;;]% = v* (f* — 1) cosh® 0, (2.4)

respectively. Here, if we suppose that f’> — 1 < 0, then we have det[g;;] < 0 and so, we deal
with timelike rotational hypersurface (2.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing /> — 1 > 0.

From (1.4), the unit normal vector field of rotational hypersurface (2.1) is

1
N® = _17]”2 (f'coshd cosh @, f' sinhd, f' coshd sinh 6, 1) (2.5)

and so, from (2.5), it can be seen that

e = (N9 N%) =1. (2.6)

Here, we denote f = f(v) and f' = %.
From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(2.1) are obtained by

1 7]/:‘// 0 0

[hi;]S = = 0 vf 0 (2.7)
-/ 0 0 vf cosh®¥
and "
oy 000
[mi;)% = A U (2.8)
2 cosh? ¥
0 0

2
respectively, where f// = * dfy<2” ),
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Also, using (2.3) and (2.7) in (1.8), the shape operator of the rotational hypersurface (2.1) is
given by

"

LT

Now, we obtain the LBV operator of the rotational hypersurface (2.1) in £} and prove an
important theorem about LB!Y-minimality.

For obtaining the LB!Y operator of the rotational hypersurface (2.1) in E}, firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (2.8) and (2.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (2.1) is obtained by

ss (2.9)

o o
o ©

"

r g2 Y A
=iy 0 0 T ,(3 0
[ni;]° = 0 157 0 : 0 17 0
- 0 0 % 0 0 v {—flz
r _f13
e 0 0
3
= O Jwpypr O : (2.10)
3 W2
So, from (2.10), we get
16 £113 2
detfn, |8 = — LT oMY @.11)

2 (1 — f/2)13/2'

Now, we can obtain the LB!Y operator of the rotational hypersurface (2.1) in EY.

The fourth Laplace-Beltrami (LB!Y) operator of a smooth function ¢ = @(v!,v?,1%)|p,
(D c R3) of class C* with respect to the nondegenerate fourth fundamental form of hypersurface
W in E} is the operator which is defined as follows:

AIV _ 9

1 3
B \/ |det[nij]|i§,=:1 vt

where n'/ are the components of the inverse matrix [nij]fl.
So, using (1.13), (1.14) and (2.12), the LB!Y operator of a smooth function ¢ = ¢(v, 9, 0)
can be written as

9
( det[nij“n”a;’;) : (2.12)

d ( (=ma3na+nnnas)e.+(ni3ns —nianzs) ey +(nins—niznn)ve >

v V/Idet[n ;]|
AV — _ 1 +2 (=n21m33+n23m31)pu +(n11133 —113131) 9 +H(R13M21 =111 123 ) P86
[det[n;]] o V/ldetln; | ’
+% (=n2an31+n21n32) 0 +(n12n31 —n1n3) ey +(ni1nn—nn21)ve
V/ldet[n;]|
(2.13)
where
det[n;;] = —ni3nxnnsi + niansnz + niznainze — NiN23N3 — V12NN + N11N2IN33.

Let us denote the LB'Y operator of a rotational hypersurface ¥ in F} as A’V'W. Then, with
the aid of (2.13), we can write

ATV = (ATVE),, (ATV®),, (ATVW), (ATVW)4)

_ b )+ (B + (W), (2)y + (V2)v + (Wa)o, 2.14)
[det[ng]] \ (43)0 + (V3)o + (W3)a, (tha)y + (Va)o + (Wa)e |’ ’
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where
;= m ((—na3nza + noaenas) (Vi) + (ni3nas — nianss) (Wa)o + (n12nas — niznan ) (Wi)e) ,
0, = m ((—n21n3s + nas3nzr ) (Vi) + (n1inss — nisnst) (Wa)o + (niznar — ninas) (We)e) ,
2; = m ((—naans; + n2ins2) (Wi + (niansr — niins2) (Wi)e + (n1inae — niznar) (W)e) -
(2.15)
Using (2.1) and (2.10) in (2.15), we have
oS — 7f’3(17f’2)1/4cosh219cosh97 S _ _ fPU=§)""* cosh 9 sinh 9
1 l/\/ff”3 LLZ U\/ff”3
(2.16)
ﬂég _ (= f")"* cosh® ¥ sinh 6 S — A=) cosh 9
V\/—f”3 ) 4 V\/W ’
BS — v/ — f'’3 cosh 9 sinh ¥ cosh 6 vS — va/— f3 cosh® ¥
L (1—f)1/4 N (B
2.17)
m:? _ _V\/7f//zlcisjl:/;9>§i/rlh19$inh9, QY;? -0
and
v _ //3‘,' ho
(2.18)

v _ 113 sh 6
WY = e W =0

Thus, if we write (2.11), (2.16), (2.17) and (2.18) in equation (2.14), we can obtain the
following theorem:

Theorem 2.1. The LB" operator of the rotational hypersurface (2.1) about spacelike axis in E}

A
AV = W(—Acoshﬂcosh&, —Asinh ), —Acosh9sinh @, B(1 — f?)f7),
where
A=vf2 7 (—6+ 13f2 = Tf") + 4 " 1 7 (1= )7 (2" +3uf")
and

B = Vf//2(8 _ 9f/2) _ f/ (1 _ f/2) (zf// + 3l/fm).
Using Theorem 2.1, we have

Theorem 2.2. The rotational hypersurface (2.1) about spacelike axis in E} cannot be LB!"-
minimal.

Proof. A hypersurface is LB" -minimal, if all components of LB" operator vanishes. According
to this definition, when we state the LBV operator of the rotational hypersurface (2.1) as

AIV\{;S —_ ((AIV\PS)l’ (AIVTS)z, (AIVTS)37 (AIVTS)4),

it must be
(ATV®9) = (ATVP), = (ATVWP5); = (ATVWPS), = 0. (2.19)

From Theorem 2.1, for the equation (2.19) satisfies, we must have
l/f/Zf//Z (—6 + 13f/2 o 7f/4) 4 4V3f//4 4 f/3 (1 o f12)2 (2f/l + 3l/f3) =0 (220)

and

uf”2(8 _ 9f/2) _f (1 _ le) (Zf” + 3Vf3) =0 (2.21)
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simultaneously. From (2.21), we get
V(8- 9/7)
(1=17)
and using the last equation in (2.20), we reach that
fPA= P22+ =0.

Since f” # 0 £ f’ # 1 for our rotational hypersurface (2.1), the last expression is not possible
for any f. Thus, the rotational hypersurface (2.1) is never LB!Y-minimal and the proof completes.
|

_ f/ (zf// + 3l/f3)

Example 2.3. Taking the profile curve of the rotational hypersurface (2.1) in Ef as (z/, 0,0, uz),
we have
W5 (v,9,0) = (vcoshd coshd,vsinh 9, v cosh sinh 6, 1?) . (2.22)

and the LB!Y operator of this hypersurface is obtained by

ATV S _ 1 v(- 41%)3/2(200% — 9) cosh ¥ cosh 0, v(1 — 41%)3/2(200% — 9) sinh ¥,
4 v(1 —412)3/2(200> — 9) cosh ¥ sinh 0, (1 — 4v2)3/2(3 — 1412)
—

EETeTTE 4
Figure 1. Projections of the rotational hypersurface (2.22) for # = 2 into
xyx3x4-space (left) and xjxzx4-space (right)

3 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Timelike Axis in E}

Letg: I CR— R, v— g(v), (v € R— {0}) be a smooth function. If we rotate the profile
curve 3(v) = (g(v),0,0,v) about timelike axis (1,0,0,0), then the rotational hypersurfaces
about timelike axis in E} is given by

1 0 0 0 g(v)

W7 (1,9, 0) = 0 cosf —sindsinf —cos'1951n9 . 0 G.1)
0 0 cos i —sin?d 0
0 sinf sindcosf cos v cos b v

= (g(v),—vcosdsinf, —vsind, v coscosh).

From (1.5), the first fundamental form of rotational hypersurface (3.1), its inverse matrix and
determinant are
1-¢% 0 0
[9i5]" = 0 2 0 : (3.2)
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= 0 0
g/1"=1 o L o0 (3.3)
0 0 Ty
and
det[gi;]” = —v* (¢* — 1) cos? ¥, (3.4)

respectively. Here, if we suppose that g”> — 1 > 0, then we have det[g;;] < 0 and so, we deal
with timelike rotational hypersurface (3.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing g’ — 1 < 0.
From (1.4), the unit normal vector field of rotational hypersurface (3.1) is
1

NT = Vet (1,—¢ cos¥sinf, —g’ sind, g’ cos ¥ cos ) (3.5
9° =

and so, from (3.5), it can be seen that
=(NT,NT) =1. (3.6)
Here, we denote g = g(v) and ¢’ = %.

From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(3.1) are obtained by

1 1 0 0

[hlj]T = —79/2 —1 O Vg/ O (37)
0 0 wvg'cos’d
and 12
Gl 00
72

[my]" = 0 A= 0 , (3.8)

0 0 g’% cos® ¥

ng(l,)

respectively, where ¢ =
Also, using (3.3) and (3 7) in (1.8), the shape operator of the rotational hypersurface (3.1) is
given by

1"

4 0
1 g !
ST = ——— 0 -2 0 (3.9)
g- — 1 0 0 _i

Now, we obtain the LB'Y operator of the rotational hypersurface (3.1) in E} and prove an
important theorem about LB!'Y-minimality.

For obtaining the LB!Y operator of the rotational hypersurface (3.1) in E, firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (3.8) and (3.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (3.1) is obtained by

1"

r 2 g
(g’zgi—l)? ()2 0 (g7 —1)7 (z], 0
[nZ]]T - 0 ggfl 0 0 _y g2—1 O
g'? cos® ¥ _ g’
0 0 5 0 0 o1
r _ 13
[ 0 0
73
- 0 e 0| (3.10)
|0 0

So, from (3.10), we get
16 113 2 9

g9’ cos

det[n]T = — L4 =2 7
i 2 (9/2 . l)]3/2

(3.11)
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Using (3.1) and (3.10) in equation (2.15), we have

U = 97D Peosy r g% (e ) o’ Dsing
L vy/—g'"? ’ - l,\/_g//3
(3.12)
T g eosdsing g1 g% (g7 =)'/ cos’ Wcosd,
u’j - I/\/—g”3 ) - I/\/—g”3 B
gl — 0. Pl = v/ —g’’3 cos 9 sin ¥ sin 6
= Y2 (g7—1)77%
(3.13)
g — 2V —g'3 cos” ¥ 5T — v/ —g'" cos ¥ sin ¥ cos O
37T T T (g 0TA o e T T G217/
and
T _ T _ vy/—g'"?cos0
W] =0, WF = LTt
(3.14)

997 — 0 mﬁ« _ _vy/—g"3cosYsind
, —

(97—
Thus, writing the equations (3.11), (3.12), (3.13) and (3.14) in (2.14), we can give the fol-
lowing theorem:
Theorem 3.1. LB" operator of the rotational hypersurface (3.1) about timelike axis in E is

vyl _ (9/2 - 1)3/2
AT = 114

W(—C’g/3(g’2 —1),Dcos¥sinf, D sind, —D cos 9 cos 0),

where
C = l/g//z(S _ 9912) +g/ (g/2 _ 1) (2g” + 3Vg3)
and 5
D= l/nggl/Z (—6 + 139/2 _ 7gl4) +4V3gll4 +gl3 (gIZ _ l) (Zg// + 31/93) .
Using similar method with proof of Theorem 2.2, one can give the following theorem:
Theorem 3.2. The rotational hypersurface (3.1) about timelike axis in E} cannot be LB -
minimal.

Example 3.3. Taking the profile curve of the rotational hypersurface (3.1) in £ as (sinv, 0,0, v),
we have
W (1,9,0) = (sinv, —vcos¥sin 6, —vsin ¥, v cos ¥ cos 0) (3.15)

and the LB!Y operator of this hypersurface is obtained by
4sin’ v(5v — 3vcos(2v) + sin(2v)),
1| tan’vcosdsinB(6r — 160° + 4v cos(2v) — 2w cos(4v) + 2sin(2v) + sin(4v)),
8v sin¥ tan® v(—6v + 1613 — 4v cos(2v) + 2v cos(4v) — 2sin(2v) — sin(4v)),
tan’ v cos ¥ cos O(—6v + 16v° — 4v cos(2v) + 2v cos(4v) — 2sin(2v) — sin(4v)).

AIVIPT —

Figure 2. Projections of the rotational hypersurface (3.15) for § = 7 /3 into
x1x324-space (left) and x;xz x3-space (right)
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4 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Lightlike Axis in E

Leth:I CR— R, v — h(v), (v € R —{0}) be a smooth function. If we rotate the profile
curve v(v) = (v, h(v),0,0) about lightlike axis (1, 1,0,0), then the rotational hypersurfaces
about lightlike axis in E7 is given by

LS . v
92+6° 1 — 92 +6° 9 0 hiv

W (v,9,0) = : 510 0) (4.1)
0 -6 0 1 0

= (é (940> +2)v— (9> +6%) h(v)), % (P +0*) v+ (2—9>—0*)h(v)) ,v9 — h(v)9, vl — h(u)9>

From (1.5), the first fundamental form of rotational hypersurface (4.1), its inverse matrix and
determinant are

B2 — 1 0 0
l9:5]" = 0 (v=h? 0 : (4.2)
0 0 (v — h)?
1
N h?—1 (1) 0
[QU]L = 0 (v—h)? 0 (4.3)
1
0 0 o
and
det[g;;]* = (v —n)* (W2~ 1), (4.4)

respectively. Here, if we suppose that h'? — 1 < 0, then we have det[g;;] < 0 and so, we deal
with timelike rotational hypersurface (4.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing > — 1 > 0.

From (1.4), the unit normal vector field of rotational hypersurface (4.1) is

1
Ne= — (P 40— (P+P+2) N, P +0>—2— (P +0)R,20(1—-1),2001 -1
=l ( ) (92 + 07) 20 (1 = '), 20 (1 1)
4.5)
and so, from (3.5), it can be seen that
el = (Nt NP =1 (4.6)

Here, we denote h = h(v) and b’ = %S/”).
From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(4.1) are obtained by

| —h" 0 0
[hij]" = ——=—==| 0 (—-h{H-1) 0 4.7
N Y
L=h 0 (v — )W — 1)
and o
. e 00
ol =10 0 4.8)
0 0 llh’
. i d*h(v)
respectively, where b = Tj(z.

Also, using (4.3) and (4.7) in (1.8), the shape operator of the rotational hypersurface (4.1) is
given by
h// O 0

1 (1-h"2) ,
h -l 0 . (4.9)

Sh=——=| 0 {55
N . e
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Now, we obtain the LB'Y operator of the rotational hypersurface (4.1) in E;‘ and prove an
important theorem about LBV -minimality.

For obtaining the LB!Y operator of the rotational hypersurface (4.1) in E}, firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (4.8) and (4.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (4.1) is obtained by

_ i '’
— 0 0 w7 0 0
L e 1—h' 0 —h=l 0
(i)™ = 0 X Oh/ : (v—h)\/1-h7 .
L0 0 5w 0 0 R
r —h”3
T=hy7 0 0
_ (=1+h")\/1=h72
0 0 (=14h")3/1=h"2
i (w—h)(1+h)2
So, from (4.10), we get
/1 _ h2K!13
det[n;;]* = h L= h ? . 4.11)
(v—h)2(1+h)(-1+1)
Using (4.1) and (4.10) in equation (2.15), we have
gL — (—14+1") P VITR (29> 0>+ (97 +6% )1’ W (—14+1")" VIR (07 —67+ (—2+9°+67)1")
! 2v—h)\ By 1=h2 ’ 2v—h)\ 11k

L o(—1n) VTR g — o(—1+0)"VTTR

3 (v—nh) h”3\/l—h’27 + (v—h) h”3\/1—h’2’
4.12
WL W(v—h)h/?/? WL O(v—h)h'>/? 12
1 — (7l+h’)3/2(l+h/)3/2(17h/2)l/4’ 2 (7l+h’)3/2(l+h’)3/2(17h’2)]/4
(4.13)
L _ (v—h)h'?/? L _
%3 - (—1+h’)3/2(1+h’)3/2(1—h'2)1/4’ mﬁl =0
and
L O(v—h)h'>/? L 0(v—h)h'>/?
wl - (—l+h/)3/2(l+h’)3/2(1—h’2)1/47 w2 - (—l+h/)3/2(l+h’)3/2(1—h’2)1/47
(4.14)
L _ L _ (V_h)h//3/2
Qn:; - O) w4 - (7l+h’)3/2<1+h')3/2(17h'2)1/4.

Thus, writing the equations (4.11), (4.12), (4.13) and (4.14) in (2.14), we can give the fol-
lowing theorem:

Theorem 4.1. LB operator of the rotational hypersurface (4.1) about lightlike axis in EY is

AIV\PL — ((AIV\PL)17 (AIV\PL)z, (AIV‘“PL)3, (AIVTL)4),

where
2(—1+0)° (14 1) (=2 =92 — 6>+ (9> + 62 W) "
—4 (3 + 202 +26%)
W) (~L+R) A+ R)R? [ — (14 + 9+ 62) W
(1+ 1) +9 (02 + 6%) b
29— 2
“3(w—h)(=1+K) (1 +H)n"
+8 (v — h)’ W™
ATV, — (v—h)

4(h—v) (=1 + 1)1 = b2
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2(~1+ 1) (14 1) (—0% =07+ (-2 + 9P+ 6*) 1) "

4(1 - 202 - 267)
Fw—h) (~1+) A+ — (124 PR+ 62
(1+ 1) +9 (=2 + 92+ 6%) 1
_192 _ 92
3w —h)(=1+h) (1+n)h"
(AIVTL) _ +38 (V - h)3 h”4
2T A(h—v) (=1 + W) T — W2 ’
—2(=1+KW)* (1 4+1)h"
=1+ 1) (1L +m) | —(—h)B+9w)n?
(AIVPL), = +3(v—h) (=1+A2) 1"
20" (v — h) V1 — W2 ’
—2(=14n) (1 +1)n"
O(—1+n) A+1) | —(—h)(8+9K)r"
(AW, — +3(v—h) (=1 +H?*)n"

20" (v — h) V1 — b7

Theorem 4.2. The rotational hypersurface (4.1) about lightlike axis in E} cannot be LB!-
minimal.

Proof. Let us suppose that the rotational hypersurface (4.1) about lightlike axis in E‘l‘ is LBIV-
minimal. So we have (A’VWL), = (AIV¥L), = (ATVWE); = (AIV¥L), = 0. From
(ATVWL) = 0, we have

2(—1+h)° (1+h) (=2 =92 — 0>+ (9> +62) ') h”
—4 (3 +29% +267)
Fw—h) (~1+) A+h) | - (14+92+ )0 | K7

+9 (07 + 67) b2 =0 @15
—2— 92— @2
8(v—h)>W*—3w—h)(=1+K) (1+h) "
+8(v—h) (v—="h)(=1+K) (1+1) (24 02) W
The equation (4.15) can be written by
PA+6PA+B=0, (4.16)
where
A= (=141 (141) (2(=1+ 1) (1+ R )" + (v — k) (8 + 90/ )R'> — 3(v — h)(—1 + h"*)K")
(4.17)
and

B = —4(—1+ 1)1 +1)*n" —2(v — h)(=1+K)*(6+ 13K + Th"*)n'"
+8(v—h)> W™ +6(v — h) (=1 +1')>(1 4+ n')>h". (4.18)
Since {92, 6%, 1} are linear independent, it must be A = 0 ve B = 0 in (4.16). Since ' # +1 in
(4.17), for A = 0, it must be

2(—1+ W)2(1 + KR + (v — h)(8 + ') b/

h/// —
3(v— h)(—1+ 17)

(4.19)

If we use the equation (4.19) in the expression of B = 0, i.e.
—4(=1+ M)A+ W)W —2(v — h)(—1 + K)*(6 + 130 + Th'*)W'"?
+8(v —h)>* W +6(v—h) (=1 +K)(1+K)H" =0; (4.20)
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then we have,
4(v — R)W*((=1+KW)* (1 +1)* 4+ 2(v — h)?K"?) = 0. 4.21)

Since the function i cannot be linear, (4.21) doesn’t hold and so it is a contradiction. The reason
of this contradiction is our assumption of (A’VWL); = 0. So, (ATV'WF); cannot be zero and this
completes the proof. O

Example 4.3. Taking the profile curve of the rotational hypersurface (4.1) in E as (1/, V2 41,0, O),
we have

92462 _ 92407 2 9246 _ 9%46? 2
‘PL(Z/,’L9,0): ( 2 +1)1/ 2 (V +1/)a 2 v+ (1 2 )(V +V)7 (4.22)
v — (V2 + )9, v0 — (V2 +v)0

and the LB!Y operator of this hypersurface is obtained by

—2(=12(1 4+ 1)) 2 (=9 + 2003 (9% + %)
+20(—11 4 99% + 962) + 20%(—6 + 199* + 196?),
[ | —2(=1°(1 4 1)) 7 (=9 + 2003 (=2 + 92 + 6?)
AT = 2 2 2 2 2
+20(—=29 + 992 + 902) + 212 (—44 + 199 + 196?),

8(1+ v)2/—v2(1 +v)(9 + 10v)¥,
8(1 +v)2/—v®(1 +v)(9 + 10v)6.

14

Figure 3. Projections of the rotational hypersurface (4.22) for # = 2 into
xox3xg-space (left) and xjxrx3-space (right)

Here, we must note that the first and second fundamental forms, which are given for the
rotational hypersurfaces in this study, can be obtained by taking a =b =0 in [16] and also, they
can be found in [3], too.
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