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Abstract In the present paper, we obtain the fourth Laplace-Beltrami operator of rotational
hypersurfaces about spacelike, timelike, and lightlike axes separately in 4-dimensional Lorentz-
Minkowski space and prove theorems about fourth Laplace-Beltrami minimality of them. Also,
we construct some examples for these rotational hypersurfaces, obtain their fourth Laplace-
Beltrami operators and give their visualizations into 3-spaces.

1 General Information and Basic Concepts

It is known that a rotational hypersurface is defined as a hypersurface rotating a curve around an
axis. In this context, if α : I ⊂ R −→ π is a curve in a plane π of E4

1 and l is a straight line in E4
1 ,

then a rotational hypersurface is defined by a hypersurface rotating the profile curve α around
the axis l. With the aid of this definition, the differential geometry of rotational (hyper)surfaces
in 3 or higher-dimensional Euclidean, Minkowskian, Galilean, and pseudo-Galilean spaces have
been studied by mathematicians. For instance, finite type surfaces of revolution in a Euclidean
3-space have been classified in [8] and some properties about surfaces of revolution in four di-
mensions have been given in [21]. The general rotational surfaces in Minkowski 4-space and the
third Laplace-Beltrami operator and the Gauss map of the rotational hypersurface in Euclidean
4-space have been studied in [12] and [13], respectively. In [4], Arslan and his friends have con-
sidered generalized rotational surfaces imbedded in a Euclidean space of four dimensions and
also they have given some special examples of these surfaces in E4. In [24], Yoon has studied on
rotational surfaces with finite type Gauss maps in Euclidean 4-space. The explicit parameteriza-
tions of rotational hypersurfaces in Lorentz-Minkowski space En

1 have been given and rotational
hypersurfaces in En

1 with constant mean curvature have been obtained in [11]. For more studies
about different types of curves and (hyper)surfaces in different spaces, we refer to [1], [2], [5],
[6], [7], [9], [10], [14], [15], [16], [18], [19], [20], [22], [23], [25], and etc.

Now, let us recall some fundamental notions for hypersurfaces in Lorentz-Minkowski 4-
space.

Let −→x = (x1, x2, x3, x4), −→y = (y1, y2, y3, y4) and −→z = (z1, z2, z3, z4) be three vectors in
4-dimensional Lorentz-Minkowski space E4

1 . Then, the inner product and vector product are
defined by

⟨−→x ,−→y ⟩ = −x1y1 + x2y2 + x3y3 + x4y4 (1.1)

and

−→x ×−→y ×−→z = det


−e1 e2 e3 e4

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

 , (1.2)

respectively. Also, the norm of the vector −→x is ∥−→x ∥ =
√
|⟨−→x ,−→x ⟩|.

The Gauss map (i.e., the unit normal vector field), the matrix forms of the first, second and
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third fundamental forms of a hypersurface

Ψ : E3 −→ E4 (1.3)

(u1, u2, u3) −→ Ψ(u1, u2, u3) = (Ψ1(u1, u2, u3),Ψ2(u1, u2, u3),Ψ3(u1, u2, u3),Ψ4(u1, u2, u3))

in E4
1 are

N =
Ψu1 × Ψu2 × Ψu3

∥Ψu1 × Ψu2 × Ψu3∥
, (1.4)

[gij ] =

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 , (1.5)

[hij ] =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (1.6)

and

[mij ] =

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 , (1.7)

respectively. Here, we state that gij =
〈
Ψui

,Ψuj

〉
, hij =

〈
Ψuiuj

, N
〉
, mij =

〈
Nui

, Nuj

〉
,

Ψui
= ∂Ψ

∂ui
, Ψuiuj

= ∂2
Ψ

∂uiuj
, Nui

= ∂N(u1,u2,u3)
∂ui

, i, j ∈ {1, 2, 3}.
If we denote the inverse matrix of [gij ] as [gij ]−1, then the shape operator of the hypersurface

(1.3) is given by
S = [gij ]

−1.[hij ]. (1.8)

From (1.4)-(1.6) and (1.8), the Gaussian and mean curvatures of the hypersurface (1.3) in E4
1

are defined by

K = ε
det[hij ]

det[gij ]
(1.9)

and
3εH = tr(S) (1.10)

respectively. Here, ε = ⟨N,N⟩. For more details about hypersurfaces in 4-dimensional spaces,
one can see [3], [14], [16], and etc.

If we denote fourth fundamental form of the hypersurface (1.3) in E4
1 by [nij ], then we have

[17]

[hij ] = [gij ].S,

[mij ] = [hij ].S = [gij ].S.S,

[nij ] = [mij ].S = [hij ].S.S = [gij ].S.S.S. (1.11)

Also, the inverse of an arbitrary matrix

[Aij ] =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 (1.12)

in E4
1 is

[Aij ] =
1

det[Aij ]

 A22A33 −A23A32 A13A32 −A12A33 A12A23 −A13A22

A23A31 −A21A33 A11A33 −A13A31 A13A21 −A11A23

A21A32 −A22A31 A12A31 −A11A32 A11A22 −A12A21

 , (1.13)

where

det[Aij ] = −A13A22A31 +A12A23A31 +A13A21A32 −A11A23A32 −A12A21A33 +A11A22A33.
(1.14)
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2 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Spacelike Axis in E4

1

In this section, firstly we obtain the fourth fundamental form of rotational hypersurfaces about
spacelike axis in E4

1 with the aid of first, second and third fundamental forms and shape operator.
After that, we reach the fourth Laplace-Beltrami (LBIV) operator of this hypersurface and give
some results and examples for LBIV operator.

Let f : I ⊂ R −→ R, ν −→ f(ν), (ν ∈ R−{0}) be a smooth function. If we rotate the profile
curve α(ν) = (ν, 0, 0, f(ν)) about spacelike axis (0, 0, 0, 1), then the rotational hypersurfaces
about spacelike axis in E4

1 is given by

Ψ
S(ν, ϑ, θ) =


coshϑ cosh θ sinhϑ cosh θ sinh θ 0

sinhϑ coshϑ 0 0
coshϑ sinh θ sinhϑ sinh θ cosh θ 0

0 0 0 1

 .


ν

0
0

f(ν)


= (ν coshϑ cosh θ, ν sinhϑ, ν coshϑ sinh θ, f(ν)) . (2.1)

We must note that, from now on, the superscripts S , T and L denote the rotation axes.
From (1.5), the first fundamental form of rotational hypersurface (2.1), its inverse matrix and

determinant are

[gij ]
S =

 f ′2 − 1 0 0
0 ν2 0
0 0 ν2 cosh2 ϑ

 , (2.2)

[gij ]S =


1

f ′2−1 0 0
0 1

ν2 0
0 0 1

ν2 cosh2 ϑ

 (2.3)

and
det[gij ]S = ν4 (f ′2 − 1

)
cosh2 ϑ, (2.4)

respectively. Here, if we suppose that f ′2 − 1 < 0, then we have det[gij ] < 0 and so, we deal
with timelike rotational hypersurface (2.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing f ′2 − 1 > 0.

From (1.4), the unit normal vector field of rotational hypersurface (2.1) is

NS = − 1√
1 − f ′2

(f ′ coshϑ cosh θ, f ′ sinhϑ, f ′ coshϑ sinh θ, 1) (2.5)

and so, from (2.5), it can be seen that

εS =
〈
NS , NS

〉
= 1. (2.6)

Here, we denote f = f(ν) and f ′ = df(ν)
dν .

From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(2.1) are obtained by

[hij ]
S =

1√
1 − f ′2

 −f ′′ 0 0
0 νf ′ 0
0 0 νf ′ cosh2 ϑ

 (2.7)

and

[mij ]
S =


−f ′′2

(−1+f ′2)2 0 0

0 f ′2

1−f ′2 0

0 0 f ′2 cosh2 ϑ
1−f ′2

 , (2.8)

respectively, where f ′′ = d2f(ν)
dν2 .
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Also, using (2.3) and (2.7) in (1.8), the shape operator of the rotational hypersurface (2.1) is
given by

SS =
1√

1 − f ′2


f ′′

1−f ′2 0 0
0 f ′

ν 0
0 0 f ′

ν

 . (2.9)

Now, we obtain the LBIV operator of the rotational hypersurface (2.1) in E4
1 and prove an

important theorem about LBIV-minimality.
For obtaining the LBIV operator of the rotational hypersurface (2.1) in E4

1 , firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (2.8) and (2.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (2.1) is obtained by

[nij ]
S =


−f ′′2

(−1+f ′2)2 0 0

0 f ′2

1−f ′2 0

0 0 f ′2 cosh2 ϑ
1−f ′2

 .


f ′′

(1−f ′2)3/2 0 0

0 f ′

ν
√

1−f ′2
0

0 0 f ′

ν
√

1−f ′2



=


−f ′′3

(1−f ′2)7/2 0 0

0 f ′3

ν(1−f ′2)3/2 0

0 0 f ′3 cosh2 ϑ
ν(1−f ′2)3/2

 . (2.10)

So, from (2.10), we get

det[nij ]
S = − f ′6f ′′3 cosh2 ϑ

ν2 (1 − f ′2)
13/2 . (2.11)

Now, we can obtain the LBIV operator of the rotational hypersurface (2.1) in E4
1 .

The fourth Laplace-Beltrami (LBIV) operator of a smooth function φ = φ(ν1, ν2, ν3)|D,
(D ⊂ R3) of class C3 with respect to the nondegenerate fourth fundamental form of hypersurface
Ψ in E4

1 is the operator which is defined as follows:

∆
IV φ = − 1√

|det[nij ]|

3∑
i,j=1

∂

∂νi

(√
|det[nij ]|nij ∂φ

∂νj

)
, (2.12)

where nij are the components of the inverse matrix [nij ]
−1.

So, using (1.13), (1.14) and (2.12), the LBIV operator of a smooth function φ = φ(ν, ϑ, θ)
can be written as

∆
IV φ = − 1√

|det[nij ]|



∂
∂ν

(
(−n23n32+n22n33)φν+(n13n23−n12n33)φϑ+(n12n23−n13n22)φθ√

|det[nij ]|

)
+ ∂

∂ϑ

(
(−n21n33+n23n31)φν+(n11n33−n13n31)φϑ+(n13n21−n11n23)φθ√

|det[nij ]|

)
+ ∂

∂θ

(
(−n22n31+n21n32)φν+(n12n31−n11n32)φϑ+(n11n22−n12n21)φθ√

|det[nij ]|

)


,

(2.13)
where

det[nij ] = −n13n22n31 + n12n23n31 + n13n21n32 − n11n23n32 − n12n21n33 + n11n22n33.

Let us denote the LBIV operator of a rotational hypersurface Ψ in E4
1 as ∆IV Ψ. Then, with

the aid of (2.13), we can write

∆
IV

Ψ = ((∆IV
Ψ)1, (∆

IV
Ψ)2, (∆

IV
Ψ

)
3, (∆

IV
Ψ)4)

= − 1√
|det[nij ]|

(
(U1)ν + (V1)ϑ + (W1)θ, (U2)ν + (V2)ϑ + (W2)θ,

(U3)ν + (V3)ϑ + (W3)θ, (U4)ν + (V4)ϑ + (W4)θ

)
, (2.14)
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where

Ui =
1√

|det[nij ]|
((−n23n32 + n22n33)(Ψi)ν + (n13n23 − n12n33)(Ψi)ϑ + (n12n23 − n13n22)(Ψi)θ) ,

Vi =
1√

|det[nij ]|
((−n21n33 + n23n31)(Ψi)ν + (n11n33 − n13n31)(Ψi)ϑ + (n13n21 − n11n23)(Ψi)θ) ,

Wi =
1√

|det[nij ]|
((−n22n31 + n21n32)(Ψi)ν + (n12n31 − n11n32)(Ψi)ϑ + (n11n22 − n12n21)(Ψi)θ) .

 .

(2.15)
Using (2.1) and (2.10) in (2.15), we have

US
1 = − f ′3(1−f ′2)1/4 cosh2 ϑ cosh θ

ν
√

−f ′′3
, US

2 = − f ′3(1−f ′2)1/4 cosh ϑ sinh ϑ

ν
√

−f ′′3

US
3 = − f ′3(1−f ′2)1/4 cosh2 ϑ sinh θ

ν
√

−f ′′3
, US

4 = − f ′4(1−f ′2)1/4 cosh ϑ

ν
√

−f ′′3
;

 (2.16)

VS
1 = −ν

√
−f ′′3 cosh ϑ sinh ϑ cosh θ

(1−f ′2)7/4 , VS
2 = −ν

√
−f ′′3 cosh2 ϑ

(1−f ′2)7/4

VS
3 = −ν

√
−f ′′3 cosh ϑ sinh ϑ sinh θ

(1−f ′2)7/4 , VS
4 = 0

 (2.17)

and
WS

1 = −ν
√

−f ′′3 sinh θ

(1−f ′2)7/4 , WS
2 = 0

WS
3 = −ν

√
−f ′′3 cosh θ

(1−f ′2)7/4 , WS
4 = 0.

 (2.18)

Thus, if we write (2.11), (2.16), (2.17) and (2.18) in equation (2.14), we can obtain the
following theorem:

Theorem 2.1. The LBIV operator of the rotational hypersurface (2.1) about spacelike axis in E4
1

is

∆
IV

Ψ
S =

(1 − f ′2)3/2

2νf ′3f ′′4 (−A coshϑ cosh θ,−A sinhϑ,−A coshϑ sinh θ,B(1 − f ′2)f ′3),

where

A = νf ′2f ′′2 (−6 + 13f ′2 − 7f ′4)+ 4ν3f ′′4 + f ′3 (1 − f ′2)2
(2f ′′ + 3νf ′′′)

and
B = νf ′′2(8 − 9f ′2)− f ′ (1 − f ′2) (2f ′′ + 3νf ′′′).

Using Theorem 2.1, we have

Theorem 2.2. The rotational hypersurface (2.1) about spacelike axis in E4
1 cannot be LBIV-

minimal.

Proof. A hypersurface is LBIV-minimal, if all components of LBIV operator vanishes. According
to this definition, when we state the LBIV operator of the rotational hypersurface (2.1) as

∆
IV

Ψ
S = ((∆IV

Ψ
S)1, (∆

IV
Ψ

S)2, (∆
IV

Ψ
S)3, (∆

IV
Ψ

S)4),

it must be
(∆IV

Ψ
S)1 = (∆IV

Ψ
S)2 = (∆IV

Ψ
S)3 = (∆IV

Ψ
S)4 = 0. (2.19)

From Theorem 2.1, for the equation (2.19) satisfies, we must have

νf ′2f ′′2 (−6 + 13f ′2 − 7f ′4)+ 4ν3f ′′4 + f ′3 (1 − f ′2)2 (
2f ′′ + 3νf3) = 0 (2.20)

and
νf ′′2(8 − 9f ′2)− f ′ (1 − f ′2) (2f ′′ + 3νf3) = 0 (2.21)
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simultaneously. From (2.21), we get

νf ′′2(8 − 9f ′2)

(1 − f ′2)
= f ′ (2f ′′ + 3νf3)

and using the last equation in (2.20), we reach that

f ′2(1 − f ′2)2 + 2ν2f ′′2 = 0.

Since f ′′ ̸= 0 ̸= f ′ ̸= 1 for our rotational hypersurface (2.1), the last expression is not possible
for any f . Thus, the rotational hypersurface (2.1) is never LBIV-minimal and the proof completes.

Example 2.3. Taking the profile curve of the rotational hypersurface (2.1) in E4
1 as

(
ν, 0, 0, ν2

)
,

we have
Ψ

S(ν, ϑ, θ) =
(
ν coshϑ cosh θ, ν sinhϑ, ν coshϑ sinh θ, ν2) . (2.22)

and the LBIV operator of this hypersurface is obtained by

∆
IV

Ψ
S =

1
4

(
ν(1 − 4ν2)3/2(20ν2 − 9) coshϑ cosh θ, ν(1 − 4ν2)3/2(20ν2 − 9) sinhϑ,

ν(1 − 4ν2)3/2(20ν2 − 9) coshϑ sinh θ, (1 − 4ν2)5/2(3 − 14ν2)

)
.

Figure 1. Projections of the rotational hypersurface (2.22) for θ = 2 into
x2x3x4-space (left) and x1x2x4-space (right)

3 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Timelike Axis in E4

1

Let g : I ⊂ R −→ R, ν −→ g(ν), (ν ∈ R − {0}) be a smooth function. If we rotate the profile
curve β(ν) = (g(ν), 0, 0, ν) about timelike axis (1, 0, 0, 0), then the rotational hypersurfaces
about timelike axis in E4

1 is given by

Ψ
T (ν, ϑ, θ) =


1 0 0 0
0 cos θ − sinϑ sin θ − cosϑ sin θ
0 0 cosϑ − sinϑ
0 sin θ sinϑ cos θ cosϑ cos θ

 .


g(ν)

0
0
ν

 (3.1)

= (g(ν),−ν cosϑ sin θ,−ν sinϑ, ν cosϑ cos θ) .

From (1.5), the first fundamental form of rotational hypersurface (3.1), its inverse matrix and
determinant are

[gij ]
T =

 1 − g′2 0 0
0 ν2 0
0 0 ν2 cos2 ϑ

 , (3.2)
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[gij ]T =


1

1−g′2 0 0
0 1

ν2 0
0 0 1

ν2 cos2 ϑ

 (3.3)

and
det[gij ]T = −ν4 (g′2 − 1

)
cos2 ϑ, (3.4)

respectively. Here, if we suppose that g′2 − 1 > 0, then we have det[gij ] < 0 and so, we deal
with timelike rotational hypersurface (3.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing g′2 − 1 < 0.

From (1.4), the unit normal vector field of rotational hypersurface (3.1) is

NT =
1√

g′2 − 1
(1,−g′ cosϑ sin θ,−g′ sinϑ, g′ cosϑ cos θ) (3.5)

and so, from (3.5), it can be seen that

εT =
〈
NT , NT

〉
= 1. (3.6)

Here, we denote g = g(ν) and g′ = dg(ν)
dν .

From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(3.1) are obtained by

[hij ]
T = − 1√

g′2 − 1

 g′′ 0 0
0 νg′ 0
0 0 νg′ cos2 ϑ

 (3.7)

and

[mij ]
T =


−g′′2

(g′2−1)2 0 0

0 g′2

g′2−1 0

0 0 g′2 cos2 ϑ
g′2−1

 , (3.8)

respectively, where g′′ = d2g(ν)
dν2 .

Also, using (3.3) and (3.7) in (1.8), the shape operator of the rotational hypersurface (3.1) is
given by

ST =
1√

g′2 − 1


g′′

g′2−1 0 0
0 − g′

ν 0
0 0 − g′

ν

 . (3.9)

Now, we obtain the LBIV operator of the rotational hypersurface (3.1) in E4
1 and prove an

important theorem about LBIV-minimality.
For obtaining the LBIV operator of the rotational hypersurface (3.1) in E4

1 , firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (3.8) and (3.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (3.1) is obtained by

[nij ]
T =


−g′′2

(g′2−1)2 0 0

0 g′2

g′2−1 0

0 0 g′2 cos2 ϑ
g′2−1

 .


g′′

(g′2−1)3/2 0 0

0 − g′

ν
√

g′2−1
0

0 0 − g′

ν
√

g′2−1



=


−g′′3

(g′2−1)7/2 0 0

0 −g′3

ν(g′2−1)3/2 0

0 0 −g′3 cos2 ϑ
ν(g′2−1)3/2

 . (3.10)

So, from (3.10), we get

det[nij ]
T = − g′6g′′3 cos2 ϑ

ν2 (g′2 − 1)13/2 . (3.11)
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Using (3.1) and (3.10) in equation (2.15), we have

UT
1 = g′4(g′2−1)1/4 cos ϑ

ν
√

−g′′3
, UT

2 = − g′3(g′2−1)1/4 cos2 ϑ sin θ

ν
√

−g′′3

UT
3 = − g′3(g′2−1)1/4 cos ϑ sin ϑ

ν
√

−g′′3
, UT

4 = g′3(g′2−1)1/4 cos2 ϑ cos θ
ν
√

−g′′3
;

 (3.12)

VT
1 = 0, VT

2 =
ν
√

−g′′3 cos ϑ sin ϑ sin θ

(g′2−1)7/4

VT
3 = −ν

√
−g′′3 cos2 ϑ

(g′2−1)7/4 , VT
4 = −ν

√
−g′′3 cos ϑ sin ϑ cos θ

(g′2−1)7/4

 (3.13)

and
WT

1 = 0, WT
2 = −ν

√
−g′′3 cos θ

(g′2−1)7/4 ,

WT
3 = 0, WT

4 = −ν
√

−g′′3 cos ϑ sin θ

(g′2−1)7/4 .

 (3.14)

Thus, writing the equations (3.11), (3.12), (3.13) and (3.14) in (2.14), we can give the fol-
lowing theorem:

Theorem 3.1. LBIV operator of the rotational hypersurface (3.1) about timelike axis in E4
1 is

∆
IV

Ψ
T =

(g′2 − 1)3/2

2νg′3g′′4
(−Cg′3(g′2 − 1), D cosϑ sin θ,D sinϑ,−D cosϑ cos θ),

where
C = νg′′2(8 − 9g′2) + g′

(
g′2 − 1

) (
2g′′ + 3νg3)

and
D = νg′2g′′2

(
−6 + 13g′2 − 7g′4

)
+ 4ν3g′′4 + g′3

(
g′2 − 1

)2 (
2g′′ + 3νg3) .

Using similar method with proof of Theorem 2.2, one can give the following theorem:

Theorem 3.2. The rotational hypersurface (3.1) about timelike axis in E4
1 cannot be LBIV-

minimal.

Example 3.3. Taking the profile curve of the rotational hypersurface (3.1) in E4
1 as (sin ν, 0, 0, ν),

we have
Ψ

T (ν, ϑ, θ) = (sin ν,−ν cosϑ sin θ,−ν sinϑ, ν cosϑ cos θ) (3.15)
and the LBIV operator of this hypersurface is obtained by

∆
IV

Ψ
T =

1
8ν


4 sin3 ν(5ν − 3ν cos(2ν) + sin(2ν)),

tan3 ν cosϑ sin θ(6ν − 16ν3 + 4ν cos(2ν)− 2ν cos(4ν) + 2 sin(2ν) + sin(4ν)),
sinϑ tan3 ν(−6ν + 16ν3 − 4ν cos(2ν) + 2ν cos(4ν)− 2 sin(2ν)− sin(4ν)),

tan3 ν cosϑ cos θ(−6ν + 16ν3 − 4ν cos(2ν) + 2ν cos(4ν)− 2 sin(2ν)− sin(4ν)).



Figure 2. Projections of the rotational hypersurface (3.15) for θ = π/3 into
x1x3x4-space (left) and x1x2x3-space (right)
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4 Fourth Laplace-Beltrami Operator of Rotational Hypersurfaces about
Lightlike Axis in E4

1

Let h : I ⊂ R −→ R, ν −→ h(ν), (ν ∈ R − {0}) be a smooth function. If we rotate the profile
curve γ(ν) = (ν, h(ν), 0, 0) about lightlike axis (1, 1, 0, 0), then the rotational hypersurfaces
about lightlike axis in E4

1 is given by

Ψ
L(ν, ϑ, θ) =


ϑ2+θ2

2 + 1 −ϑ2+θ2

2 ϑ θ
ϑ2+θ2

2 1 − ϑ2+θ2

2 ϑ θ

ϑ −ϑ 1 0
θ −θ 0 1

 .


ν

h(ν)

0
0

 (4.1)

=

(
1
2
((
ϑ2 + θ2 + 2

)
ν −

(
ϑ2 + θ2)h(ν)) , 1

2
((
ϑ2 + θ2) ν +

(
2 − ϑ2 − θ2)h(ν)) , νϑ− h(ν)ϑ, νθ − h(ν)θ

)
.

From (1.5), the first fundamental form of rotational hypersurface (4.1), its inverse matrix and
determinant are

[gij ]
L =

 h′2 − 1 0 0
0 (ν − h)2 0
0 0 (ν − h)2

 , (4.2)

[gij ]L =


1

h′2−1
0 0

0 1
(ν − h)2 0

0 0 1
(ν − h)2

 (4.3)

and
det[gij ]L = (ν − h)

4 (
h′2 − 1

)
, (4.4)

respectively. Here, if we suppose that h′2 − 1 < 0, then we have det[gij ] < 0 and so, we deal
with timelike rotational hypersurface (4.1). Similarly, one can obtain the corresponding results
for spacelike rotational hypersurfaces by supposing h′2 − 1 > 0.

From (1.4), the unit normal vector field of rotational hypersurface (4.1) is

NL =
1

2
√

1 − h′2

(
ϑ2 + θ2 −

(
ϑ2 + θ2 + 2

)
h′, ϑ2 + θ2 − 2 −

(
ϑ2 + θ2)h′, 2ϑ (1 − h′) , 2θ (1 − h′)

)
(4.5)

and so, from (3.5), it can be seen that

εL =
〈
NL, NL

〉
= 1 (4.6)

Here, we denote h = h(ν) and h′ = dh(ν)
dν .

From (1.6) and (1.7), the second and third fundamental forms of the rotational hypersurface
(4.1) are obtained by

[hij ]
L =

1√
1 − h′2

 −h′′ 0 0
0 (ν − h)(h′ − 1) 0
0 0 (ν − h)(h′ − 1)

 (4.7)

and

[mij ]
L =


−h′′2

(−1+h′2)2 0 0
0 1−h′

1+h′ 0
0 0 1−h′

1+h′

 , (4.8)

respectively, where h′′ = d2h(ν)
dν2 .

Also, using (4.3) and (4.7) in (1.8), the shape operator of the rotational hypersurface (4.1) is
given by

SL =
1√

1 − h′2


h′′

(1−h′2)
0 0

0 h′−1
(ν−h) 0

0 0 h′−1
(ν−h)

 . (4.9)
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Now, we obtain the LBIV operator of the rotational hypersurface (4.1) in E4
1 and prove an

important theorem about LBIV-minimality.
For obtaining the LBIV operator of the rotational hypersurface (4.1) in E4

1 , firstly the fourth
fundamental form of this hypersurface must be given. In this context, if (4.8) and (4.9) are used
in (1.11), then the fourth fundamental form of the rotational hypersurface (4.1) is obtained by

[nij ]
L =


−h′′2

(−1+h′2)2 0 0
0 1−h′

1+h′ 0
0 0 1−h′

1+h′

 .


h′′

(1−h′2)3/2 0 0

0 h′−1
(ν−h)

√
1−h′2

0

0 0 h′−1
(ν−h)

√
1−h′2



=


−h′′3

(1−h′2)7/2 0 0

0 (−1+h′)
√

1−h′2

(ν−h)(1+h′)2 0

0 0 (−1+h′)
√

1−h′2

(ν−h)(1+h′)2

 . (4.10)

So, from (4.10), we get

det[nij ]
L =

√
1 − h′2h′′3

(ν − h)2(1 + h′)7(−1 + h′)
. (4.11)

Using (4.1) and (4.10) in equation (2.15), we have

UL
1 =

(−1+h′)
7/2√

1+h′(−2−ϑ2−θ2+(ϑ2+θ2)h′)

2(ν−h)

√
h′′3

√
1−h′2

, UL
2 =

(−1+h′)
7/2√

1+h′(−ϑ2−θ2+(−2+ϑ2+θ2)h′)

2(ν−h)

√
h′′3

√
1−h′2

UL
3 =

ϑ(−1+h′)
9/2√

1+h′

(ν−h)

√
h′′3

√
1−h′2

, UL
4 =

θ(−1+h′)
9/2√

1+h′

(ν−h)

√
h′′3

√
1−h′2

,


(4.12)

VL
1 = ϑ(ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4 , VL
2 = ϑ(ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4

VL
3 = (ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4 , V
L
4 = 0

 (4.13)

and

WL
1 = θ(ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4 , W
L
2 = θ(ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4 ,

WL
3 = 0, WL

4 = (ν−h)h′′3/2

(−1+h′)3/2(1+h′)3/2(1−h′2)1/4 .

 (4.14)

Thus, writing the equations (4.11), (4.12), (4.13) and (4.14) in (2.14), we can give the fol-
lowing theorem:

Theorem 4.1. LBIV operator of the rotational hypersurface (4.1) about lightlike axis in E4
1 is

∆
IV

Ψ
L = ((∆IV

Ψ
L)1, (∆

IV
Ψ

L)2, (∆
IV

Ψ
L)3, (∆

IV
Ψ

L)4),

where

(∆IV
Ψ

L)1 =

(1 + h′)
2



2 (−1 + h′)
6
(1 + h′)

2 (−2 − ϑ2 − θ2 +
(
ϑ2 + θ2

)
h′)h′′

+(ν − h) (−1 + h′)
4
(1 + h′)h′′2

 −4
(
3 + 2ϑ2 + 2θ2

)
−
(
14 + ϑ2 + θ2

)
h′

+9
(
ϑ2 + θ2

)
h′2


−3 (ν − h) (−1 + h′)

5
(1 + h′)

2
h′′′

(
−2 − ϑ2 − θ2

+
(
ϑ2 + θ2

)
h′

)
+8 (ν − h)

3
h′′4


4 (h− ν) (−1 + h′)h′′4

√
1 − h′2
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(∆IV
Ψ

L)2 =

(1 + h′)
2



2 (−1 + h′)
6
(1 + h′)

2 (−ϑ2 − θ2 +
(
−2 + ϑ2 + θ2

)
h′)h′′

+(ν − h) (−1 + h′)
4
(1 + h′)h′′2

 4
(
1 − 2ϑ2 − 2θ2

)
−
(
12 + ϑ2 + θ2

)
h′

+9
(
−2 + ϑ2 + θ2

)
h′2


−3 (ν − h) (−1 + h′)

5
(1 + h′)

2
h′′′

(
−ϑ2 − θ2

+
(
−2 + ϑ2 + θ2

)
h′

)
+8 (ν − h)

3
h′′4


4 (h− ν) (−1 + h′)h′′4

√
1 − h′2

,

(∆IV
Ψ

L)3 =

ϑ (−1 + h′)
4
(1 + h′)

3

 −2 (−1 + h′)
2
(1 + h′)h′′

− (ν − h) (8 + 9h′)h′′2

+3 (ν − h)
(
−1 + h′2)h′′′


2h′′4 (ν − h)

√
1 − h′2

,

(∆IV
Ψ

L)4 =

θ (−1 + h′)
4
(1 + h′)

3

 −2 (−1 + h′)
2
(1 + h′)h′′

− (ν − h) (8 + 9h′)h′′2

+3 (ν − h)
(
−1 + h′2)h′′′


2h′′4 (ν − h)

√
1 − h′2

.

Theorem 4.2. The rotational hypersurface (4.1) about lightlike axis in E4
1 cannot be LBIV-

minimal.

Proof. Let us suppose that the rotational hypersurface (4.1) about lightlike axis in E4
1 is LBIV-

minimal. So we have (∆IV ΨL)1 = (∆IV ΨL)2 = (∆IV ΨL)3 = (∆IV ΨL)4 = 0. From
(∆IV ΨL)1 = 0, we have

2 (−1 + h′)
6
(1 + h′)

2 (−2 − ϑ2 − θ2 +
(
ϑ2 + θ2

)
h′)h′′

+(ν − h) (−1 + h′)
4
(1 + h′)

 −4
(
3 + 2ϑ2 + 2θ2

)
−
(
14 + ϑ2 + θ2

)
h′

+9
(
ϑ2 + θ2

)
h′2

h′′2

+8 (ν − h)
3
h′′4 − 3 (ν − h) (−1 + h′)

5
(1 + h′)

2

(
−2 − ϑ2 − θ2

+
(
ϑ2 + θ2

)
h′

)
h′′′


= 0. (4.15)

The equation (4.15) can be written by

ϑ2A+ θ2A+B = 0, (4.16)

where

A = (−1+h′)5(1+h′)
(
2(−1 + h′)2(1 + h′)h′′ + (ν − h)(8 + 9h′)h′′2 − 3(ν − h)(−1 + h′2)h′′′)

(4.17)
and

B = −4(−1 + h′)6(1 + h′)2h′′ − 2(ν − h)(−1 + h′)4(6 + 13h′ + 7h′2)h′′2

+ 8(ν − h)3h′′4 + 6(ν − h)(−1 + h′)5(1 + h′)2h′′′. (4.18)

Since {ϑ2, θ2, 1} are linear independent, it must be A = 0 ve B = 0 in (4.16). Since h′ ̸= ±1 in
(4.17), for A = 0, it must be

h′′′ =
2(−1 + h′)2(1 + h′)h′′ + (ν − h)(8 + 9h′)h′′2

3(ν − h)(−1 + h′2)
. (4.19)

If we use the equation (4.19) in the expression of B = 0, i.e.

− 4(−1 + h′)6(1 + h′)2h′′ − 2(ν − h)(−1 + h′)4(6 + 13h′ + 7h′2)h′′2

+ 8(ν − h)3h′′4 + 6(ν − h)(−1 + h′)5(1 + h′)2h′′′ = 0; (4.20)
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then we have,
4(ν − h)h′′2((−1 + h′)4(1 + h′)2 + 2(ν − h)2h′′2) = 0. (4.21)

Since the function h cannot be linear, (4.21) doesn’t hold and so it is a contradiction. The reason
of this contradiction is our assumption of (∆IV ΨL)1 = 0. So, (∆IV ΨL)1 cannot be zero and this
completes the proof.

Example 4.3. Taking the profile curve of the rotational hypersurface (4.1) in E4
1 as

(
ν, ν2 + ν, 0, 0

)
,

we have

Ψ
L(ν, ϑ, θ) =

( (
ϑ2+θ2

2 + 1
)
ν − ϑ2+θ2

2 (ν2 + ν), ϑ2+θ2

2 ν +
(

1 − ϑ2+θ2

2

)
(ν2 + ν),

νϑ− (ν2 + ν)ϑ, νθ − (ν2 + ν)θ

)
(4.22)

and the LBIV operator of this hypersurface is obtained by

∆
IV

Ψ
L =

1
ν11



−2(−ν9(1 + ν))
3
2 (−9 + 20ν3(ϑ2 + θ2)

+2ν(−11 + 9ϑ2 + 9θ2) + 2ν2(−6 + 19ϑ2 + 19θ2),

−2(−ν9(1 + ν))
3
2 (−9 + 20ν3(−2 + ϑ2 + θ2)

+2ν(−29 + 9ϑ2 + 9θ2) + 2ν2(−44 + 19ϑ2 + 19θ2),

8(1 + ν)2
√

−ν29(1 + ν)(9 + 10ν)ϑ,
8(1 + ν)2

√
−ν29(1 + ν)(9 + 10ν)θ.



Figure 3. Projections of the rotational hypersurface (4.22) for θ = 2 into
x2x3x4-space (left) and x1x2x3-space (right)

Here, we must note that the first and second fundamental forms, which are given for the
rotational hypersurfaces in this study, can be obtained by taking a = b = 0 in [16] and also, they
can be found in [3], too.
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