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Abstract. Let R be aring, (S, <) a strictly ordered monoid and w : S —End(R) a monoid
homomorphism. Properties of the ring [[R*'=, w]] of skew generalized power series with coef-
ficients in R and exponents in S are considered. This paper is devoted to the study of linearly
(S, w)-quasi-Armendariz ring, which is unify the notions of linearly (S, w)-Armendariz ring and
(S,w)-quasi-Armendariz ring. It is shown that, if R is linearly (S, w)-quasi-Armendariz ring,
U is a nonempty subset in R is a two-sided ideal of R, A = ((U) and w,|y is surjective for
all s € S, then R/A is linearly (S,w)-quasi-Armendariz. Also, we prove that, R is semiprime
if and only if R is reduced linearly (S, w)-quasi-Armendariz. Moreover, Under a necessary and
sufficient conditions, if R is linearly (S, w)-quasi-Armendariz, then @ is linearly (.S, w)-quasi-
Armendariz, where () is the classical left ring of quotients of R. Consequently, some results of
linearly (S, w)-quasi-Armendariz are given.

1 Introduction

Throughout this paper all rings considered here are associative with identity. We will write
monoids multiplicatively unless otherwise indicated. If R is a ring and X is a nonempty subset
of R, then the left (right) annihilator of X in R is denoted by ¢z (X )(rr(X)). We will denote
by End(R) the monoid of ring endomorphisms of R, and by Aut(R) the group of ring automor-
phisms of R. Any concept and notation not defined here can be found in Marks et al. [1] and
Mazurek and Ziembowski [2].

Rege and Chhawchharia [3] introduced the notion of an Armendariz ring. They defined a
ring R to be an Armendariz ring if whenever polynomials f(z) = ag+ajz+- - +a,z™, g(z) =
bo + biz + -+ + bya™ € R[z] satisfy f(z)g(z) = 0, then a;b; = 0 for each 7, j. (The converse
is always true.) The name “Armendariz ring” was chosen because Armendariz [4, Lemma 1]
had noted that a reduced ring satisfies this condition. Reduced rings (i.e., rings with no nonzero
nilpotent elements). Some properties of Armendariz rings have been studied in E. P. Armendariz
[4], Anderson and Camillo [5], Kim and Lee [6], Huh, Lee and Smoktunowicz [7], and Lee and
Wong [8].

By Kim et al. in [9]. A ring R is said to be power-serieswise Armendariz if whenever
power series f(z) = ao + a1z + --- + a,z™ and g(x) = by + biz + -+ + bypx™ in R[[z]]
satisfy f(z)g(xz) = O then a;b; = 0 for all 4, j. Armendariz rings were generalized to quasi-
Armendariz rings by Hirano [10]. A ring R is called quasi-Armendariz provided that a; Rb; = 0
for all i, j whenever f(z) = ap + a1z + -+ + apz™, g(x) = by + byz + -+ + byz™ € Rlx]
satisfy f(z)R[z]g(xz) = 0. Let (S, <) be an ordered set. Recall that (.S, <) is artinian if every
strictly decreasing sequence of elements of S is finite, and that (.5, <) is narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus, (S, <) is artinian and narrow if
and only if every nonempty subset of S has at least one but only a finite number of minimal
elements. Let S be a commutative monoid. Unless stated otherwise, the operation of .S will be
denoted additively, and the neutral element by 0. The following definition is due to Elliott and
Ribenboim [11].

Let (S, <) is a strictly ordered monoid (that is, (S, <) is an ordered monoid satisfying the
condition that, if s,s’,t € S and s < s/, then s +t < s’ 4+ t), and R aring. Let [[RS<]] be the
set of all maps f : S — R such that supp(f) = {s € S|f(s) # 0} is artinian and narrow. With
pointwise addition, [[R®'<]] is an abelian additive group. For every s € S and f,g € [[R%<]],
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let X,(f,9) = {(u,v) € S x Slu+v=s, f(u) # 0, g(v) # 0}. It follows from Ribenboim [12,
4.1] that X4(f, g) is finite. This fact allows one to define the operation of convolution:

(fo)s)= > flu)glv).

(u,v)€Xs(f.9)

Clearly, supp(fg) C supp(f) + supp(g), thus by Ribenboim [13, 3.4] supp(fg) is artinian and
narrow, hence fg € [[R%=]]. With this operation, and pointwise addition, [[R%<]] becomes an
associative ring, with identity element e, namely e(0) = 1, e(s) = 0 for every 0 # s € S. Which
is called the ring of generalized power series with coefficients in R and exponents in S. Many
examples and results of rings of generalized power series are given in Ribenboim ([12]—[14]),
Elliott and Ribenboim [11] and Varadarajan ([16], [17]). For example, if S = NU {0} and < is
the usual order, then [[RNV{0}=]] 22 R[[z]], the usual ring of power series. If S is a commutative
monoid and < is the trivial order, then [[R=]] = R[S], the monoid ring of S over R. Further
examples are given in Ribenboim [13]. To any » € R and s € S, we associate the maps c¢,, e €
[[R%=]] defined by

T, z =0, 1, T =8,
cr(r) = es(z) =
0, otherwise, 0, otherwise.

It is clear that r — ¢, is a ring embedding of R into [[R%<]], s > e, is a monoid embedding of
S into the multiplicative monoid of the ring [[R*<]], and c,.e; = esc,. Recall that a monoid S
is torsion-free if the following property holds: If s,¢ € S, if k is an integer, £ > 1 and ks = kt,
then s = ¢.

Let R be a ring, (5, <) a strictly ordered monoid, and w : S —End(R) a monoid homomor-
phism. For s € S, let w, denote the image of s under w, that is, ws = w(s). Let A be the set of all
functions f : S — R such that the support supp(f) = {s € S : f(s) # 0} is artinian and narrow.
Then for any s € S and f, g € A the set

X (f,9) = {(u,v) € supp(f) x supp(g) : s = uv}

is finite. Thus one can define the product fg : S — R of f, g € A as follows:

o)=Y flwwulg(v)

(uw)eXs(f,9)

(by convention, a sum over the empty set is 0). With pointwise addition and multiplication as
defined above, A becomes a ring, called the ring of skew generalized power series with coeffi-
cients in R and exponents in S, see [2] and denoted by [[R%=,w]] (or by R|[[S, w]] when there is
no ambiguity concerning the order <).

We will use the symbol 1 to denote the identity elements of the monoid .S, the ring R, and the
ring [[RS=,w]] as well as the trivial monoid homomorphism 1 : S —End(R) that sends every
element of S to the identity endomorphism. A subset P C R will be called S-invariant if for
every s € S it is wg-invariant (that is, ws(P) C P). Toeachr € R and s € S, we associate
elements ¢, e5 € [[R%=,w]] defined by

7, if z=1, 1, i x—s,

er(x) = es(z) =

0. it zes\{}, 0, if zeS\{s}.
It is clear that r +— ¢, is a ring embedding of R into [[R%=,w]|] and s + e, is a monoid
embedding of S into the multiplicative monoid of the ring [[R%=,w]], and esc, = ¢, (€s.

If R is aring and S is a strictly ordered monoid, then the ring R is called a generalized
Armendariz ring if for each f, g € [[RS'<]] such that fg = 0 implies that f(u)g(v) = 0 for each
u € supp(f) and v € supp(g). In [18] Liu called such ring S-Armendariz ring. If R is a ring,
S be a torsion-free and cancellative monoid and < a strict order on S, then the ring R is called
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a generalized quasi-Armendariz ring if for each f, g € [[R%=]] such that f[[RS=]]g = 0, then
f(u)Rg(v) = 0 for each u,v € S. Ali and Elshokry in [19] called such S-quasi-Armendariz
ring and a generalization of it in [28]. Marks et al. [1] a ring R is called (S, w)-Armendariz,
if whenever f,g € [[R=,w]], fg = 0 implies f(u)w,(g(v)) = 0 for all u,v € S. Also, they
defined that a ring R is linearly (S, w)-Armendariz, if for all s € S\{1} and ag, a1, by, b1 € R,
such that (cq, + cq,€5)(ch, + cbes) = 0, then agby = apb; = a1ws(by) = ajws(b;) = 0.
A common generalization of S-quasi-Armendariz ring and (S, w)-Armendariz introduced by
Paykan and Moussavi [20], said that, a ring R is called (S, w)-quasi-Armendariz, if whenever
f.g € [[R%=,w]] such that f[[R%=,w]]g = 0, then f(u)Rw,(g(v)) = 0 for each u,v € S.

This paper is devoted to the study of linearly (.5, w)-quasi-Armendariz which is unify the
notions of linearly (S, w)-Armendariz and (S, w)-quasi-Armendariz ring. It is shown that, (1) If
R is linearly (S, w)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided ideal of
R, A = (r(U) and ws|y is surjective for all s € S, then R/A is linearly (S, w)-quasi-Armendariz.
(') For a two-sided ideal I of R, if R/I is a linearly (S, w)-quasi-Armendariz ring and I is a
semiprime ring without identity, then R is linearly (S,w)-quasi-Armendariz. Moreover, (1)
Under a necessary and sufficient conditions, if R is a linearly (.5, w)-quasi-Armendariz, then
Q is a linearly (S,®)-quasi-Armendariz, where @ is the classical left ring of quotients of R.
Consequently, some results of a linearly (S, w)-quasi-Armendariz are given.

Clark defined quasi-Baer rings in [21]. A ring R is called quasi-Baer if the left annihilator
of every left ideal of R is generated by an idempotent. Birkenmeier, Kim and Park in [23]
introduced the concept of principally quasi-Baer rings. A ring R is called left principally quasi-
Baer (or simply left p.q.-Baer) if the left annihilator of a principal left ideal of R is generated
by an idempotent. Similarly, right p.q.-Baer rings can be defined. A ring is called p.q.-Baer if it
is both right and left p.q.-Baer. Observe that biregular rings and quasi-Baer rings are p.q.-Baer.
For more details and examples of left p.q.-Baer rings, (see [22] and [23]). A ring R is called a
right (resp., left) P P-ring if every principal right (resp., left) ideal is projective (equivalently, if
the right (resp., left) annihilator of an element of R is generated (as a right (resp., left) ideal) by
an idempotent of R).

2 Linearly (S, w)-Quasi-Armendariz Rings

In this section we introduce the concept of linearly (.S, w)-quasi-Armendariz ring and study its
properties. Observe that the notion of linearly (.5, w)-quasi-Armendariz rings not only general-
izes that of (S, w)-quasi-Armendariz rings, but also extends that of linearly (.S, w)-Armendariz
rings. We start by the following definition.

Definition 2.1. Let R be a ring, (S, <) a strictly totally ordered monoid and w : S — End(R) a
monoid homomorphism. We say that R is linearly (.S, w)-quasi-Armendariz, if for all s € S\{1}
and ag, ay, by, b1 € R, whenever (cq, +cq,e5) [RSS, w]](cp, +cp,es) = 0, then agRby = agRb; =
alRws(bo) = alRws (bl) =0.

It can be easily checked that both (.S, w)-quasi-Armendariz rings and linearly (.S, w)-Armendariz
rings are linearly (S, w)-quasi-Armendariz. But there exist linearly (.S, w)-quasi-Armendariz
rings which are not linearly (S,w)-Armendariz e.g., Mat,(R) over a linearly (S,w)-quasi-
Armendariz ring R is linearly (S,w)-quasi-Armendariz by [26, Theorem 2.3], but Mat,(R)
is not linearly (S, w)-Armendariz by [3] (or [6, Example 1]), even in the case where R is com-
mutative and [[R%=, w]] = R[z]. Also, the construction in [8, Example 3.2] shows that there ex-
ist commutative linearly (.S, w)-quasi-Armendariz rings which are not (S, w)-quasi-Armendariz,
even in the case, S be the additive monoid N U {0}, with the trivial order, R be a ring, w :
S — End(R) be trivial. Then R is an (S, w)-quasi-Armendariz ring if and only if R is a quasi-
Armendariz ring in the usual sense. This is so because in this case the skew generalized power
series ring [[R*'<,w]] is isomorphic to the ordinary polynomial ring R|[x].

Let R be a ring, (51, <1), (82,<2), ..., (Sn, <n) be strictly ordered monoid, and w? : S; —
End(R) be a monoid homomorphism for every i. Define w : S — End(R) as

W(S1, 82,y 8n) = Ws,Ws, ** * W

n

That is,

W(s1,80,0.08n) — WsWsy =7 " Ws

n
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Then w is well-defined.
Lemma 2.2. If R is S;-compatible for each i, then R is S-compatible.

Proof. Let a,b € R. Then for any s; € S,
ab=0<% aw, (b)) =0
& aws, _,ws, (b) =0

& aws,ws, -+ ws, () =0
< aw(sl,sz,...,sn)(b) =0.
Thus, R is S-compatible. O

The next Lemma appeared in Lemma 1.2 [24].

Lemma 2.3. For any ring R the following are equivalent:
(1) For each element a € R, a" is an ideal of R, where a" = {b € R : ab = 0}.
(2) Any annihilator right ideal of R is an ideal of R.
(3) Any annihilator left ideal of R is an ideal of R.
(4) For any a,b € R,ab = 0 implies aRb = 0.

Every reduced ring (i.e., if there exists no nonzero nilpotent elements) is semicommutative
but the converse does not hold in general. There exists a linearly (S, w)-quasi-Armendariz ring
which is not semicommutative Example 14 [7], even in the case where R is commutative and
[[RS=,w]] = R[], and commutative (hence semicommutative) rings need not to be linearly
(S, w)-quasi-Armendariz. Here we have the following.

Proposition 2.4. Let [[R5=, w]] over a ring R be semicommutative, (S, <) a strictly totally or-
dered monoid and w : S — End(R) a compatible monoid homomorphism. If R is (linearly)
(S, w)-quasi-Armendariz, then R is (linearly) (S,w)-Armendariz.

Proof. Since the two cases have the same argument, we only give the proof of (.S, w)-Armendariz
case. Assume that the skew generalized power series ring [[R%<,w]] over R is (S,w)-quasi-
Armendariz and semicommutative. Let f,g € [[R%=,w]] such that fg = 0. Then we get
FI[RS<,w]]g = 0 and so f(u)Rw,(g(v)) = f(u)Rg(v) = 0, by compatibility, for all u,v € S.
Thus, f(u)g(v) = 0 for all u,v € S, and therefore R is (S, w)-Armendariz. O

Proposition 2.5. Let (S, <) be a strictly ordered monoid, w : S — End(R) a monoid ho-
momorphism and e be a central idempotent of a ring R with ws(e) = e. Then R is linearly
(S, w)-quasi-Armendariz if and only if eR and (1 — e) R are linearly (S,w)-quasi-Armendariz.

Proof. Suppose that R is linearly (S,w)-quasi-Armendariz. Let c,, + cq, €5 and cp, + cp,e5 €
[[(eR)%'=,w]] such that (ca, + ca,e5)[[(eR)*=, w]](cp, + cb es) = 0. Note that (cq, + Cq €5)Ce =
Cay + Cayes and ce(cp, + cp€5) = b, + cp 5. For any r € R, (cqy + Ca €5)cr(Co, + Cpi€5) =
(Cag + Cayes)(Cer)(c, + cpes) = 0, and 50 (cqy + Ca,€5)[[R¥S,w]](cp, + cp,es) = 0. Since R is
linearly (S, w)-quasi-Armendariz, agRby = agRb; = ajRws(by) = a1 Rws(by) = 0. Since ¢ is
central ag(eR)by = 0, ap(eR)by = 0, a;(eR)ws(by) = 0 and a;(eR)wy(by) = 0. Therefore, eR is
linearly (S, w)-quasi-Armendariz. Similarly, we can show that (1 — e) R is linearly (S, w)-quasi-
Armendariz.

Conversely, assume that both eR and (1 — e)R are linearly (S, w)-quasi-Armendariz. Let
Cay + Cayes and ¢y, + cpe5 € [[RSS,w]] be such that (cq, + cq,€5)[[R5S, w]] (b, + cpes) = 0.
We will show that agRby = 0, agRb; = 0, a1 Rws(by) = 0 and ay Rws(by) = 0. For any r € R,
Ce(Cag + Cares)(Cer)Ce(cr, + cves) = ce((Cag + Cares)cr(cp, + cpes)) = 0 and c¢1—c(cq, +
Cay€s)C1—eCr(c1—e(cp, + cpes)) =0, so

Ce(cao + caleS)[[(eR)SévWHCe(Cbo + o, 65) =0

and
C1—e(Cag + ares)[[(1 = €)R)¥=, wl]er—e(cp, + e, e5) = 0.
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Since eR and (1 —e)R are linearly (.S, w)-quasi-Armendariz, we have e(agRby) = 0, e(agRb;) =
0,e(aiRws(by)) = 0,e(ajRws(b1)) = 0 and (1 — e)(agRby) = 0, (1 — e)(apRb;) = 0, (1 —
e)(a1Rws(by)) = 0, (1 — e)(a; Rws(by)) = 0 and hence agRby = e(agRby) + (1 — €)(agRby) =
0,apRb; = e(agRby)+ (1 —e€)(apRby) = 0, a1 Rws(by) = e(a1Rws(bo))+ (1 —e€) (a1 Rws(bo)) =
0,a1Rws(b1) = e(a; Rws(b1)) + (1 — €)(a1 Rws(b)) = 0. Therefore, R is linearly (S, w)-quasi-
Armendariz. O

~

Definition 2.6. Let R be a ring, (5, <) a strictly ordered monoid and w : S — End(R) a
monoid homomorphism. We say that R is (.S, w)-semiprime, if whenever f € [[R%<,w]| satisfy
f[[RS’vaHf =0, then f = 0.

The following result appeared in [1].

Lemma 2.7. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a monoid
homomorphism. Then [[R%=,w]] is reduced if and only if R is reduced.

Lemma 2.8. Let R be a ring, (S, <) a strictly totally ordered monoid and w : S — End(R) a
compatible monoid homomorphism. Then R is a semiprime ring if and only if [[R%= w]] is a
semiprime ring.

Proof. (=) Assume the contrary. Then there exists a nonzero f € [[R%<,w]] such that
([[R%=,w]]f[[R5=,w]])* = 0. Thus, f[[R*=,w]|f = 0. Let 7(f) = so. Then, for any s, € S,
f(s0)Rws, (f(s0)) = f(s0)Rf(so) =0, by compatibility. Set I = Rf(so)R. Then I is a nonzero
ideal of R and I = 0, which is contradict to the fact that R is a semiprime ring.

(«=) Let I be an ideal of ring R with I?> = 0. Then [[/*=, w]] is an ideal of the ring [[R%=, w]].
For any f, g € [[I®=,w]] and any s € S. Since R is compatible,

(f9)(s) = Z f(u)wy(g(v)) = 0.

(u,w)EXs(f,9)

Thus fg = 0, which implies that [[I%=,w]]* = 0. Hence [[I®=,w]] = 0 since [[RS=,w]] is a
semiprime ring. Consequently, I = 0, and so R is a semiprime ring. O

Theorem 2.9. Let R be a ring, (S, <) a strictly totally ordered monoid and w : S — End(R)
a compatible monoid homomorphism. Then R is semiprime if and only if R is reduced linearly
(S, w)-quasi-Armendariz.

Proof. (=). Is trivial.

(<) Let R be a reduced linearly (S, w)-quasi-Armendariz. In particular for any C, € [[R5=, w]]
be such that C,[[R¥=,w]]C, = 0, then aRws(a) = 0. Thus, by compatibility and reduced
(aR)? = 0. Therefore a = 0. O

Corollary 2.10. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a com-
patible monoid homomorphism. If R is reduced ring, then R is linearly (S, w)-quasi-Armendariz.

Since any reduced ring is a semiprime. Here we have.

Corollary 2.11. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a com-
patible monoid homomorphism. If R is semiprime, then R is linearly (S, w)-quasi-Armendariz.

Lemma 2.12. [ ], Proposition 4.8] Let R be a ring, (S, <) a strictly ordered monoid and w : S —
End(R) a monoid homomorphism. The following conditions are equivalent:

(1) R is linearly (S, w)-Armendariz and reduced, and ws is injective for every s € S;

(2) Ris S-rigid and s* ¢ {1, s} for every s € S\{1}.

Proposition 2.13. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a
compatible monoid homomorphism. The following conditions are equivalent:
(1) R is linearly (S, w)-quasi-Armendariz and reduced, and ws is injective for every s € S
(2) Ris (S,w)-semiprime and s* ¢ {1,s} for every s € S\{1}.
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Proof. It follows from Lemma 2.8, Theorem 2.9 and Lemma 2.12. O

The following definition appeared in Definition 2.19 [27].

Definition 2.14. Let R be aring, (S, <) a strictly ordered monoid and w : S —End(R) a monoid
homomorphism. We say that a ring R is completely S-compatible if, for any ideal I of R, R/I
is S-compatible, to indicate the homomorphism w, we will sometimes say that R is completely
(S, w)-compatible.

Every completely S-compatible ring is S-compatible.

Theorem 2.15. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a monoid
homomorphism and R is completely S-compatible.

(1) If R is linearly (S, w)-quasi-Armendariz ring, U is a nonempty subset in R is a two-sided
ideal of R, A = (r(U) and ws|v is surjective for all s € S. Then R/A is linearly (S,©)-quasi-
Armendariz.

(2) For a two-sided ideal I of R, if R/I is a linearly (S,w)-quasi-Armendariz ring and I is
a semiprime ring without identity, then R is linearly (S,w)-quasi-Armendariz.

Proof. (1) Assume that A = rz(U) is a two sided of linearly (.S, w)-quasi-Armendariz ring R
—3,<

for) # U C R.Leta = a + A for a € R. Suppose cg, + ca €5 and ¢ + ¢ es € [[R7,3]]
with (ca, + ca,e5)[B=,@]) (¢, + 3, €s) = 0. We claim that ag(R/A)By = 0, do(R/A)b; = 0,
a1 (R/A)w,(by) = 0 and a; (R/A)w,(by) = 0, where w,(b) = w,(b+ A), for any s € S. Note
that the S-compatibility implies @, is well-defined. From (ca, + ca es)[[(R/A)%=<, w]](c, +
cpes) = 0, we get (cz, + ca es)cr(c, + ¢z es) = O for any 7 € R/A. Hence agrbo, aorb; +
ajrws(by), arrws(by) € A, and so tagrby = 0, t(agrb; + arrws(by)) = 0,tarws(by) = 0 for any
r € Rand t € U. Thus, ¢;(ca, + ca,€5)[[R¥S,w]](cp, + cbes) = 0. Since R is linearly (S, w)-
quasi-Armendariz, we have ¢(agRbg) = 0, t(agRb1) = 0, t(a; Rws(by)) = 0 and t(aj Rws (b)) =
0 for any ¢ € U, and hence agRby C A, agRb; C A, ajRws(by) C A and a1 Rws(b1) C A. Thus,
C_L()(R/A)l_)() =0, @o(R/A)l_Jl =0, @1(R/A)ws(l_)o) = 0 and @1(R/A)ws(l_)1) = 0 and therefore
R/A is linearly (S, w)-quasi-Armendariz.

(2) Let cqy +Ca, €5 and cp, +cp, e € [[RSS, w]] such that (¢, +cq, e5) [R5S, w]] (e, +cp,e5) = 0.
Then we have agrby = 0,agrb; + ajrws(by) = 0 and ajrws(by) = 0 for any r € R, thus
apRby = 0 and a;Rws(b;) = 0. We claim that agRb; = 0. Assume agRb; # 0. Note that
(boIagR)?> = 0 implies bolagR = 0 and so bylag = 0 since bolagR C I and I is semiprime.
Since R/I is linearly (S,w)-quasi-Armendariz, we get agRby C I, agRby C I, ajRws(by) C I
and a1 Rws(by) C I. Then

((I]Rws(bo))(RaoRb])z = (CL]R) (ws(bo)RaoRb1Rao)Rb] g a1R(ws (bo)]ao)Rbl =0

by compatibility Lemma 2.5 [1]. From agrb; + ajrws(by) = 0 for any r € R and any s € S,
we have 0 = (agrb; + ajrws(bo))(uagth))* = aorb;(uagth;)? for any r,u,t € R and thus
(RaORb1)3 = 0. Since RagRb; C I and [ is semiprime, RagRb; = 0 and so agRb; = 0, a
contradiction. Hence, agRby = 0, agRb; = 0, a1 Rws(by) = 0 and a; Rws(b;) = 0 and therefore
R is linearly (S, w)-quasi-Armendariz. O

Remark 2.16. Let R = Z; P Z,. It can be easily checked that R is a linearly (S,w)-quasi-
Armendariz and semicommutative ring, and hence R/A is linearly (S, w)-quasi-Armendariz ring
for the one-sided annihilator A of a nonempty subset in R by Theorem 2.15(1). Moreover,
R/I = 7, is alinearly (S, w)-quasi-Armendariz ring for a semiprime ideal I = {0} @D Z, of R,
even in the case where R is commutative and [[R%<,w]] = R|z].

Corollary 2.17. Let R be a ring, (S, <) a strictly ordered monoid and w : S — End(R) a com-
patible monoid homomorphism.

(1) If a ring R is semicommutative and linearly (S, w)-quasi-Armendariz, then R/A is lin-
early (S,w)-quasi-Armendariz, where A = (r(U) and w;|y is surjective for all s € S and U is
a nonempty subset in R.
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(2) If a ring R is linearly (S,w)-quasi-Armendariz and satisfies any one of the following
conditions, then R/A is linearly (S,w)-quasi-Armendariz:
e R is an abelian Baer ring and A is the one-sided annihilator of a nonempty subset in R.
o R is a quasi-Baer ring and A is the right annihilator of a right ideal in R.
e R is an abelian right (resp., left) p.p.-ring and A is the right (resp., left) annihilator of an
element in R.
o Ris a right (resp., left) p.q.-Baer ring and A is the right (resp., left) annihilator of a principal
right (resp., left) ideal in R.

Proof. (1) By Lemma 2.3, a ring R is semicommutative ring if and only if any one-sided anni-
hilator over R is a two-sided ideal of R, and thus R/A is linearly (S,w)-quasi-Armendariz by
Theorem 2.15.

(2) If R is abelian or A is the right (resp., left) annihilator of a right (resp., left) ideal in R, then
A is a two-sided ideal of R. Thus, R/A is linearly (5, w)-quasi-Armendariz by Theorem 2.15. O

Lemma 2.18. /25, Proposition 2.4] Let S be a right order in a right Artinian ring Q) and let
p .S — S be a monomorphism.

(1) An element c € S is regular in S if and only if p(c) is regular in S.

(2) p can be uniquely extended to a monomorphism p : Q — Q.

One can find the next definition in [1].

Definition 2.19. Let (S, <) be an ordered monoid. We say that (S, <) is an artinian narrow
unique product monoid (or an a.n.u.p. monoid, or simply a.n.u.p.) if for every two artinian and
narrow subsets X and Y of S there exists a u.p. element in the product XY. We say that (S, <)
is quasitotally ordered (and that < is a quasitotal order on S) if < can be refined to an order <
with respect to which S is a strictly totally ordered monoid.

For any ordered monoid (.5, <), the following chain of implications holds:

S is commutative, torsion-free, and cancellative

U
(S, <) is quasitotally ordered

4

(S, <) is a.n.u.p. = u.p.

The converse of the bottom implication holds if < is the trivial order. For more details, examples,
and interrelationships between these and other conditions on ordered monoids, we refer the
reader to [29].

Let R be a semiprime left Goldie ring, and let C' denote the set of regular elements of R
(that is, elements that are neither left nor right zero-divisors). If o € End(R) is injective,
then o(C) C C by Lemma 2.18. Therefore, if Q@ = QF, is the classical left ring of quotients
of R, then one can verify that ¢ extends (uniquely) to an endomorphism & of @) defined by
(b~la) =0o(b)lo(a) foralla € Rand b € C.

In this setting, if .S is a monoid and w : S —End(R) is a monoid homomorphism such that
w s injective for every s € S, then there is an induced monoid homomorphism @ : S —End(Q)
defined by ws; = @(s) for each s € S.

Notice that w; is injective for every s € S.

The following result generalizes Theorem 4.17 [1].

Theorem 2.20. Let R be a semiprime left Goldie ring, (S, <) a nontrivial strictly ordered a.n.u.p.
monoid, and w : S —End(R) a monoid homomorphism such that wy is injective for every s € S.
Let Q = QY denote the classical left ring of quotients of R, and @ : S —End(Q) the induced
S-action. Then the following conditions are equivalent:

(1) R is (S, w)-quasi-Armendariz;

(2) R is linearly (S,w)-quasi-Armendariz;

(3) Q is (S, w)-quasi-Armendariz;

(4) Q is linearly (S, w)-quasi-Armendariz.
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Proof. (1) = (2) Trivial.
(2) = (4) We have to show that for any po, p1, o, 1 € Q and s € S\ {1},

if (ep, + Cp]‘”/S)[[QS’Sa wl](cqy + cq€5) = 0, then porq1 = p17ws(go) = 0.(%)

Now, there exist ag,ar, by, b, u € R such that v is regular and p; = u~'a;,q; = u~'b; for
i = 1,2. Furthermore, for some dy,d;,v € R with v regular, we can write agu™' = v~!dy and
ajws(u) ™! = v~1d;. Now itis easy to see that in [[R%'=, w]] we have (cg,+cq, e5)[[RSS, w]] (cp,+
v es) = 0, Since R is linearly (S, w)-quasi-Armendariz, we obtain dorb; = djrws(by) = 0. Now
porq1 = p1rws(qo) = 0 follows easily, proving ().
(3) < (4) Trivial. O

The following is obtained by applying the method in the proof of Theorem 2.20.

Corollary 2.21. Let R be a semiprime left Goldie ring, (S, <) a nontrivial strictly ordered
a.n.u.p. monoid, and w : S —End(R) a monoid homomorphism such that ws is injective for
every s € S. Let A be a multiplicatively closed subset of a ring R consisting of central regular
elements. Then R is linearly (S,w)-quasi-Armendariz if and only if A~'R is linearly (S,o)-
quasi-Armendariz.
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