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Abstract In this work, we consider a Neumann boundary value problem for equations involv-
ing the p(x)-Laplacian-like operators with two real parameters and two Carathéodory functions
that satisfy only the growth condition. We apply the topological degree for a class of demicon-
tinuous operators of generalized (S+) type and the theory of variable-exponent Sobolev spaces
to etablish the existence of weak solutions for the considered problem.

1 Introduction and motivation

Partial differential equations with nonlinearities and nonconstant exponents has been received
considerable attention in recent years. Perhaps the impulse for this comes from the new search
field that reflects a new type of physical phenomenon is a class of nonlinear problems with
variable exponents. Modeling with classic Lebesgue and Sobolev spaces has been demonstrated
to be limited for a number of materials with inhomogeneities. In the subject of fluid mechanics,
for example, great emphasis has been paid to the study of electrorological fluids, which have the
ability to modify their mechanical properties when exposed to an electric field. Rajagopal and
M. Ruzicka recently developed a very interesting model for these fluids in [31] (see also [33]),
taking into account the delicate interaction between the electric fieldE(x) and the moving liquid.

This type of problem’s energy is provided by
∫

Ω

|∇u|p(x)dx. This type of energy can also be found

in elasticity problems [36]. Other applications relate to image processing [1, 9], elasticity [37],
the flow in porous media [5, 25], and problems in the calculus of variations involving variational
integrals with nonstandard growth [2, 7, 10, 26, 34].

Let Ω be a smooth bounded domain in RN (N > 1), with a Lipschitz boundary denoted by
∂Ω. In this paper we deal with the question of the existence of a weak solutions for a class of
p(x)-Laplacian-like Neumann boundary value problem, arising from capillarity phenomena, of
the following form:

−∆
l
p(x)u+ δ(x)|u|α(x)−2u = µ g(x, u) + λ f(x, u,∇u) in Ω,

∂u
∂η = 0 on ∂Ω,

(1.1)

where

∆
l
p(x)u := div

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)

is the p(x)-Laplacian-like operators p(·), α(·) ∈ C+(Ω) with p(·) is log-Hölder continuous func-
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tion (in a sense to be precised in Section 2), δ ∈ L∞(Ω), µ and λ are two real parameters, η
is the outer unit normal to ∂Ω, g : Ω × R → R and f : Ω × R × RN → R are Carathéodory
functions that satisfy the assumption of growth.

The motivation for this research originated from the application of similar problems in physics
to model the behavior of electrorheological fluids (see [31, 33]), specifically the phenomenon
of capillarity, which depends solid-liquid interfacial characteristics as surface tension, contact
angle, and solid surface geometry. Recently problems like (1.1) has received more and more
attention, such as [4, 6, 15, 16, 17, 18, 19, 20, 21].

Problems related to (1.1) have been studied by many scholars, for example, W. Ni et al.
[29, 30] study the following equations

−div
( ∇u√

1 + |∇u|2
)
= f(u) in RN . (1.2)

The operator −div
( ∇u√

1 + |∇u|2
)

is most often denoted by the specified mean curvature opera-

tor.
For α(x) = p(x), µ ≥ 0, λ > 0, δ ∈ L∞(Ω) with ess infΩ δ > 0 and f independent of

∇u, Afrouzi et al. [3] established some new sufficient conditions underwhich the problem (1.1)
possesses infinitely many weak solutions. Their discussion is based on a fully variational method
and the main tool is a general critical point theorem.

In the present paper, we will generalize these works, by proving, under a suitable growth
conditions on g and f , the existence of a weak solutions for the problem (1.1) by using another
approach based on the topological degree for a class of demicontinuous operators of general-
ized (S+) type of [8] and the theory of the variable-exponent Sobolev spaces. To the best of our
knowledge, this is the first paper that discusses a Neumann boundary value problem driven by
p(x)-Laplacian-like operators depending on two real parameters via topological degree meth-
ods.

The remainder of the article is organized as follows. In Section 2, we review some fundamen-
tal preliminaries about the functional framework where we will treat our problem. In Section 3,
we introduce some classes of operators of generalized (S+) type, as well as the Berkovits topo-
logical degrees. Finaly, in Section 4, we give our basic assumptions, some technical lemmas,
and we will state and prove the main result of the paper.

2 Preliminaries

In the analysis of problem (1.1), we will use the theory of the generalized Lebesgue-Sobolev
space Lp(x)(Ω) and W 1,p(x)(Ω). For convenience, we only recall some basic facts with will be
used later, we refer to [24, 28, 12, 13] for more details.

Let Ω be a smooth bounded domain in RN (N > 1), with a Lipschitz boundary denoted by
∂Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω

}
.

For each p ∈ C+(Ω), we define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
u : Ω → R is measurable such that

∫
Ω

|u(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 : ρp(x)

(u
λ

)
≤ 1

}
,

where
ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).
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Proposition 2.1. [24, Theorem 1.3 and Theorem 1.4] Let (un) and u ∈ Lp(x)(Ω), then

|u|p(x) < 1
(
resp. = 1;> 1

)
⇔ ρp(x)(u) < 1

(
resp. = 1;> 1

)
, (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)
(
un − u

)
= 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [28, Theorem 2.5 and Corollary 2.7] The space
(
Lp(x)(Ω), | · |p(x)

)
is a sepa-

rable and reflexive Banach space.

Proposition 2.4. [28, Theorem 2.1] The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x) +

1
p′(x) = 1 for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following
Hölder-type inequality∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ (

1
p−

+
1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. [24, Theorem 1.11] If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then we
have Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm
|u|1,p(x) = |u|p(x) + |∇u|p(x).

Furthermore, we have the compact embedding W 1,p(x)(Ω) ↪→ Lp(x)(Ω)(see [28]).

Remark 2.6. Note that for all u ∈W 1,p(x)(Ω), we have

|u|p(x) ≤ |u|1,p(x) and |∇u|p(x) ≤ |u|1,p(x).

Next, for all u ∈W 1,p(x)(Ω), we introduce the following notation

ρ1,p(x)(u) = ρp(x)(u) + ρp(x)(∇u).

Then, from [24, Theorem 1.3], we have the following result.

Proposition 2.7. If u ∈W 1,p(x)(Ω), then the following properties hold true

|u|1,p(x) < 1(resp. = 1;> 1) ⇔ ρ1,p(x)(u) < 1(resp. = 1;> 1), (2.8)

|u|1,p(x) > 1 ⇒ |u|p
−

1,p(x) ≤ ρ1,p(x)(u) ≤ |u|p
+

1,p(x), (2.9)

|u|1,p(x) < 1 ⇒ |u|p
+

1,p(x) ≤ ρ1,p(x)(u) ≤ |u|p
−

1,p(x). (2.10)

Proposition 2.8. [24, 28] The space
(
W 1,p(x)(Ω), | · |1,p(x)

)
is a separable and reflexive Banach

space.
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3 A review on the topological degree theory

We start by defining some classes of mappings. In what follows, let X be a real separable
reflexive Banach space and X∗ be its dual space with dual pairing ⟨ · , · ⟩ and given a nonempty
subset D of X . Strong (weak) convergence is represented by the symbol → (⇀).

Definition 3.1. Let Y be another real Banach space. An operator F : D ⊂ X → Y is said to be

(i) bounded, if it maps any bounded set to a bounded set.

(ii) demicontinuous, if (un) ⊂ D, and un → u in X as n→ ∞, then F (un)⇀ F (u) in Y .

(iii) compact, if it is continuous and the image of any bounded set in X is relatively compact in
Y .

Definition 3.2. A mapping F : D ⊂ X → X∗ is said to be

(i) of class (S+), if for any sequence (un) ⊂ D with un ⇀ u in X and lim sup
n→∞

⟨Fun, un−u⟩ ≤

0, we have un → u in X .

(ii) quasimonotone, if for any sequence (un) ⊂ D with un ⇀ u inX , we have lim sup
n→∞

⟨Fun, un−

u⟩ ≥ 0.

Definition 3.3. Let T : D1 ⊂ X → X∗ be a bounded operator such that D ⊂ D1. For any
operator F : D ⊂ X → X we say that

(i) F of class (S+)T , if for any sequence (un) ⊂ D with un ⇀ u in X , yn := Tun ⇀ y in
X∗ and lim sup

n→∞
⟨Fun, yn − y⟩ ≤ 0, we have un → u in X .

(ii) F has the property (QM)T , if for any sequence (un) ⊂ D with un ⇀ u in X , yn :=
Tun ⇀ y in X∗, we have lim sup

n→∞
⟨Fun, y − yn⟩ ≥ 0.

In the sequel, we consider the following classes of operators:

F1(D) :=
{
F : D → X∗ : F is bounded, demicontinuous and of class (S+)

}
,

FT (D) :=
{
F : D → X : F is demicontinuous and of class (S+)T

}
,

FT,B(D) :=
{
F ∈ FT (D) : F is bounded

}
,

for any D ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(D).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F .

Lemma 3.4. [27, Lemma 2.3] Let E be a bounded open set in a real reflexive Banach space X ,
and let T ∈ F1(E) be a continuous operator. Let S : D(S) ⊂ X∗ → X be a demicontinuous
operator, such that T (E) ⊂ D(S). Then, the following statements hold.

(i) If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the identity operator.

(ii) If S is of class (S+), then S ◦ T ∈ FT (E).

Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space X ,
T ∈ F1(E) is continuous and F, S ∈ FT (E). Then the affine homotopy H : [0, 1] × E → X
defined by

H(t, u) := (1 − t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E

is called an admissible affine homotopy with the common continuous essential inner map T .
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Remark 3.6. [27, Lemma 2.5] The above affine homotopy is of class (S+)T .

As in [27] we give the topological degree for the class F(X).

Theorem 3.7. Let

M =
{
(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h ̸∈ F (∂E)

}
.

Then, there exists a unique degree function d : M −→ Z that satisfies the following properties:

(i) (Normalization) For any h ∈ F (E), we have

d(I, E, h) = 1.

(ii) (Additivity) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of E such that
h ̸∈ F (E\(E1 ∪ E2)), then we have

d(F,E, h) = d(F,E1, h) + d(F,E2, h).

(iii) (Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible affine homotopy
with a common continuous essential inner map and h: [0, 1] → X is a continuous path in
X such that h(t) ̸∈ H(t, ∂E) for all t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = C for all t ∈ [0, 1].

(iv) (Existence) If d(F,E, h) ̸= 0, then the equation Fu = h has a solution in E.

(v) ( Boundary dependence) If F, S ∈ FT(E), F = S on ∂E, and h ̸∈ F (∂E), then

d(F,E, h) = d(S,E, h).

Definition 3.8. [27, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |E0
, E0, h),

where dB is the Berkovits degree [8] and E0 is any open subset of E with F−1(h) ⊂ E0 and F
is bounded on E0.

4 Assumptions and main result

In this section, we will discuss the existence of weak solutions of (1.1).
We assume that Ω ⊂ RN (N > 1) is a bounded domain with a Lipschitz boundary ∂Ω, p ∈

C+(Ω) satisfy the log-Hölder continuity condition (??), δ ∈ L∞(Ω), α ∈ C+(Ω) with 2 ≤ α− ≤
α(x) ≤ α+ < p− ≤ p(x) ≤ p+ < ∞, g : Ω × R → R and f : Ω × R × RN → R are functions
such that:

(A1) f is a Carathéodory function.

(A2) There exists ϱ > 0 and γ ∈ Lp′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ ϱ(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1).

(A3) g is a Carathéodory function.

(A4) There exists σ > 0 and ν ∈ Lp′(x)(Ω) such that

|g(x, ζ)| ≤ σ(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R × RN , where q, s ∈ C+(Ω) with 2 ≤ q− ≤ q(x) ≤ q+ < p−

and 2 ≤ s− ≤ s(x) ≤ s+ < p−.
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Remark 4.1. • Note that for all ω ∈W 1,p(x)(Ω)

∫
Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)
∇ω dx

is well defined (see [32]).

• δ(x)|u|α(x)−2u, µ g(x, u) and λ f(x, u,∇u) are belongs to Lp′(x)(Ω) under u ∈W 1,p(x)(Ω),
the assumptions (A2) and (A4) and the given hypotheses about the exponents p, α, q and s
because: r(x) = (q(x) − 1)p′(x) ∈ C+(Ω) with r(x) < p(x), β(x) = (α(x) − 1)p′(x) ∈
C+(Ω) with β(x) < p(x) and κ(x) = (s(x)− 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).
Then, by Remark 2.5 we can conclude that Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→
Lκ(x).
Hence, since ω ∈ Lp(x)(Ω), we have(

− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)
)
ω ∈ L1(Ω).

This implies that, the integral∫
Ω

(
− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
ωdx

exist.

Then, we shall use the definition of weak solutions for problem (1.1) in the following sense:

Definition 4.2. We say that a function u ∈ W 1,p(x)(Ω) is a weak solution of (1.1), if for any
ω ∈W 1,p(x)(Ω), it satisfies the following:∫

Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)
∇ωdx =

∫
Ω

(
− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
ωdx.

Before giving the existence result for (1.1), we first give two lemmas that will be used in the
proof of this result.
Let us consider the following functional:

J (u) :=
∫

Ω

1
p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx.

From [32], it is obvious that the derivative operator of the functional J in the weak sense at the
point u ∈W 1,p(x)(Ω) is the functional T u ∈W−1,p′(x)(Ω), given by

⟨T u, ω⟩ =
∫

Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)
∇ωdx,

for all u, ω ∈W 1,p(x)(Ω) where ⟨·, ·⟩ is the duality pairing betweenW−1,p′(x)(Ω) andW 1,p(x)(Ω).
In addition, the following lemma summarizes the properties of the operator T (see [32, Propo-
sition 3.1.]).

Lemma 4.3. The mapping

T : W 1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨T u, ω⟩ =
∫

Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)
∇ωdx,

is a continuous, bounded, strictly monotone operator, and is of class (S+).

Lemma 4.4. Assume that the assumptions (A1)− (A4) hold, then the operator

P : W 1,p(x)(Ω) →W−1,p′(x)(Ω)

⟨Pu, ω⟩ = −
∫

Ω

(
− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
ωdx,

for all u, ω ∈W 1,p(x)(Ω), is compact.
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Proof. In order to prove this lemma, we proceed in four steps.
Step 1 : Let ϒ : W 1,p(x)(Ω) → Lp′(x)(Ω) be an operator defined by

ϒu(x) := −µ g(x, u).

In this step, we prove that the operator ϒ is bounded and continuous.
First, let u ∈W 1,p(x)(Ω), bearing (A4) in mind and using (2.5) and (2.6), we infer

|ϒu|p′(x) ≤ ρp′(x)(ϒu) + 1

=

∫
Ω

|µ g(x, u(x))|p
′(x)dx+ 1

=

∫
Ω

|µ|p
′(x)|g(x, u(x)|p

′(x)dx+ 1

≤
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

|σ
(
ν(x) + |u|s(x)−1

)
|p

′(x)dx+ 1

≤ C
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

(
|ν(x)|p

′(x) + |u|κ(x)
)
dx+ 1

≤ C
(
|µ|p

′−
+ |µ|p

′+
)(
ρp′(x)(ν) + ρκ(x)(u)

)
+ 1

≤ C
(
|ν|p

′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)
+ 1.

Then, we deduce from Remark 2.6 and Lp(x) ↪→ Lκ(x), that

|ϒu|p′(x) ≤ const
(
|ν|p

′+

1,p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)
+ 1,

that means ϒ is bounded on W 1,p(x)(Ω).
Second, we show that the operator ϒ is continuous. To this purpose let
un → u in W 1,p(x)(Ω). We need to show that ϒun → ϒu in Lp′(x)(Ω). We will apply the
Lebesgue’s theorem.
Note that if un → u in W 1,p(x)(Ω), then un → u in Lp(x)(Ω). Hence there exist a subsequence
(uk) of (un) and ϕ in Lp(x)(Ω) such that

uk(x) → u(x) and |uk(x)| ≤ ϕ(x), (4.1)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (4.1), we have

|g(x, uk(x))| ≤ σ(ν(x) + |ϕ(x)|s(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.1), we get, as k −→ ∞

g(x, uk(x)) → g(x, u(x)) a.e. x ∈ Ω.

Seeing that
ν + |ϕ|s(x)−1 ∈ Lp′(x)(Ω),

and
ρp′(x)(ϒuk − ϒu) =

∫
Ω

|g(x, uk(x))− g(x, u(x))|p
′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.4), we have

ϒuk → ϒu in Lp′(x)(Ω),

and consequently
ϒun → ϒu in Lp′(x)(Ω),
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that is, ϒ is continuous.
Step 2 : We define the operator Ψ : W 1,p(x)(Ω) → Lp′(x)(Ω) by

Ψu(x) := δ(x)|u(x)|α(x)−2u(x).

We will prove that Ψ is bounded and continuous.
It is clear that Ψ is continuous. Next we show that Ψ is bounded.
Let u ∈W 1,p(x)(Ω) and using (2.5) and (2.6), we obtain

|Ψu|p′(x) ≤ ρp′(x)(Ψu) + 1

=

∫
Ω

|δ(x)|u|α(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|δ(x)|p
′(x)|u|(α(x)−1)p′(x)dx+ 1

≤ ||δ||p
′

L∞(Ω)

∫
Ω

|u|β(x)dx+ 1

= ||δ||p
′

L∞(Ω)ρβ(x)(u) + 1

≤ ||δ||p
′

L∞(Ω)

(
|u|β

−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and Remark 2.6 that

|Ψu|p′(x) ≤ const
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ is bounded on W 1,p(x)(Ω).
Step 3 : Let us define the operator Φ : W 1,p(x)(Ω) → Lp′(x)(Ω) by

Φu(x) := −λ f(x, u(x),∇u(x)).

We will show that Φ is bounded and continuous.
Let u ∈W 1,p(x)(Ω). According to (A2) and the inequalities (2.5) and (2.6), we obtain

|Φu|p′(x) ≤ ρp′(x)(Φu) + 1

=

∫
Ω

|λ f(x, u(x),∇u(x))|p
′(x)dx+ 1

=

∫
Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p

′(x)dx+ 1

≤
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

|ϱ
(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p

′(x)dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

(
|γ(x)|p

′(x) + |u|r(x) + |∇u|r(x)
)
dx+ 1

≤ C
(
|λ|p

′−
+ |λ|p

′+
)(
ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ C
(
|γ|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r
+

r(x) + |∇u|r
−

r(x)

)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and Remark 2.6, we have then

|Φu|p′(x) ≤ const
(
|γ|p

′+

1,p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1,

and consequently Φ is bounded on W 1,p(x)(Ω).
It remains to show that Φ is continuous. Let un → u in W 1,p(x)(Ω), we need to show that
Φun → Φu in Lp′(x)(Ω). We will apply the Lebesgue’s theorem.
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Note that if un → u in W 1,p(x)(Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u in (Lp(x)(Ω))N .
Hence, there exist a subsequence (uk) and ϕ in Lp(x)(Ω) and ψ in (Lp(x)(Ω))N such that

uk(x) → u(x) and ∇uk(x) → ∇u(x), (4.2)

|uk(x)| ≤ ϕ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (4.2), we get, as k −→ ∞

f(x, uk(x),∇uk(x)) → f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (4.3), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ ϱ(γ(x) + |ϕ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ + |ϕ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(Φuk − Φu) =

∫
Ω

|f(x, uk(x),∇uk(x))− f(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.4) that

Φuk → Φu in Lp′(x)(Ω),

and consequently
Φun → Φu in Lp′(x)(Ω),

and then Φ is continuous.
Step 4: Let I∗ : Lp′(x)(Ω) →W−1,p′(x)(Ω) be the adjoint operator of the operator I : W 1,p(x)(Ω) →
Lp(x)(Ω).
We then define

I∗ ◦ ϒ : W 1,p(x)(Ω) →W−1,p′(x)(Ω),

I∗ ◦ Ψ : W 1,p(x)(Ω) →W−1,p′(x)(Ω),

and
I∗ ◦ Φ : W 1,p(x)(Ω) →W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus, the composi-
tions I∗ ◦ϒ, I∗ ◦Ψ and I∗ ◦Φ are compact, that means P = I∗ ◦ϒ+ I∗ ◦Ψ+ I∗ ◦Φ is compact.
With this last step the proof of Lemma 4.4 is completed.

We are now in the position to get the existence result of weak solutions for (1.1).

Theorem 4.5. Assume that the assumptions (A1)− (A4) hold, then the problem (1.1) possesses
at least one weak solutions u in W 1,p(x)(Ω).

Proof. The basic idea of our proof is to reduce the problem (1.1) to a new one governed by a
Hammerstein equation, and apply the theory of topological degree introduced in Section 3 to
show the existence of a weak solutions to the state problem.

First, for all u, ω ∈ W 1,p(x)(Ω), we define the operators G and P , as defined in Lemmas 4.3
and 4.4 respectively,

G : W 1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨Gu, ω⟩ =
∫

Ω

(
|∇u|p(x)−2∇u+ |∇u|2p(x)−2∇u√

1 + |∇u|2p(x)
)
∇ωdx,
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P : W 1,p(x)(Ω) −→W−1,p′(x)(Ω)

⟨Pu, ω⟩ = −
∫

Ω

(
− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
ωdx.

Consequently, the problem (1.1) is equivalent to the equation

Gu = −Pu, u ∈W 1,p(x)(Ω). (4.4)

Taking into account that, by Lemma 4.3, the operator G is a continuous, bounded, strictly mono-
tone and of class (S+), then, by [35, Theorem 26 A], the inverse operator

Q := G−1 : W−1,p′(x)(Ω) →W 1,p(x)(Ω),

is also bounded, continuous, strictly monotone and of class (S+).
On another side, according to Lemma 4.4, we have that the operator P is bounded, continuous
and quasimonotone.
Consequently, following Zeidler’s terminology [35], the equation (4.4) is equivalent to the fol-
lowing abstract Hammerstein equation

u = Qω and ω + P ◦ Qω = 0, u ∈W 1,p(x)(Ω) and ω ∈W−1,p′(x)(Ω). (4.5)

Seeing that (4.4) is equivalent to (4.5), then to solve (4.4) it is thus enough to solve (4.5). In
order to solve (4.5), we will apply the Berkovits topological degree introducing in Section 3.
First, let us set

E :=
{
ω ∈W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that ω + tP ◦ Qω = 0

}
.

Next, we show that E is bounded in ∈W−1,p′(x)(Ω).
Let us put u := Qω for all ω ∈ E . Taking into account that |Qω|1,p(x) = |∇u|1,p(x), then we have
the following two cases:
Case 2: If |∇u|1,p(x) ≤ 1. Then |Qω|1,p(x) ≤ 1, that means

{
Qω : ω ∈ E

}
is bounded.

Case 1: If |∇u|1,p(x) > 1. Then, from (A2) and (A4), the inequalities (2.9), (2.7) and (2.6) and
the Young’s inequality, we get

|Qω|p
−

1,p(x) ≤ ρp(x)(∇u)

= ⟨Gu, u⟩
= ⟨ω, Qω⟩
= −t⟨P ◦ Qω, Qω⟩

= t

∫
Ω

(
− δ(x)|u|α(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
udx

≤ tmax(||δ||L∞(Ω), σ|µ|, ϱ|λ|)
(
ρα(x)(u) +

∫
Ω

|ν(x)u(x)|dx+
∫

Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ C
(
|u|α

−

α(x) + |u|α
+

α(x) + |ν|p′(x)|u|p(x) + |γ|p′(x)|u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x)

+ |u|q
−

q(x) +
1
q′−

ρq(x)(∇u) +
1
q−
ρq(x)(u)

)
≤ C

(
|u|α

−

α(x) + |u|α
+

α(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)
,

then, according to Lp(x) ↪→ Lα(x), Lp(x) ↪→ Ls(x), Lp(x) ↪→ Lq(x) and Remark 2.6, we get

|Qω|p
−

1,p(x) ≤ C
(
|Qω|α

+

1,p(x) + |Qω|1,p(x) + |Qω|s
+

1,p(x) + |Qω|q
+

1,p(x)

)
,
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what implies that
{
Qω : ω ∈ E

}
is bounded.

On the other hand, we have that the operator is P is bounded, then P ◦ Qω is bounded. Thus,
thanks to (4.5), we have that E is bounded in W−1,p′(x)(Ω).
However, ∃ R > 0 such that

|ω|−1,p′(x) < R for all ω ∈ E ,

which leads to
ω + tP ◦ Qω ̸= 0, ω ∈ ∂ER(0) and t ∈ [0, 1],

where ER(0) is the ball of center 0 and radius R in W−1,p′(x)(Ω).
Moreover, by Lemma 3.4, we conclude that

I + P ◦ Q ∈ FQ(ER(0)) and I = G ◦ Q ∈ FQ(ER(0)).

On another side, taking into account that I , P and Q are bounded, then I + P ◦ Q is bounded.
Hence, we infer that

I + P ◦ Q ∈ FQ,B(ER(0)) and I = G ◦ Q ∈ FQ,B(ER(0)).

Next, we define the homotopy

H : [0, 1]× ER(0) →W−1,p′(x)(Ω)

(t, ω) 7→ H(t, ω) := ω + tP ◦ Qω.

Hence, thanks to the properties of the degree d seen in Theorem 3.7, we obtain

d(I + P ◦ Q, ER(0), 0) = d(I, ER(0), 0) = 1 ̸= 0,

what implies that there exists ω ∈ ER(0) which verifies

ω + P ◦ Qω = 0.

Finally, we infer that u = Qω is a weak solutions of (1.1). The proof is completed.

5 Conclusion

This paper aims is to consider a Neumann boundary value problem involving the p(x)-Laplacian-
like operator. Then, we used the topological degree for a class of demicontinuous operators of
generalized (S+) type and the theory of variable-exponent Sobolev spaces to etablish the ex-
istence of weak solutions for the considered problem. Therefore, the results of this work are
variant, significant and so it is interesting and capable to develop its study in the future.
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[28] Kováčik, O., Rákosník, J.: On spaces Lp(x) and W 1,p(x). Czechoslovak Math. J. 41(4), 592–618 (1991).

[29] Ni, W.M., Serrin, J.: Non-existence theorems for quasilinear partial differential equations. Rend. Circ.
Mat. Palermo (2) Suppl. 8, 171–185 (1985).

[30] Ni, W.M., Serrin, J.: Existence and non-existence theorems for ground states for quasilinear partial
differential equations. Att. Conveg. Lincei. 77, 231–257 (1986).

[31] Rajagopal, K.R., Ru̇zicka, M.: Mathematical modeling of electrorheological materials. Continuum me-
chanics and thermodynamics. 13(1), 59–78 (2001).

[32] Rodrigues, M.M.: Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like
operators. Mediterr. J. Math. 9, 211–223 (2012).

[33] Ru̇zicka, M.: Electrorheological fuids: modeling and mathematical theory. Springer Science & Business
Media, (2000).

[34] Suleiman, M.L., Precioso, J.C., Prokopczyk, A.C.: Existence of solutions for the aggregation equations
with initial data in Morrey spaces. Palestine J. Math., 12(3) 368–377, (2023).



24 M. El Ouaarabi, N. Moujane, C. Allalou and S. Melliani

[35] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B. Springer-Verlag, New York, (1990).

[36] Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Mathematics
of the USSR-Izvestiya. 29(1), 33–66 (1987).

[37] Zhikov, V.V.E.: Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Rossi-
iskoi Akademii Nauk. Seriya Matematicheskaya. 50(4), 675–710 (1986).

Author information
Mohamed El Ouaarabi, Fundamental and Applied Mathematics Laboratory, Faculty of Sciences Aïn Chock,
Hassan II University, BP 5366, 20100, Casablanca, Morocco.
E-mail: mohamedelouaarabi93@gmail.com

Noureddine Moujane, Applied Mathematics and Scientific Computing Laboratory, Faculty of Science and Tech-
nics, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.
E-mail: moujanenoureddine95@gmail.com

Chakir Allalou, Applied Mathematics and Scientific Computing Laboratory, Faculty of Science and Technics,
Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.
E-mail: chakir.allalou@yahoo.fr

Said Melliani, Applied Mathematics and Scientific Computing Laboratory, Faculty of Science and Technics,
Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.
E-mail: s.melliani@usms.ma

Received: 2022-01-14

Accepted: 2024-01-16


	1 Introduction and motivation
	2 Preliminaries
	3 A review on the topological degree theory
	4 Assumptions and main result
	5 Conclusion

