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Abstract. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →End(R) a monoid
homomorphism. Properties of the ring [[RS,≤, ω]] of skew generalized power series with coef-
ficients in R and exponents in S are considered. This paper is devoted to the study of linearly
(S, ω)-quasi-Armendariz ring, which is unify the notions of linearly (S, ω)-Armendariz ring and
(S, ω)-quasi-Armendariz ring. It is shown that, if R is linearly (S, ω)-quasi-Armendariz ring,
U is a nonempty subset in R is a two-sided ideal of R, A = ℓR(U) and ωs|U is surjective for
all s ∈ S, then R/A is linearly (S, ω)-quasi-Armendariz. Also, we prove that, R is semiprime
if and only if R is reduced linearly (S, ω)-quasi-Armendariz. Moreover, Under a necessary and
sufficient conditions, if R is linearly (S, ω)-quasi-Armendariz, then Q is linearly (S, ω̃)-quasi-
Armendariz, where Q is the classical left ring of quotients of R. Consequently, some results of
linearly (S, ω)-quasi-Armendariz are given.

1 Introduction

Throughout this paper all rings considered here are associative with identity. We will write
monoids multiplicatively unless otherwise indicated. If R is a ring and X is a nonempty subset
of R, then the left (right) annihilator of X in R is denoted by ℓR(X)(rR(X)). We will denote
by End(R) the monoid of ring endomorphisms of R, and by Aut(R) the group of ring automor-
phisms of R. Any concept and notation not defined here can be found in Marks et al. [1] and
Mazurek and Ziembowski [2].

Rege and Chhawchharia [3] introduced the notion of an Armendariz ring. They defined a
ring R to be an Armendariz ring if whenever polynomials f(x) = a0 +a1x+ · · ·+anx

n, g(x) =
b0 + b1x+ · · ·+ bmxm ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j. (The converse
is always true.) The name “Armendariz ring” was chosen because Armendariz [4, Lemma 1]
had noted that a reduced ring satisfies this condition. Reduced rings (i.e., rings with no nonzero
nilpotent elements). Some properties of Armendariz rings have been studied in E. P. Armendariz
[4], Anderson and Camillo [5], Kim and Lee [6], Huh, Lee and Smoktunowicz [7], and Lee and
Wong [8].

By Kim et al. in [9]. A ring R is said to be power-serieswise Armendariz if whenever
power series f(x) = a0 + a1x + · · · + anx

n and g(x) = b0 + b1x + · · · + bmxm in R[[x]]
satisfy f(x)g(x) = 0 then aibj = 0 for all i, j. Armendariz rings were generalized to quasi-
Armendariz rings by Hirano [10]. A ring R is called quasi-Armendariz provided that aiRbj = 0
for all i, j whenever f(x) = a0 + a1x + · · · + anx

n, g(x) = b0 + b1x + · · · + bmxm ∈ R[x]
satisfy f(x)R[x]g(x) = 0. Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every
strictly decreasing sequence of elements of S is finite, and that (S,≤) is narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus, (S,≤) is artinian and narrow if
and only if every nonempty subset of S has at least one but only a finite number of minimal
elements. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be
denoted additively, and the neutral element by 0. The following definition is due to Elliott and
Ribenboim [11].

Let (S,≤) is a strictly ordered monoid (that is, (S,≤) is an ordered monoid satisfying the
condition that, if s, s′, t ∈ S and s < s′, then s + t < s′ + t), and R a ring. Let [[RS,≤]] be the
set of all maps f : S → R such that supp(f) = {s ∈ S|f(s) ̸= 0} is artinian and narrow. With
pointwise addition, [[RS,≤]] is an abelian additive group. For every s ∈ S and f, g ∈ [[RS,≤]],
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let Xs(f, g) = {(u, v) ∈ S × S|u+ v = s, f(u) ̸= 0, g(v) ̸= 0}. It follows from Ribenboim [12,
4.1] that Xs(f, g) is finite. This fact allows one to define the operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

Clearly, supp(fg) ⊆ supp(f) + supp(g), thus by Ribenboim [13, 3.4] supp(fg) is artinian and
narrow, hence fg ∈ [[RS,≤]]. With this operation, and pointwise addition, [[RS,≤]] becomes an
associative ring, with identity element e, namely e(0) = 1, e(s) = 0 for every 0 ̸= s ∈ S. Which
is called the ring of generalized power series with coefficients in R and exponents in S. Many
examples and results of rings of generalized power series are given in Ribenboim ([12]−[14]),
Elliott and Ribenboim [11] and Varadarajan ([16], [17]). For example, if S = N ∪ {0} and ≤ is
the usual order, then [[RN∪{0},≤]] ∼= R[[x]], the usual ring of power series. If S is a commutative
monoid and ≤ is the trivial order, then [[RS,≤]] ∼= R[S], the monoid ring of S over R. Further
examples are given in Ribenboim [13]. To any r ∈ R and s ∈ S, we associate the maps cr, es ∈
[[RS,≤]] defined by

cr(x) =

 r, x = 0,

0, otherwise,
es(x) =

 1, x = s,

0, otherwise.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤]], s 7→ es, is a monoid embedding of
S into the multiplicative monoid of the ring [[RS,≤]], and cres = escr. Recall that a monoid S
is torsion-free if the following property holds: If s, t ∈ S, if k is an integer, k ≥ 1 and ks = kt,
then s = t.

Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S →End(R) a monoid homomor-
phism. For s ∈ S, let ωs denote the image of s under ω, that is, ωs = ω(s). Let A be the set of all
functions f : S → R such that the support supp(f) = {s ∈ S : f(s) ̸= 0} is artinian and narrow.
Then for any s ∈ S and f, g ∈ A the set

Xs(f, g) = {(u, v) ∈ supp(f)× supp(g) : s = uv}

is finite. Thus one can define the product fg : S → R of f, g ∈ A as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v))

(by convention, a sum over the empty set is 0). With pointwise addition and multiplication as
defined above, A becomes a ring, called the ring of skew generalized power series with coeffi-
cients in R and exponents in S, see [2] and denoted by [[RS,≤, ω]] (or by R[[S, ω]] when there is
no ambiguity concerning the order ≤).

We will use the symbol 1 to denote the identity elements of the monoid S, the ring R, and the
ring [[RS,≤, ω]] as well as the trivial monoid homomorphism 1 : S →End(R) that sends every
element of S to the identity endomorphism. A subset P ⊆ R will be called S-invariant if for
every s ∈ S it is ωs-invariant (that is, ωs(P ) ⊆ P ). To each r ∈ R and s ∈ S, we associate
elements cr, es ∈ [[RS,≤, ω]] defined by

cr(x) =


r, if x = 1,

0, if x ∈ S\{1},

es(x) =

 1, if x = s,

0, if x ∈ S\{s}.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤, ω]] and s 7→ es, is a monoid
embedding of S into the multiplicative monoid of the ring [[RS,≤, ω]], and escr = cωs(r)es.

If R is a ring and S is a strictly ordered monoid, then the ring R is called a generalized
Armendariz ring if for each f, g ∈ [[RS,≤]] such that fg = 0 implies that f(u)g(v) = 0 for each
u ∈ supp(f) and v ∈ supp(g). In [18] Liu called such ring S-Armendariz ring. If R is a ring,
S be a torsion-free and cancellative monoid and ≤ a strict order on S, then the ring R is called
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a generalized quasi-Armendariz ring if for each f, g ∈ [[RS,≤]] such that f [[RS,≤]]g = 0, then
f(u)Rg(v) = 0 for each u, v ∈ S. Ali and Elshokry in [19] called such S-quasi-Armendariz
ring and a generalization of it in [28]. Marks et al. [1] a ring R is called (S, ω)-Armendariz,
if whenever f, g ∈ [[RS,≤, ω]], fg = 0 implies f(u)ωu(g(v)) = 0 for all u, v ∈ S. Also, they
defined that a ring R is linearly (S, ω)-Armendariz, if for all s ∈ S\{1} and a0, a1, b0, b1 ∈ R,
such that (ca0 + ca1es)(cb0 + cb1es) = 0, then a0b0 = a0b1 = a1ωs(b0) = a1ωs(b1) = 0.
A common generalization of S-quasi-Armendariz ring and (S, ω)-Armendariz introduced by
Paykan and Moussavi [20], said that, a ring R is called (S, ω)-quasi-Armendariz, if whenever
f, g ∈ [[RS,≤, ω]] such that f [[RS,≤, ω]]g = 0, then f(u)Rωu(g(v)) = 0 for each u, v ∈ S.

This paper is devoted to the study of linearly (S, ω)-quasi-Armendariz which is unify the
notions of linearly (S, ω)-Armendariz and (S, ω)-quasi-Armendariz ring. It is shown that, (‡) If
R is linearly (S, ω)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided ideal of
R, A = ℓR(U) and ωs|U is surjective for all s ∈ S, then R/A is linearly (S, ω)-quasi-Armendariz.
(‡′) For a two-sided ideal I of R, if R/I is a linearly (S, ω)-quasi-Armendariz ring and I is a
semiprime ring without identity, then R is linearly (S, ω)-quasi-Armendariz. Moreover, (‡′′)
Under a necessary and sufficient conditions, if R is a linearly (S, ω)-quasi-Armendariz, then
Q is a linearly (S, ω̃)-quasi-Armendariz, where Q is the classical left ring of quotients of R.
Consequently, some results of a linearly (S, ω)-quasi-Armendariz are given.

Clark defined quasi-Baer rings in [21]. A ring R is called quasi-Baer if the left annihilator
of every left ideal of R is generated by an idempotent. Birkenmeier, Kim and Park in [23]
introduced the concept of principally quasi-Baer rings. A ring R is called left principally quasi-
Baer (or simply left p.q.-Baer) if the left annihilator of a principal left ideal of R is generated
by an idempotent. Similarly, right p.q.-Baer rings can be defined. A ring is called p.q.-Baer if it
is both right and left p.q.-Baer. Observe that biregular rings and quasi-Baer rings are p.q.-Baer.
For more details and examples of left p.q.-Baer rings, (see [22] and [23]). A ring R is called a
right (resp., left) PP -ring if every principal right (resp., left) ideal is projective (equivalently, if
the right (resp., left) annihilator of an element of R is generated (as a right (resp., left) ideal) by
an idempotent of R).

2 Linearly (S, ω)-Quasi-Armendariz Rings

In this section we introduce the concept of linearly (S, ω)-quasi-Armendariz ring and study its
properties. Observe that the notion of linearly (S, ω)-quasi-Armendariz rings not only general-
izes that of (S, ω)-quasi-Armendariz rings, but also extends that of linearly (S, ω)-Armendariz
rings. We start by the following definition.

Definition 2.1. Let R be a ring, (S,≤) a strictly totally ordered monoid and ω : S → End(R) a
monoid homomorphism. We say that R is linearly (S, ω)-quasi-Armendariz, if for all s ∈ S\{1}
and a0, a1, b0, b1 ∈ R, whenever (ca0 +ca1es)[[R

S,≤, ω]](cb0 +cb1es) = 0, then a0Rb0 = a0Rb1 =
a1Rωs(b0) = a1Rωs(b1) = 0.

It can be easily checked that both (S, ω)-quasi-Armendariz rings and linearly (S, ω)-Armendariz
rings are linearly (S, ω)-quasi-Armendariz. But there exist linearly (S, ω)-quasi-Armendariz
rings which are not linearly (S, ω)-Armendariz e.g., Mat2(R) over a linearly (S, ω)-quasi-
Armendariz ring R is linearly (S, ω)-quasi-Armendariz by [26, Theorem 2.3], but Mat2(R)
is not linearly (S, ω)-Armendariz by [3] (or [6, Example 1]), even in the case where R is com-
mutative and [[RS,≤, ω]] = R[x]. Also, the construction in [8, Example 3.2] shows that there ex-
ist commutative linearly (S, ω)-quasi-Armendariz rings which are not (S, ω)-quasi-Armendariz,
even in the case, S be the additive monoid N ∪ {0}, with the trivial order, R be a ring, ω :
S → End(R) be trivial. Then R is an (S, ω)-quasi-Armendariz ring if and only if R is a quasi-
Armendariz ring in the usual sense. This is so because in this case the skew generalized power
series ring [[RS,≤, ω]] is isomorphic to the ordinary polynomial ring R[x].

Let R be a ring, (S1,≤1), (S2,≤2), . . . , (Sn,≤n) be strictly ordered monoid, and ωi : Si →
End(R) be a monoid homomorphism for every i. Define ω : S → End(R) as

ω(s1, s2, . . . , sn) = ωs1ωs2 · · ·ωsn .

That is,
ω(s1,s2,...,sn) = ωs1ωs2 · · ·ωsn .
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Then ω is well-defined.

Lemma 2.2. If R is Si-compatible for each i, then R is S-compatible.

Proof. Let a, b ∈ R. Then for any si ∈ S,
ab = 0 ⇔ aωsn(b) = 0
⇔ aωsn−1ωsn(b) = 0
· · ·
⇔ aωs1ωs2 · · ·ωsn(b) = 0
⇔ aω(s1,s2,...,sn)(b) = 0.
Thus, R is S-compatible. 2

The next Lemma appeared in Lemma 1.2 [24].

Lemma 2.3. For any ring R the following are equivalent:
(1) For each element a ∈ R, ar is an ideal of R, where ar = {b ∈ R : ab = 0}.
(2) Any annihilator right ideal of R is an ideal of R.
(3) Any annihilator left ideal of R is an ideal of R.
(4) For any a, b ∈ R, ab = 0 implies aRb = 0.

Every reduced ring (i.e., if there exists no nonzero nilpotent elements) is semicommutative
but the converse does not hold in general. There exists a linearly (S, ω)-quasi-Armendariz ring
which is not semicommutative Example 14 [7], even in the case where R is commutative and
[[RS,≤, ω]] = R[x], and commutative (hence semicommutative) rings need not to be linearly
(S, ω)-quasi-Armendariz. Here we have the following.

Proposition 2.4. Let [[RS,≤, ω]] over a ring R be semicommutative, (S,≤) a strictly totally or-
dered monoid and ω : S → End(R) a compatible monoid homomorphism. If R is (linearly)
(S, ω)-quasi-Armendariz, then R is (linearly) (S, ω)-Armendariz.

Proof. Since the two cases have the same argument, we only give the proof of (S, ω)-Armendariz
case. Assume that the skew generalized power series ring [[RS,≤, ω]] over R is (S, ω)-quasi-
Armendariz and semicommutative. Let f, g ∈ [[RS,≤, ω]] such that fg = 0. Then we get
f [[RS,≤, ω]]g = 0 and so f(u)Rωu(g(v)) = f(u)Rg(v) = 0, by compatibility, for all u, v ∈ S.
Thus, f(u)g(v) = 0 for all u, v ∈ S, and therefore R is (S, ω)-Armendariz. 2

Proposition 2.5. Let (S,≤) be a strictly ordered monoid, ω : S → End(R) a monoid ho-
momorphism and e be a central idempotent of a ring R with ωs(e) = e. Then R is linearly
(S, ω)-quasi-Armendariz if and only if eR and (1 − e)R are linearly (S, ω)-quasi-Armendariz.

Proof. Suppose that R is linearly (S, ω)-quasi-Armendariz. Let ca0 + ca1es and cb0 + cb1es ∈
[[(eR)S,≤, ω]] such that (ca0 + ca1es)[[(eR)

S,≤, ω]](cb0 + cb1es) = 0. Note that (ca0 + ca1es)ce =
ca0 + ca1es and ce(cb0 + cb1es) = cb0 + cb1es. For any r ∈ R, (ca0 + ca1es)cr(cb0 + cb1es) =
(ca0 + ca1es)(cer)(cb0 + cb1es) = 0, and so (ca0 + ca1es)[[R

S,≤, ω]](cb0 + cb1es) = 0. Since R is
linearly (S, ω)-quasi-Armendariz, a0Rb0 = a0Rb1 = a1Rωs(b0) = a1Rωs(b1) = 0. Since e is
central a0(eR)b0 = 0, a0(eR)b1 = 0, a1(eR)ωs(b0) = 0 and a1(eR)ωs(b1) = 0. Therefore, eR is
linearly (S, ω)-quasi-Armendariz. Similarly, we can show that (1− e)R is linearly (S, ω)-quasi-
Armendariz.

Conversely, assume that both eR and (1 − e)R are linearly (S, ω)-quasi-Armendariz. Let
ca0 + ca1es and cb0 + cb1es ∈ [[RS,≤, ω]] be such that (ca0 + ca1es)[[R

S,≤, ω]](cb0 + cb1es) = 0.
We will show that a0Rb0 = 0, a0Rb1 = 0, a1Rωs(b0) = 0 and a1Rωs(b1) = 0. For any r ∈ R,
ce(ca0 + ca1es)(cer)ce(cb0 + cb1es) = ce((ca0 + ca1es)cr(cb0 + cb1es)) = 0 and c1−e(ca0 +
ca1es)c1−ecr(c1−e(cb0 + cb1es)) = 0, so

ce(ca0 + ca1es)[[(eR)
S,≤, ω]]ce(cb0 + cb1es) = 0

and
c1−e(ca0 + ca1es)[[((1 − e)R)S,≤, ω]]c1−e(cb0 + cb1es) = 0.
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Since eR and (1−e)R are linearly (S, ω)-quasi-Armendariz, we have e(a0Rb0) = 0, e(a0Rb1) =
0, e(a1Rωs(b0)) = 0, e(a1Rωs(b1)) = 0 and (1 − e)(a0Rb0) = 0, (1 − e)(a0Rb1) = 0, (1 −
e)(a1Rωs(b0)) = 0, (1 − e)(a1Rωs(b1)) = 0 and hence a0Rb0 = e(a0Rb0) + (1 − e)(a0Rb0) =
0, a0Rb1 = e(a0Rb1)+(1−e)(a0Rb1) = 0, a1Rωs(b0) = e(a1Rωs(b0))+(1−e)(a1Rωs(b0)) =
0, a1Rωs(b1) = e(a1Rωs(b1)) + (1 − e)(a1Rωs(b1)) = 0. Therefore, R is linearly (S, ω)-quasi-
Armendariz. 2

Definition 2.6. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a
monoid homomorphism. We say that R is (S, ω)-semiprime, if whenever f ∈ [[RS,≤, ω]] satisfy
f [[RS,≤, ω]]f = 0, then f = 0.

The following result appeared in [1].

Lemma 2.7. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. Then [[RS,≤, ω]] is reduced if and only if R is reduced.

Lemma 2.8. Let R be a ring, (S,≤) a strictly totally ordered monoid and ω : S → End(R) a
compatible monoid homomorphism. Then R is a semiprime ring if and only if [[RS,≤, ω]] is a
semiprime ring.

Proof. (⇒) Assume the contrary. Then there exists a nonzero f ∈ [[RS,≤, ω]] such that
([[RS,≤, ω]]f [[RS,≤, ω]])2 = 0. Thus, f [[RS,≤, ω]]f = 0. Let π(f) = s0. Then, for any s0 ∈ S,
f(s0)Rωs0(f(s0)) = f(s0)Rf(s0) = 0, by compatibility. Set I = Rf(s0)R. Then I is a nonzero
ideal of R and I2 = 0, which is contradict to the fact that R is a semiprime ring.

(⇐) Let I be an ideal of ring R with I2 = 0. Then [[IS,≤, ω]] is an ideal of the ring [[RS,≤, ω]].
For any f, g ∈ [[IS,≤, ω]] and any s ∈ S. Since R is compatible,

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v)) = 0.

Thus fg = 0, which implies that [[IS,≤, ω]]2 = 0. Hence [[IS,≤, ω]] = 0 since [[RS,≤, ω]] is a
semiprime ring. Consequently, I = 0, and so R is a semiprime ring. 2

Theorem 2.9. Let R be a ring, (S,≤) a strictly totally ordered monoid and ω : S → End(R)
a compatible monoid homomorphism. Then R is semiprime if and only if R is reduced linearly
(S, ω)-quasi-Armendariz.

Proof. (⇒). Is trivial.
(⇐) Let R be a reduced linearly (S, ω)-quasi-Armendariz. In particular for any Ca ∈ [[RS,≤, ω]]
be such that Ca[[RS,≤, ω]]Ca = 0, then aRωs(a) = 0. Thus, by compatibility and reduced
(aR)2 = 0. Therefore a = 0. 2

Corollary 2.10. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a com-
patible monoid homomorphism. If R is reduced ring, then R is linearly (S, ω)-quasi-Armendariz.

Since any reduced ring is a semiprime. Here we have.

Corollary 2.11. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a com-
patible monoid homomorphism. If R is semiprime, then R is linearly (S, ω)-quasi-Armendariz.

Lemma 2.12. [1, Proposition 4.8] Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. The following conditions are equivalent:

(1) R is linearly (S, ω)-Armendariz and reduced, and ωs is injective for every s ∈ S;
(2) R is S-rigid and s2 /∈ {1, s} for every s ∈ S\{1}.

Proposition 2.13. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a
compatible monoid homomorphism. The following conditions are equivalent:

(1) R is linearly (S, ω)-quasi-Armendariz and reduced, and ωs is injective for every s ∈ S;
(2) R is (S, ω)-semiprime and s2 /∈ {1, s} for every s ∈ S\{1}.
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Proof. It follows from Lemma 2.8, Theorem 2.9 and Lemma 2.12. 2

The following definition appeared in Definition 2.19 [27].

Definition 2.14. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →End(R) a monoid
homomorphism. We say that a ring R is completely S-compatible if, for any ideal I of R, R/I
is S-compatible, to indicate the homomorphism ω, we will sometimes say that R is completely
(S, ω)-compatible.

Every completely S-compatible ring is S-compatible.

Theorem 2.15. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism and R is completely S-compatible.

(1) If R is linearly (S, ω)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided
ideal of R, A = ℓR(U) and ωs|U is surjective for all s ∈ S. Then R/A is linearly (S, ω)-quasi-
Armendariz.

(2) For a two-sided ideal I of R, if R/I is a linearly (S, ω)-quasi-Armendariz ring and I is
a semiprime ring without identity, then R is linearly (S, ω)-quasi-Armendariz.

Proof. (1) Assume that A = rR(U) is a two sided of linearly (S, ω)-quasi-Armendariz ring R

for ∅ ≠ U ⊆ R. Let ā = a + A for a ∈ R. Suppose cā0 + cā1es and cb̄0
+ cb̄1

es ∈ [[R
S,≤

, ω]]

with (cā0 + cā1es)[[R
S,≤

, ω]](cb̄0
+ cb̄1

es) = 0̄. We claim that ā0(R/A)b̄0 = 0, ā0(R/A)b̄1 = 0,
ā1(R/A)ωs(b̄0) = 0 and ā1(R/A)ωs(b̄1) = 0, where ωs(b) = ωs(b + A), for any s ∈ S. Note
that the S-compatibility implies ωs is well-defined. From (cā0 + cā1es)[[(R/A)S,≤, ω]](cb̄0

+

cb̄1
es) = 0̄, we get (cā0 + cā1es)cr̄(cb̄0

+ cb̄1
es) = 0̄ for any r̄ ∈ R/A. Hence a0rb0, a0rb1 +

a1rωs(b0), a1rωs(b1) ∈ A, and so ta0rb0 = 0, t(a0rb1 + a1rωs(b0)) = 0, ta1rωs(b1) = 0 for any
r ∈ R and t ∈ U. Thus, ct(ca0 + ca1es)[[R

S,≤, ω]](cb0 + cb1es) = 0. Since R is linearly (S, ω)-
quasi-Armendariz, we have t(a0Rb0) = 0, t(a0Rb1) = 0, t(a1Rωs(b0)) = 0 and t(a1Rωs(b1)) =
0 for any t ∈ U, and hence a0Rb0 ⊆ A, a0Rb1 ⊆ A, a1Rωs(b0) ⊆ A and a1Rωs(b1) ⊆ A. Thus,
ā0(R/A)b̄0 = 0, ā0(R/A)b̄1 = 0, ā1(R/A)ωs(b̄0) = 0 and ā1(R/A)ωs(b̄1) = 0 and therefore
R/A is linearly (S, ω)-quasi-Armendariz.
(2) Let ca0 +ca1es and cb0 +cb1es ∈ [[RS,≤, ω]] such that (ca0 +ca1es)[[R

S,≤, ω]](cb0 +cb1es) = 0.
Then we have a0rb0 = 0, a0rb1 + a1rωs(b0) = 0 and a1rωs(b1) = 0 for any r ∈ R, thus
a0Rb0 = 0 and a1Rωs(b1) = 0. We claim that a0Rb1 = 0. Assume a0Rb1 ̸= 0. Note that
(b0Ia0R)2 = 0 implies b0Ia0R = 0 and so b0Ia0 = 0 since b0Ia0R ⊆ I and I is semiprime.
Since R/I is linearly (S, ω)-quasi-Armendariz, we get a0Rb0 ⊆ I, a0Rb1 ⊆ I, a1Rωs(b0) ⊆ I
and a1Rωs(b1) ⊆ I. Then

(a1Rωs(b0))(Ra0Rb1)
2 = (a1R)(ωs(b0)Ra0Rb1Ra0)Rb1 ⊆ a1R(ωs(b0)Ia0)Rb1 = 0

by compatibility Lemma 2.5 [1]. From a0rb1 + a1rωs(b0) = 0 for any r ∈ R and any s ∈ S,
we have 0 = (a0rb1 + a1rωs(b0))(ua0tb1)2 = a0rb1(ua0tb1)2 for any r, u, t ∈ R and thus
(Ra0Rb1)3 = 0. Since Ra0Rb1 ⊆ I and I is semiprime, Ra0Rb1 = 0 and so a0Rb1 = 0, a
contradiction. Hence, a0Rb0 = 0, a0Rb1 = 0, a1Rωs(b0) = 0 and a1Rωs(b1) = 0 and therefore
R is linearly (S, ω)-quasi-Armendariz. 2

Remark 2.16. Let R = Z2
⊕

Z2. It can be easily checked that R is a linearly (S, ω)-quasi-
Armendariz and semicommutative ring, and hence R/A is linearly (S, ω)-quasi-Armendariz ring
for the one-sided annihilator A of a nonempty subset in R by Theorem 2.15(1). Moreover,
R/I ∼= Z2 is a linearly (S, ω)-quasi-Armendariz ring for a semiprime ideal I = {0}

⊕
Z2 of R,

even in the case where R is commutative and [[RS,≤, ω]] = R[x].

Corollary 2.17. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R) a com-
patible monoid homomorphism.

(1) If a ring R is semicommutative and linearly (S, ω)-quasi-Armendariz, then R/A is lin-
early (S, ω)-quasi-Armendariz, where A = ℓR(U) and ωs|U is surjective for all s ∈ S and U is
a nonempty subset in R.
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(2) If a ring R is linearly (S, ω)-quasi-Armendariz and satisfies any one of the following
conditions, then R/A is linearly (S, ω)-quasi-Armendariz:
• R is an abelian Baer ring and A is the one-sided annihilator of a nonempty subset in R.
• R is a quasi-Baer ring and A is the right annihilator of a right ideal in R.
• R is an abelian right (resp., left) p.p.-ring and A is the right (resp., left) annihilator of an
element in R.
• R is a right (resp., left) p.q.-Baer ring and A is the right (resp., left) annihilator of a principal
right (resp., left) ideal in R.

Proof. (1) By Lemma 2.3, a ring R is semicommutative ring if and only if any one-sided anni-
hilator over R is a two-sided ideal of R, and thus R/A is linearly (S, ω)-quasi-Armendariz by
Theorem 2.15.
(2) If R is abelian or A is the right (resp., left) annihilator of a right (resp., left) ideal in R, then
A is a two-sided ideal of R. Thus, R/A is linearly (S, ω)-quasi-Armendariz by Theorem 2.15. 2

Lemma 2.18. [25, Proposition 2.4] Let S be a right order in a right Artinian ring Q and let
ρ : S → S be a monomorphism.

(1) An element c ∈ S is regular in S if and only if ρ(c) is regular in S.
(2) ρ can be uniquely extended to a monomorphism ρ̃ : Q → Q.

One can find the next definition in [1].

Definition 2.19. Let (S,≤) be an ordered monoid. We say that (S,≤) is an artinian narrow
unique product monoid (or an a.n.u.p. monoid, or simply a.n.u.p.) if for every two artinian and
narrow subsets X and Y of S there exists a u.p. element in the product XY. We say that (S,≤)
is quasitotally ordered (and that ≤ is a quasitotal order on S) if ≤ can be refined to an order ⪯
with respect to which S is a strictly totally ordered monoid.

For any ordered monoid (S,≤), the following chain of implications holds:

S is commutative, torsion-free, and cancellative

⇓

(S,≤) is quasitotally ordered

⇓

(S,≤) is a.n.u.p. ⇒ u.p.

The converse of the bottom implication holds if ≤ is the trivial order. For more details, examples,
and interrelationships between these and other conditions on ordered monoids, we refer the
reader to [29].

Let R be a semiprime left Goldie ring, and let C denote the set of regular elements of R
(that is, elements that are neither left nor right zero-divisors). If σ ∈ End(R) is injective,
then σ(C) ⊆ C by Lemma 2.18. Therefore, if Q = Qℓ

cl is the classical left ring of quotients
of R, then one can verify that σ extends (uniquely) to an endomorphism σ̃ of Q defined by
σ̃(b−1.a) = σ(b)−1σ(a) for all a ∈ R and b ∈ C.

In this setting, if S is a monoid and ω : S →End(R) is a monoid homomorphism such that
ωs is injective for every s ∈ S, then there is an induced monoid homomorphism ω̃ : S →End(Q)
defined by ω̃s = ω̃(s) for each s ∈ S.

Notice that ω̃s is injective for every s ∈ S.
The following result generalizes Theorem 4.17 [1].

Theorem 2.20. Let R be a semiprime left Goldie ring, (S,≤) a nontrivial strictly ordered a.n.u.p.
monoid, and ω : S →End(R) a monoid homomorphism such that ωs is injective for every s ∈ S.
Let Q = Qℓ

cl denote the classical left ring of quotients of R, and ω̃ : S →End(Q) the induced
S-action. Then the following conditions are equivalent:

(1) R is (S, ω)-quasi-Armendariz;
(2) R is linearly (S, ω)-quasi-Armendariz;
(3) Q is (S, ω̃)-quasi-Armendariz;
(4) Q is linearly (S, ω̃)-quasi-Armendariz.
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Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (4) We have to show that for any p0, p1, q0, q1 ∈ Q and s ∈ S\{1},

if (cp0 + cp1es)[[Q
S,≤, ω]](cq0 + cq1es) = 0, then p0rq1 = p1rω̃s(q0) = 0.(‡)

Now, there exist a0, a1, b0, b1, u ∈ R such that u is regular and pi = u−1ai, qi = u−1bi for
i = 1, 2. Furthermore, for some d0, d1, v ∈ R with v regular, we can write a0u

−1 = v−1d0 and
a1ωs(u)−1 = v−1d1. Now it is easy to see that in [[RS,≤, ω]] we have (cd0+cd1es)[[R

S,≤, ω]](cb0+
cb1es) = 0, Since R is linearly (S, ω)-quasi-Armendariz, we obtain d0rb1 = d1rωs(b0) = 0. Now
p0rq1 = p1rω̃s(q0) = 0 follows easily, proving (‡).
(3) ⇔ (4) Trivial. 2

The following is obtained by applying the method in the proof of Theorem 2.20.

Corollary 2.21. Let R be a semiprime left Goldie ring, (S,≤) a nontrivial strictly ordered
a.n.u.p. monoid, and ω : S →End(R) a monoid homomorphism such that ωs is injective for
every s ∈ S. Let ∆ be a multiplicatively closed subset of a ring R consisting of central regular
elements. Then R is linearly (S, ω)-quasi-Armendariz if and only if ∆−1R is linearly (S, ω̃)-
quasi-Armendariz.
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