ON A GENERALIZATION OF QUASI-ARMENDARIZ RINGS

Eltiyeb Ali and Ayoub Elshokry
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16S30, 16U80; Secondary 16W20.
Keywords and phrases: Skew generalized power series, linearly (S, ω)-quasi-Armendariz ring, semicommutative ring.

Abstract

Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. Properties of the ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ of skew generalized power series with coefficients in R and exponents in S are considered. This paper is devoted to the study of linearly (S, ω)-quasi-Armendariz ring, which is unify the notions of linearly (S, ω)-Armendariz ring and (S, ω)-quasi-Armendariz ring. It is shown that, if R is linearly (S, ω)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided ideal of $R, A=\ell_{R}(U)$ and $\left.\omega_{s}\right|_{U}$ is surjective for all $s \in S$, then R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz. Also, we prove that, R is semiprime if and only if R is reduced linearly (S, ω)-quasi-Armendariz. Moreover, Under a necessary and sufficient conditions, if R is linearly (S, ω)-quasi-Armendariz, then Q is linearly $(S, \widetilde{\omega})$-quasiArmendariz, where Q is the classical left ring of quotients of R. Consequently, some results of linearly (S, ω)-quasi-Armendariz are given.

1 Introduction

Throughout this paper all rings considered here are associative with identity. We will write monoids multiplicatively unless otherwise indicated. If R is a ring and X is a nonempty subset of R, then the left (right) annihilator of X in R is denoted by $\ell_{R}(X)\left(r_{R}(X)\right)$. We will denote by $\operatorname{End}(R)$ the monoid of ring endomorphisms of R, and by $\operatorname{Aut}(R)$ the group of ring automorphisms of R. Any concept and notation not defined here can be found in Marks et al. [1] and Mazurek and Ziembowski [2].

Rege and Chhawchharia [3] introduced the notion of an Armendariz ring. They defined a ring R to be an Armendariz ring if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i, j. (The converse is always true.) The name "Armendariz ring" was chosen because Armendariz [4, Lemma 1] had noted that a reduced ring satisfies this condition. Reduced rings (i.e., rings with no nonzero nilpotent elements). Some properties of Armendariz rings have been studied in E. P. Armendariz [4], Anderson and Camillo [5], Kim and Lee [6], Huh, Lee and Smoktunowicz [7], and Lee and Wong [8].

By Kim et al. in [9]. A ring R is said to be power-serieswise Armendariz if whenever power series $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ in $R[[x]]$ satisfy $f(x) g(x)=0$ then $a_{i} b_{j}=0$ for all i, j. Armendariz rings were generalized to quasiArmendariz rings by Hirano [10]. A ring R is called quasi-Armendariz provided that $a_{i} R b_{j}=0$ for all i, j whenever $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f(x) R[x] g(x)=0$. Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Thus, (S, \leq) is artinian and narrow if and only if every nonempty subset of S has at least one but only a finite number of minimal elements. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the neutral element by 0 . The following definition is due to Elliott and Ribenboim [11].

Let (S, \leq) is a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$, and R a ring. Let $\left[\left[R^{s, \leq}\right]\right]$ be the set of all maps $f: S \rightarrow R$ such that $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $\left[\left[R^{S, \leq}\right]\right]$ is an abelian additive group. For every $s \in S$ and $f, g \in\left[\left[R^{S, \leq}\right]\right]$,
let $X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=s, f(u) \neq 0, g(v) \neq 0\}$. It follows from Ribenboim [12, 4.1] that $X_{s}(f, g)$ is finite. This fact allows one to define the operation of convolution:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v)
$$

Clearly, $\operatorname{supp}(f g) \subseteq \operatorname{supp}(f)+\operatorname{supp}(g)$, thus by Ribenboim [13, 3.4] $\operatorname{supp}(f g)$ is artinian and narrow, hence $f g \in\left[\left[R^{S, \leq}\right]\right]$. With this operation, and pointwise addition, $\left[\left[R^{S, \leq}\right]\right]$ becomes an associative ring, with identity element e, namely $e(0)=1, e(s)=0$ for every $0 \neq s \in S$. Which is called the ring of generalized power series with coefficients in R and exponents in S. Many examples and results of rings of generalized power series are given in Ribenboim ([12]-[14]), Elliott and Ribenboim [11] and Varadarajan ([16], [17]). For example, if $S=\mathbb{N} \cup\{0\}$ and \leq is
 monoid and \leq is the trivial order, then $\left[\left[R^{S, \leq}\right]\right] \cong R[S]$, the monoid ring of S over R. Further examples are given in Ribenboim [13]. To any $r \in R$ and $s \in S$, we associate the maps $c_{r}, e_{s} \in$ [$\left.\left[R^{S, \leq}\right]\right]$ defined by

$$
c_{r}(x)=\left\{\begin{array}{ll}
r, & x=0, \\
0, & \text { otherwise }
\end{array} \quad e_{s}(x)= \begin{cases}1, & x=s \\
0, & \text { otherwise }\end{cases}\right.
$$

It is clear that $r \mapsto c_{r}$ is a ring embedding of R into $\left[\left[R^{S, \leq]], s \mapsto} e_{s}\right.\right.$, is a monoid embedding of S into the multiplicative monoid of the ring $\left[\left[R^{S, \leq}\right]\right]$, and $c_{r} e_{s}=e_{s} c_{r}$. Recall that a monoid S is torsion-free if the following property holds: If $s, t \in S$, if k is an integer, $k \geq 1$ and $k s=k t$, then $s=t$.

Let R be a ring, (S, \leq) a strictly ordered monoid, and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. For $s \in S$, let ω_{s} denote the image of s under ω, that is, $\omega_{s}=\omega(s)$. Let A be the set of all functions $f: S \rightarrow R$ such that the support $\operatorname{supp}(f)=\{s \in S: f(s) \neq 0\}$ is artinian and narrow. Then for any $s \in S$ and $f, g \in A$ the set

$$
X_{s}(f, g)=\{(u, v) \in \operatorname{supp}(f) \times \operatorname{supp}(g): s=u v\}
$$

is finite. Thus one can define the product $f g: S \rightarrow R$ of $f, g \in A$ as follows:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) \omega_{u}(g(v))
$$

(by convention, a sum over the empty set is 0). With pointwise addition and multiplication as defined above, A becomes a ring, called the ring of skew generalized power series with coefficients in R and exponents in S, see [2] and denoted by $\left[\left[R^{S, \leq}, \omega\right]\right]$ (or by $R[[S, \omega]]$ when there is no ambiguity concerning the order \leq).

We will use the symbol 1 to denote the identity elements of the monoid S, the ring R, and the ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ as well as the trivial monoid homomorphism $1: S \rightarrow \operatorname{End}(R)$ that sends every element of S to the identity endomorphism. A subset $P \subseteq R$ will be called S-invariant if for every $s \in S$ it is ω_{s}-invariant (that is, $\omega_{s}(P) \subseteq P$). To each $r \in R$ and $s \in S$, we associate elements $c_{r}, e_{s} \in\left[\left[R^{S, \leq}, \omega\right]\right]$ defined by

$$
c_{r}(x)=\left\{\begin{array}{lll}
r, & \text { if } \quad x=1, \\
0, & \text { if } \quad x \in S \backslash\{1\},
\end{array} \quad e_{s}(x)= \begin{cases}1, & \text { if } \quad x=s, \\
0, & \text { if } \quad x \in S \backslash\{s\} .\end{cases}\right.
$$

It is clear that $r \mapsto c_{r}$ is a ring embedding of R into $\left[\left[R^{S, \leq}, \omega\right]\right]$ and $s \mapsto e_{s}$, is a monoid embedding of S into the multiplicative monoid of the ring $\left[\left[R^{S, \leq}, \omega\right]\right]$, and $e_{s} c_{r}=c_{\omega_{s}(r)} e_{s}$.

If R is a ring and S is a strictly ordered monoid, then the ring R is called a generalized Armendariz ring if for each $f, g \in\left[\left[R^{S, \leq}\right]\right]$ such that $f g=0$ implies that $f(u) g(v)=0$ for each $u \in \operatorname{supp}(f)$ and $v \in \operatorname{supp}(g)$. In [18] Liu called such ring S-Armendariz ring. If R is a ring, S be a torsion-free and cancellative monoid and \leq a strict order on S, then the ring R is called
a generalized quasi-Armendariz ring if for each $f, g \in\left[\left[R^{S, \leq]]}\right.\right.$ such that $f\left[\left[R^{S, \leq]] g=0 \text {, then }}\right.\right.$ $f(u) R g(v)=0$ for each $u, v \in S$. Ali and Elshokry in [19] called such S-quasi-Armendariz ring and a generalization of it in [28]. Marks et al. [1] a ring R is called (S, ω)-Armendariz, if whenever $f, g \in\left[\left[R^{S, \leq}, \omega\right]\right], f g=0$ implies $f(u) \omega_{u}(g(v))=0$ for all $u, v \in S$. Also, they defined that a ring R is linearly (S, ω)-Armendariz, if for all $s \in S \backslash\{1\}$ and $a_{0}, a_{1}, b_{0}, b_{1} \in R$, such that $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$, then $a_{0} b_{0}=a_{0} b_{1}=a_{1} \omega_{s}\left(b_{0}\right)=a_{1} \omega_{s}\left(b_{1}\right)=0$. A common generalization of S-quasi-Armendariz ring and (S, ω)-Armendariz introduced by Paykan and Moussavi [20], said that, a ring R is called (S, ω)-quasi-Armendariz, if whenever $f, g \in\left[\left[R^{S, \leq}, \omega\right]\right]$ such that $f\left[\left[R^{S, \leq}, \omega\right]\right] g=0$, then $f(u) R \omega_{u}(g(v))=0$ for each $u, v \in S$.

This paper is devoted to the study of linearly (S, ω)-quasi-Armendariz which is unify the notions of linearly (S, ω)-Armendariz and (S, ω)-quasi-Armendariz ring. It is shown that, (\ddagger) If R is linearly (S, ω)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided ideal of $R, A=\ell_{R}(U)$ and $\left.\omega_{s}\right|_{U}$ is surjective for all $s \in S$, then R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz.
$\left(\ddagger^{\prime}\right)$ For a two-sided ideal I of R, if R / I is a linearly $(S, \bar{\omega})$-quasi-Armendariz ring and I is a semiprime ring without identity, then R is linearly (S, ω)-quasi-Armendariz. Moreover, ($\ddagger^{\prime \prime}$) Under a necessary and sufficient conditions, if R is a linearly (S, ω)-quasi-Armendariz, then Q is a linearly $(S, \widetilde{\omega})$-quasi-Armendariz, where Q is the classical left ring of quotients of R. Consequently, some results of a linearly (S, ω)-quasi-Armendariz are given.

Clark defined quasi-Baer rings in [21]. A ring R is called quasi-Baer if the left annihilator of every left ideal of R is generated by an idempotent. Birkenmeier, Kim and Park in [23] introduced the concept of principally quasi-Baer rings. A ring R is called left principally quasiBaer (or simply left p.q.-Baer) if the left annihilator of a principal left ideal of R is generated by an idempotent. Similarly, right p.q.-Baer rings can be defined. A ring is called p.q.-Baer if it is both right and left p.q.-Baer. Observe that biregular rings and quasi-Baer rings are p.q.-Baer. For more details and examples of left p.q.-Baer rings, (see [22] and [23]). A ring R is called a right (resp., left) $P P$-ring if every principal right (resp., left) ideal is projective (equivalently, if the right (resp., left) annihilator of an element of R is generated (as a right (resp., left) ideal) by an idempotent of R).

2 Linearly (S, ω)-Quasi-Armendariz Rings

In this section we introduce the concept of linearly (S, ω)-quasi-Armendariz ring and study its properties. Observe that the notion of linearly (S, ω)-quasi-Armendariz rings not only generalizes that of (S, ω)-quasi-Armendariz rings, but also extends that of linearly (S, ω)-Armendariz rings. We start by the following definition.

Definition 2.1. Let R be a ring, (S, \leq) a strictly totally ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. We say that R is linearly (S, ω)-quasi-Armendariz, if for all $s \in S \backslash\{1\}$ and $a_{0}, a_{1}, b_{0}, b_{1} \in R$, whenever $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$, then $a_{0} R b_{0}=a_{0} R b_{1}=$ $a_{1} R \omega_{s}\left(b_{0}\right)=a_{1} R \omega_{s}\left(b_{1}\right)=0$.

It can be easily checked that both (S, ω)-quasi-Armendariz rings and linearly (S, ω)-Armendariz rings are linearly (S, ω)-quasi-Armendariz. But there exist linearly (S, ω)-quasi-Armendariz rings which are not linearly (S, ω)-Armendariz e.g., $M a t_{2}(R)$ over a linearly (S, ω)-quasiArmendariz ring R is linearly (S, ω)-quasi-Armendariz by [26, Theorem 2.3], but $M a t_{2}(R)$ is not linearly (S, ω)-Armendariz by [3] (or [6, Example 1]), even in the case where R is commutative and $\left[\left[R^{S, \leq}, \omega\right]\right]=R[x]$. Also, the construction in [8, Example 3.2] shows that there exist commutative linearly (S, ω)-quasi-Armendariz rings which are not (S, ω)-quasi-Armendariz, even in the case, S be the additive monoid $\mathbb{N} \cup\{0\}$, with the trivial order, R be a ring, ω : $S \rightarrow \operatorname{End}(R)$ be trivial. Then R is an (S, ω)-quasi-Armendariz ring if and only if R is a quasiArmendariz ring in the usual sense. This is so because in this case the skew generalized power series ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ is isomorphic to the ordinary polynomial ring $R[x]$.

Let R be a ring, $\left(S_{1}, \leq_{1}\right),\left(S_{2}, \leq_{2}\right), \ldots,\left(S_{n}, \leq_{n}\right)$ be strictly ordered monoid, and $\omega^{i}: S_{i} \rightarrow$ $\operatorname{End}(R)$ be a monoid homomorphism for every i. Define $\omega: S \rightarrow \operatorname{End}(R)$ as

$$
\omega\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\omega_{s_{1}} \omega_{s_{2}} \cdots \omega_{s_{n}}
$$

That is,

$$
\omega_{\left(s_{1}, s_{2}, \ldots, s_{n}\right)}=\omega_{s_{1}} \omega_{s_{2}} \cdots \omega_{s_{n}}
$$

Then ω is well-defined.
Lemma 2.2. If R is S_{i}-compatible for each i, then R is S-compatible.
Proof. Let $a, b \in R$. Then for any $s_{i} \in S$,
$a b=0 \Leftrightarrow a \omega_{s_{n}}(b)=0$
$\Leftrightarrow a \omega_{s_{n-1}} \omega_{s_{n}}(b)=0$
$\Leftrightarrow a \omega_{s_{1}} \omega_{s_{2}} \cdots \omega_{s_{n}}(b)=0$
$\Leftrightarrow a \omega_{\left(s_{1}, s_{2}, \ldots, s_{n}\right)}(b)=0$.
Thus, R is S-compatible.
The next Lemma appeared in Lemma 1.2 [24].
Lemma 2.3. For any ring R the following are equivalent:
(1) For each element $a \in R, a^{r}$ is an ideal of R, where $a^{r}=\{b \in R: a b=0\}$.
(2) Any annihilator right ideal of R is an ideal of R.
(3) Any annihilator left ideal of R is an ideal of R.
(4) For any $a, b \in R, a b=0$ implies $a R b=0$.

Every reduced ring (i.e., if there exists no nonzero nilpotent elements) is semicommutative but the converse does not hold in general. There exists a linearly (S, ω)-quasi-Armendariz ring which is not semicommutative Example 14 [7], even in the case where R is commutative and $\left[\left[R^{S, \leq}, \omega\right]\right]=R[x]$, and commutative (hence semicommutative) rings need not to be linearly (S, ω)-quasi-Armendariz. Here we have the following.

Proposition 2.4. Let $\left[\left[R^{S, \leq}, \omega\right]\right]$ over a ring R be semicommutative, (S, \leq) a strictly totally ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism. If R is (linearly) (S, ω)-quasi-Armendariz, then R is (linearly) (S, ω)-Armendariz.

Proof. Since the two cases have the same argument, we only give the proof of (S, ω)-Armendariz case. Assume that the skew generalized power series ring $\left[\left[R^{S, \leq}, \omega\right]\right]$ over R is (S, ω)-quasiArmendariz and semicommutative. Let $f, g \in\left[\left[R^{S, \leq}, \omega\right]\right]$ such that $f g=0$. Then we get $f\left[\left[R^{S, \leq}, \omega\right]\right] g=0$ and so $f(u) R \omega_{u}(g(v))=f(u) R g(v)=0$, by compatibility, for all $u, v \in S$. Thus, $f(u) g(v)=0$ for all $u, v \in S$, and therefore R is (S, ω)-Armendariz.

Proposition 2.5. Let (S, \leq) be a strictly ordered monoid, $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism and e be a central idempotent of a ring R with $\omega_{s}(e)=e$. Then R is linearly (S, ω)-quasi-Armendariz if and only if $e R$ and $(1-e) R$ are linearly (S, ω)-quasi-Armendariz.

Proof. Suppose that R is linearly (S, ω)-quasi-Armendariz. Let $c_{a_{0}}+c_{a_{1}} e_{s}$ and $c_{b_{0}}+c_{b_{1}} e_{s} \in$ $\left[\left[(e R)^{S, \leq}, \omega\right]\right]$ such that $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[(e R)^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$. Note that $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right) c_{e}=$ $c_{a_{0}}+c_{a_{1}} e_{s}$ and $c_{e}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=c_{b_{0}}+c_{b_{1}} e_{s}$. For any $r \in R,\left(c_{a_{0}}+c_{a_{1}} e_{s}\right) c_{r}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=$ $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left(c_{e r}\right)\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$, and so $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$. Since R is linearly (S, ω)-quasi-Armendariz, $a_{0} R b_{0}=a_{0} R b_{1}=a_{1} R \omega_{s}\left(b_{0}\right)=a_{1} R \omega_{s}\left(b_{1}\right)=0$. Since e is central $a_{0}(e R) b_{0}=0, a_{0}(e R) b_{1}=0, a_{1}(e R) \omega_{s}\left(b_{0}\right)=0$ and $a_{1}(e R) \omega_{s}\left(b_{1}\right)=0$. Therefore, $e R$ is linearly (S, ω)-quasi-Armendariz. Similarly, we can show that $(1-e) R$ is linearly (S, ω)-quasiArmendariz.

Conversely, assume that both $e R$ and $(1-e) R$ are linearly (S, ω)-quasi-Armendariz. Let $c_{a_{0}}+c_{a_{1}} e_{s}$ and $c_{b_{0}}+c_{b_{1}} e_{s} \in\left[\left[R^{S, \leq}, \omega\right]\right]$ be such that $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$. We will show that $a_{0} R b_{0}=0, a_{0} R b_{1}=0, a_{1} R \omega_{s}\left(b_{0}\right)=0$ and $a_{1} R \omega_{s}\left(b_{1}\right)=0$. For any $r \in R$, $c_{e}\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left(c_{e r}\right) c_{e}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=c_{e}\left(\left(c_{a_{0}}+c_{a_{1}} e_{s}\right) c_{r}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)\right)=0$ and $c_{1-e}\left(c_{a_{0}}+\right.$ $\left.c_{a_{1}} e_{s}\right) c_{1-e} c_{r}\left(c_{1-e}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)\right)=0$, so

$$
c_{e}\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[(e R)^{S, \leq}, \omega\right]\right] c_{e}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0
$$

and

$$
c_{1-e}\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[((1-e) R)^{S, \leq}, \omega\right]\right] c_{1-e}\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0
$$

Since $e R$ and $(1-e) R$ are linearly (S, ω)-quasi-Armendariz, we have $e\left(a_{0} R b_{0}\right)=0, e\left(a_{0} R b_{1}\right)=$ $0, e\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)=0, e\left(a_{1} R \omega_{s}\left(b_{1}\right)\right)=0$ and $(1-e)\left(a_{0} R b_{0}\right)=0,(1-e)\left(a_{0} R b_{1}\right)=0,(1-$ $e)\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)=0,(1-e)\left(a_{1} R \omega_{s}\left(b_{1}\right)\right)=0$ and hence $a_{0} R b_{0}=e\left(a_{0} R b_{0}\right)+(1-e)\left(a_{0} R b_{0}\right)=$ $0, a_{0} R b_{1}=e\left(a_{0} R b_{1}\right)+(1-e)\left(a_{0} R b_{1}\right)=0, a_{1} R \omega_{s}\left(b_{0}\right)=e\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)+(1-e)\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)=$ $0, a_{1} R \omega_{s}\left(b_{1}\right)=e\left(a_{1} R \omega_{s}\left(b_{1}\right)\right)+(1-e)\left(a_{1} R \omega_{s}\left(b_{1}\right)\right)=0$. Therefore, R is linearly (S, ω)-quasiArmendariz.

Definition 2.6. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. We say that R is (S, ω)-semiprime, if whenever $f \in\left[\left[R^{S, \leq}, \omega\right]\right]$ satisfy $f\left[\left[R^{S, \leq}, \omega\right]\right] f=0$, then $f=0$.

The following result appeared in [1].
Lemma 2.7. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. Then $\left[\left[R^{S, \leq}, \omega\right]\right]$ is reduced if and only if R is reduced.

Lemma 2.8. Let R be a ring, (S, \leq) a strictly totally ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism. Then R is a semiprime ring if and only if $\left[\left[R^{S, \leq}, \omega\right]\right]$ is a semiprime ring.

Proof. (\Rightarrow) Assume the contrary. Then there exists a nonzero $f \in\left[\left[R^{S, \leq}, \omega\right]\right]$ such that $\left(\left[\left[R^{S, \leq}, \omega\right]\right] f\left[\left[R^{S, \leq}, \omega\right]\right]\right)^{2}=0$. Thus, $f\left[\left[R^{S, \leq}, \omega\right]\right] f=0$. Let $\pi(f)=s_{0}$. Then, for any $s_{0} \in S$, $f\left(s_{0}\right) R \omega_{s_{0}}\left(f\left(s_{0}\right)\right)=f\left(s_{0}\right) R f\left(s_{0}\right)=0$, by compatibility. Set $I=R f\left(s_{0}\right) R$. Then I is a nonzero ideal of R and $I^{2}=0$, which is contradict to the fact that R is a semiprime ring.
(\Leftarrow) Let I be an ideal of ring R with $I^{2}=0$. Then $\left[\left[I^{S, \leq}, \omega\right]\right]$ is an ideal of the ring $\left[\left[R^{S, \leq}, \omega\right]\right]$. For any $f, g \in\left[\left[I^{S, \leq}, \omega\right]\right]$ and any $s \in S$. Since R is compatible,

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) \omega_{u}(g(v))=0
$$

Thus $f g=0$, which implies that $\left[\left[I^{S, \leq}, \omega\right]\right]^{2}=0$. Hence $\left[\left[I^{S, \leq}, \omega\right]\right]=0$ since $\left[\left[R^{S, \leq}, \omega\right]\right]$ is a semiprime ring. Consequently, $I=0$, and so R is a semiprime ring.

Theorem 2.9. Let R be a ring, (S, \leq) a strictly totally ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism. Then R is semiprime if and only if R is reduced linearly (S, ω)-quasi-Armendariz.

Proof. (\Rightarrow). Is trivial.
(\Leftarrow) Let R be a reduced linearly (S, ω)-quasi-Armendariz. In particular for any $C_{a} \in\left[\left[R^{S, \leq}, \omega\right]\right]$ be such that $C_{a}\left[\left[R^{S, \leq}, \omega\right]\right] C_{a}=0$, then $a R \omega_{s}(a)=0$. Thus, by compatibility and reduced $(a R)^{2}=0$. Therefore $a=0$.

Corollary 2.10. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism. If R is reduced ring, then R is linearly (S, ω)-quasi-Armendariz.

Since any reduced ring is a semiprime. Here we have.
Corollary 2.11. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow E n d(R)$ a compatible monoid homomorphism. If R is semiprime, then R is linearly (S, ω)-quasi-Armendariz.

Lemma 2.12. [1, Proposition 4.8] Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow$ $\operatorname{End}(R)$ a monoid homomorphism. The following conditions are equivalent:
(1) R is linearly (S, ω)-Armendariz and reduced, and ω_{s} is injective for every $s \in S$;
(2) R is S-rigid and $s^{2} \notin\{1, s\}$ for every $s \in S \backslash\{1\}$.

Proposition 2.13. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism. The following conditions are equivalent:
(1) R is linearly (S, ω)-quasi-Armendariz and reduced, and ω_{s} is injective for every $s \in S$;
(2) R is (S, ω)-semiprime and $s^{2} \notin\{1, s\}$ for every $s \in S \backslash\{1\}$.

Proof. It follows from Lemma 2.8, Theorem 2.9 and Lemma 2.12.
The following definition appeared in Definition 2.19 [27].
Definition 2.14. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism. We say that a ring R is completely S-compatible if, for any ideal I of $R, R / I$ is S-compatible, to indicate the homomorphism ω, we will sometimes say that R is completely (S, ω)-compatible.

Every completely S-compatible ring is S-compatible.
Theorem 2.15. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism and R is completely S-compatible.
(1) If R is linearly (S, ω)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided ideal of $R, A=\ell_{R}(U)$ and $\left.\omega_{s}\right|_{U}$ is surjective for all $s \in S$. Then R / A is linearly $(S, \bar{\omega})$-quasiArmendariz.
(2) For a two-sided ideal I of R, if R / I is a linearly $(S, \bar{\omega})$-quasi-Armendariz ring and I is a semiprime ring without identity, then R is linearly (S, ω)-quasi-Armendariz.

Proof. (1) Assume that $A=r_{R}(U)$ is a two sided of linearly (S, ω)-quasi-Armendariz ring R for $\emptyset \neq U \subseteq R$. Let $\bar{a}=a+A$ for $a \in R$. Suppose $c_{\bar{a}_{0}}+c_{\bar{a}_{1}} e_{s}$ and $c_{\bar{b}_{0}}+c_{\bar{b}_{1}} e_{s} \in\left[\left[\bar{R}^{S, \leq}, \bar{\omega}\right]\right]$ with $\left(c_{\bar{a}_{0}}+c_{\bar{a}_{1}} e_{s}\right)\left[\left[\bar{R}^{S, \leq}, \bar{\omega}\right]\right]\left(c_{\bar{b}_{0}}+c_{\bar{b}_{1}} e_{s}\right)=\overline{0}$. We claim that $\bar{a}_{0}(R / A) \bar{b}_{0}=0, \bar{a}_{0}(R / A) \bar{b}_{1}=0$, $\bar{a}_{1}(R / A) \bar{\omega}_{s}\left(\bar{b}_{0}\right)=0$ and $\bar{a}_{1}(R / A) \bar{\omega}_{s}\left(\bar{b}_{1}\right)=0$, where $\bar{\omega}_{s}(\bar{b})=\omega_{s}(b+A)$, for any $s \in S$. Note that the S-compatibility implies $\bar{\omega}_{s}$ is well-defined. From $\left(c_{\bar{a}_{0}}+c_{\bar{a}_{1}} e_{s}\right)\left[\left[(R / A)^{S, \leq}, \omega\right]\right]\left(c_{\bar{b}_{0}}+\right.$ $\left.c_{\bar{b}_{1}} e_{s}\right)=\overline{0}$, we get $\left(c_{\bar{a}_{0}}+c_{\bar{a}_{1}} e_{s}\right) c_{\bar{r}}\left(c_{\bar{b}_{0}}+c_{\bar{b}_{1}} e_{s}\right)=\overline{0}$ for any $\bar{r} \in R / A$. Hence $a_{0} r b_{0}, a_{0} r b_{1}+$ $a_{1} r \omega_{s}\left(b_{0}\right), a_{1} r \omega_{s}\left(b_{1}\right) \in A$, and so $t a_{0} r b_{0}=0, t\left(a_{0} r b_{1}+a_{1} r \omega_{s}\left(b_{0}\right)\right)=0, t a_{1} r \omega_{s}\left(b_{1}\right)=0$ for any $r \in R$ and $t \in U$. Thus, $c_{t}\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$. Since R is linearly $(S, \omega)-$ quasi-Armendariz, we have $t\left(a_{0} R b_{0}\right)=0, t\left(a_{0} R b_{1}\right)=0, t\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)=0$ and $t\left(a_{1} R \omega_{s}\left(b_{1}\right)\right)=$ 0 for any $t \in U$, and hence $a_{0} R b_{0} \subseteq A, a_{0} R b_{1} \subseteq A, a_{1} R \omega_{s}\left(b_{0}\right) \subseteq A$ and $a_{1} R \omega_{s}\left(b_{1}\right) \subseteq A$. Thus, $\bar{a}_{0}(R / A) \bar{b}_{0}=0, \bar{a}_{0}(R / A) \bar{b}_{1}=0, \bar{a}_{1}(R / A) \bar{\omega}_{s}\left(\bar{b}_{0}\right)=0$ and $\bar{a}_{1}(R / A) \bar{\omega}_{s}\left(\bar{b}_{1}\right)=0$ and therefore R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz.
(2) Let $c_{a_{0}}+c_{a_{1}} e_{s}$ and $c_{b_{0}}+c_{b_{1}} e_{s} \in\left[\left[R^{S, \leq}, \omega\right]\right]$ such that $\left(c_{a_{0}}+c_{a_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+c_{b_{1}} e_{s}\right)=0$. Then we have $a_{0} r b_{0}=0, a_{0} r b_{1}+a_{1} r \omega_{s}\left(b_{0}\right)=0$ and $a_{1} r \omega_{s}\left(b_{1}\right)=0$ for any $r \in R$, thus $a_{0} R b_{0}=0$ and $a_{1} R \omega_{s}\left(b_{1}\right)=0$. We claim that $a_{0} R b_{1}=0$. Assume $a_{0} R b_{1} \neq 0$. Note that $\left(b_{0} I a_{0} R\right)^{2}=0$ implies $b_{0} I a_{0} R=0$ and so $b_{0} I a_{0}=0$ since $b_{0} I a_{0} R \subseteq I$ and I is semiprime. Since R / I is linearly $(S, \bar{\omega})$-quasi-Armendariz, we get $a_{0} R b_{0} \subseteq I, a_{0} R b_{1} \subseteq I, a_{1} R \omega_{s}\left(b_{0}\right) \subseteq I$ and $a_{1} R \omega_{s}\left(b_{1}\right) \subseteq I$. Then

$$
\left(a_{1} R \omega_{s}\left(b_{0}\right)\right)\left(R a_{0} R b_{1}\right)^{2}=\left(a_{1} R\right)\left(\omega_{s}\left(b_{0}\right) R a_{0} R b_{1} R a_{0}\right) R b_{1} \subseteq a_{1} R\left(\omega_{s}\left(b_{0}\right) I a_{0}\right) R b_{1}=0
$$

by compatibility Lemma 2.5 [1]. From $a_{0} r b_{1}+a_{1} r \omega_{s}\left(b_{0}\right)=0$ for any $r \in R$ and any $s \in S$, we have $0=\left(a_{0} r b_{1}+a_{1} r \omega_{s}\left(b_{0}\right)\right)\left(u a_{0} t b_{1}\right)^{2}=a_{0} r b_{1}\left(u a_{0} t b_{1}\right)^{2}$ for any $r, u, t \in R$ and thus $\left(R a_{0} R b_{1}\right)^{3}=0$. Since $R a_{0} R b_{1} \subseteq I$ and I is semiprime, $R a_{0} R b_{1}=0$ and so $a_{0} R b_{1}=0$, a contradiction. Hence, $a_{0} R b_{0}=0, a_{0} R b_{1}=0, a_{1} R \omega_{s}\left(b_{0}\right)=0$ and $a_{1} R \omega_{s}\left(b_{1}\right)=0$ and therefore R is linearly (S, ω)-quasi-Armendariz.

Remark 2.16. Let $R=\mathbb{Z}_{2} \bigoplus \mathbb{Z}_{2}$. It can be easily checked that R is a linearly (S, ω)-quasiArmendariz and semicommutative ring, and hence R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz ring for the one-sided annihilator A of a nonempty subset in R by Theorem 2.15(1). Moreover, $R / I \cong \mathbb{Z}_{2}$ is a linearly $(S, \bar{\omega})$-quasi-Armendariz ring for a semiprime ideal $I=\{0\} \bigoplus \mathbb{Z}_{2}$ of R, even in the case where R is commutative and $\left[\left[R^{S, \leq}, \omega\right]\right]=R[x]$.

Corollary 2.17. Let R be a ring, (S, \leq) a strictly ordered monoid and $\omega: S \rightarrow \operatorname{End}(R)$ a compatible monoid homomorphism.
(1) If a ring R is semicommutative and linearly (S, ω)-quasi-Armendariz, then R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz, where $A=\ell_{R}(U)$ and $\left.\omega_{s}\right|_{U}$ is surjective for all $s \in S$ and U is a nonempty subset in R.
(2) If a ring R is linearly (S, ω)-quasi-Armendariz and satisfies any one of the following conditions, then R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz:

- R is an abelian Baer ring and A is the one-sided annihilator of a nonempty subset in R.
- R is a quasi-Baer ring and A is the right annihilator of a right ideal in R.
- R is an abelian right (resp., left) p.p.-ring and A is the right (resp., left) annihilator of an element in R.
- R is a right (resp., left) p.q.-Baer ring and A is the right (resp., left) annihilator of a principal right (resp., left) ideal in R.
Proof. (1) By Lemma 2.3, a ring R is semicommutative ring if and only if any one-sided annihilator over R is a two-sided ideal of R, and thus R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz by Theorem 2.15.
(2) If R is abelian or A is the right (resp., left) annihilator of a right (resp., left) ideal in R, then A is a two-sided ideal of R. Thus, R / A is linearly $(S, \bar{\omega})$-quasi-Armendariz by Theorem 2.15.

Lemma 2.18. [25, Proposition 2.4] Let S be a right order in a right Artinian ring Q and let $\rho: S \rightarrow S$ be a monomorphism.
(1) An element $c \in S$ is regular in S if and only if $\rho(c)$ is regular in S.
(2) ρ can be uniquely extended to a monomorphism $\tilde{\rho}: Q \rightarrow Q$.

One can find the next definition in [1].
Definition 2.19. Let (S, \leq) be an ordered monoid. We say that (S, \leq) is an artinian narrow unique product monoid (or an a.n.u.p. monoid, or simply a.n.u.p.) if for every two artinian and narrow subsets X and Y of S there exists a u.p. element in the product $X Y$. We say that (S, \leq) is quasitotally ordered (and that \leq is a quasitotal order on S) if \leq can be refined to an order \preceq with respect to which S is a strictly totally ordered monoid.

For any ordered monoid (S, \leq), the following chain of implications holds:
S is commutative, torsion-free, and cancellative

$$
\begin{gathered}
\Downarrow \\
(S, \leq) \text { is quasitotally ordered } \\
\Downarrow \\
(S, \leq) \text { is } \text { a.n.u.p. } \Rightarrow \text { u.p. }
\end{gathered}
$$

The converse of the bottom implication holds if \leq is the trivial order. For more details, examples, and interrelationships between these and other conditions on ordered monoids, we refer the reader to [29].

Let R be a semiprime left Goldie ring, and let C denote the set of regular elements of R (that is, elements that are neither left nor right zero-divisors). If $\sigma \in \operatorname{End}(R)$ is injective, then $\sigma(C) \subseteq C$ by Lemma 2.18. Therefore, if $Q=Q_{c l}^{\ell}$ is the classical left ring of quotients of R, then one can verify that σ extends (uniquely) to an endomorphism $\widetilde{\sigma}$ of Q defined by $\tilde{\sigma}\left(b^{-1} \cdot a\right)=\sigma(b)^{-1} \sigma(a)$ for all $a \in R$ and $b \in C$.

In this setting, if S is a monoid and $\omega: S \rightarrow \operatorname{End}(R)$ is a monoid homomorphism such that ω_{s} is injective for every $s \in S$, then there is an induced monoid homomorphism $\widetilde{\omega}: S \rightarrow \operatorname{End}(Q)$ defined by $\widetilde{\omega}_{s}=\widetilde{\omega}(s)$ for each $s \in S$.

Notice that $\widetilde{\omega}_{s}$ is injective for every $s \in S$.
The following result generalizes Theorem 4.17 [1].
Theorem 2.20. Let R be a semiprime left Goldie ring, (S, \leq) a nontrivial strictly ordered a.n.u.p. monoid, and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism such that ω_{s} is injective for every $s \in S$. Let $Q=Q_{c l}^{\ell}$ denote the classical left ring of quotients of R, and $\widetilde{\omega}: S \rightarrow \operatorname{End}(Q)$ the induced S-action. Then the following conditions are equivalent:
(1) R is (S, ω)-quasi-Armendariz;
(2) R is linearly (S, ω)-quasi-Armendariz;
(3) Q is $(S, \widetilde{\omega})$-quasi-Armendariz;
(4) Q is linearly $(S, \widetilde{\omega})$-quasi-Armendariz.

Proof. (1) \Rightarrow (2) Trivial.
(2) \Rightarrow (4) We have to show that for any $p_{0}, p_{1}, q_{0}, q_{1} \in Q$ and $s \in S \backslash\{1\}$,
if $\left(c_{p_{0}}+c_{p_{1}} e_{s}\right)\left[\left[Q^{S, \leq}, \omega\right]\right]\left(c_{q_{0}}+c_{q_{1}} e_{s}\right)=0$, then $p_{0} r q_{1}=p_{1} r \widetilde{\omega}_{s}\left(q_{0}\right)=0 .(\ddagger)$
Now, there exist $a_{0}, a_{1}, b_{0}, b_{1}, u \in R$ such that u is regular and $p_{i}=u^{-1} a_{i}, q_{i}=u^{-1} b_{i}$ for $i=1,2$. Furthermore, for some $d_{0}, d_{1}, v \in R$ with v regular, we can write $a_{0} u^{-1}=v^{-1} d_{0}$ and $a_{1} \omega_{s}(u)^{-1}=v^{-1} d_{1}$. Now it is easy to see that in $\left[\left[R^{S, \leq}, \omega\right]\right]$ we have $\left(c_{d_{0}}+c_{d_{1}} e_{s}\right)\left[\left[R^{S, \leq}, \omega\right]\right]\left(c_{b_{0}}+\right.$ $\left.c_{b_{1}} e_{s}\right)=0$, Since R is linearly (S, ω)-quasi-Armendariz, we obtain $d_{0} r b_{1}=d_{1} r \omega_{s}\left(b_{0}\right)=0$. Now $p_{0} r q_{1}=p_{1} r \widetilde{\omega}_{s}\left(q_{0}\right)=0$ follows easily, proving (\ddagger).
(3) \Leftrightarrow (4) Trivial.

The following is obtained by applying the method in the proof of Theorem 2.20.
Corollary 2.21. Let R be a semiprime left Goldie ring, (S, \leq) a nontrivial strictly ordered a.n.u.p. monoid, and $\omega: S \rightarrow \operatorname{End}(R)$ a monoid homomorphism such that ω_{s} is injective for every $s \in S$. Let Δ be a multiplicatively closed subset of a ring R consisting of central regular elements. Then R is linearly (S, ω)-quasi-Armendariz if and only if $\Delta^{-1} R$ is linearly $(S, \widetilde{\omega})$ -quasi-Armendariz.

References

[1] G. Marks, R. Mazurik, M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc, 81, 361-397(2010).
[2] R. Mazurek and M. Ziembowski, 'On von Neumann regular rings of skew generalized power series, Comm. Algebra, 36(5), 1855-1868(2008).
[3] M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A math. Sci, 73, 14-17 (1997).
[4] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc, 18, 470-473 (1974).
[5] D. D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra, 26(7), 2265-2272 (1998).
[6] N. K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra, 223, 477-488 (2000).
[7] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra, 30(2), 751-761 (2002).
[8] T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math, 29, 583-593 (2003).
[9] N. K. Kim, K. H. Lee and Y. Lee, 'Power series rings satisfying a zero divisor property', Comm. Algebra, 34(6), 2205-2218 (2006).
[10] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168, 45-52 (2002).
[11] G. A. Elliott, P. Ribenboim, Fields of generalized power series, Archiv d. Math, 54, 365-371 (1990).
[12] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra, 198, 327-338 (1997).
[13] P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl. Algebra, 79, 293-312 (1992).
[14] P. Ribenboim, Rings of generalized power series: Nilpotent elements, Abh. Math. Sem. Univ. Hamburg, 61, 15-33 (1991).
[15] P. Ribenboim, Rings of generalized power series II: Units and zero-divisors, J. Algebra, 168, 71-89 (1994).
[16] K. Varadarajan, Noetherian generalized power series rings and modules, Comm. Algebra, 29(1), 245-251 (2001a).
[17] K. Varadarajan, Generalized power series modules, Comm. Algebra, 29(3), 1281-1294 (2001b).
[18] Z. K. Liu, Special properties of rings of generalized power series, Comm. Algebra, 32(8), 3215-3226 (2004).
[19] E. Ali, A. Elshokry, Some properties of quasi-Armendariz rings and their generalizations, Asia P. J. Math, 5(1), 14-26 (2018).
[20] K. Paykan, A. Moussavi, Quasi-Armendariz generalized power series rings, J. Algebra and its App, 15(4), 1650086-(1-38) (2016).
[21] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J, 34, 417-424 (1967).
[22] G. F. Birkenmeier, J. Y. Kim and J. K. Park, A sheaf representation of quasi-Baer rings, J. Pure Appl. Algebra, 146, 209-223 (2000).
[23] G. F. Birkenmeier, J.Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29(2), 639-660 (2001).
[24] G. Y. Shin, Prime ideal and sheaf representation of a pseudo symmetric rings, Trans. Amer. Math. Soc, 184, 43-60 (1973).
[25] A. Jategaonkar, 'Skew polynomial rings over orders in Artinian rings', J. Algebra, 21, 51-59 (1972).
[26] B. Muhittin, F. Kaynarca, T. Kwak, Y. Lee, Weak quasi-Armendariz rings, Algebra Colloq, 18(3), 541552 (2011).
[27] E. Ali, A. Elshokry, Some results on a generalization of Armendariz rings, Asia P. J. Math, 6(1), 1-17 (2019).
[28] E. Ali, A. Elshokry, On Linearly S-Quasi-Armendariz Rings, Eur. Aca. Research, VII (1), 513-529 (2019).
[29] G. Marks, R. Mazurek and M. Ziembowski, 'A new class of unique product monoids with applications to ring theory', Semigroup Forum 78(2), 210-225 (2009).
[30] Z. Renyu, Uniserial modules of generalized power series, Bull. Iranian Math. Soc, 38(4), 947-954 (2012).

Author information

Eltiyeb Ali, Department of Mathematics, Faculty of Education, University of Khartoum, Sudan Department of Mathematics, College of Science and Arts, Najran University, Saudi Arabia.
E-mail: eltiyeb76@gmail.com
Ayoub Elshokry, Department of Mathematics, Faculty of Education, University of Khartoum, Sudan.
E-mail: ayou1975@yahoo.com
Received: 2022-09-14
Accepted: 2023-12-12

