CHROMATIC NUMBER OF 2-STRONG PRODUCT GRAPH

H. S. Mehta and J. George
Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 05C76; Secondary 05C15.
Keywords and phrases: Chromatic number, Exact distance-2 chromatic number, Strong product, 2-strong product, clique number, 2-clique number.

Abstract

Cartesian product, tensor product, and strong product are well-known product graphs, which have been studied in detail. Some of these products are generalized by defining 2-Cartesian product, 2-tensor product, and distance product. Additionally, certain basic graph parameters of these products have been studied. Recently, a new graph product, 2-strong product graph has been defined, and the connectedness of this graph has been discussed. In this paper, we studied chromatic number and clique number of 2 -strong product graph.

1 Introduction

The Cartesian product, tensor product, and strong product are well-known product graphs that have been studied in detail [8]. In [2], [3] \& [13], some of these products have been generalized by defining the 2-Cartesian product, 2-tensor product, and distance product. Graph parameters such as connectedness, bipartiteness, independence number, etc., have been discussed for these 2-Cartesian product, 2-tensor product, and distance product graphs ([1], [2], [3], [13]). Recently, in [14], the 2 -strong product graph was introduced and its connectedness was discussed. It is natural to study some more graph parameters of 2 -strong product graph. We will focus on chromatic number and clique number and discuss both these concepts for 2-strong product graph.

The chromatic number of a graph has been generalized in many different ways in the literature ([10],[11]). In fact, for the usual strong product graph, there is no result that gives the chromatic number of strong product graph in terms of the chromatic number of factor graphs. So, it is natural to obtain a lower bound and upper bound for it and that work has been done in [12] and [19]. Further, exact distance- p graph and chromatic number of exact distance- p graph has been well studied in literature ([5], [6], [9], [15], [16], [17]). We used this concept with $p=2$ to obtain a lower bound and upper bound for the chromatic number of the 2 -strong product graph. Also, we give a condition under which the chromatic number of the 2 -strong product graph can be expressed in terms of the chromatic number of exact distance-2 graph of its factor graphs. Furthermore, we determine the exact chromatic number of the 2 -strong product graph for certain non-bipartite graphs.

The clique number of exact distance- p graphs has also been studied in [7] and [15]. Taking this for $p=2$, we derive the clique number of 2 -strong product graph. Utilizing this concept, we also establish a lower bound for the chromatic number of the 2 -strong product graph.

Throughout this work, we symbolize a cycle with n vertices as C_{n}, a complete bipartite graph as $K_{m, n}$, and a path with n vertices as P_{n}. A graph is considered connected if every pair of vertices is connected by a path. The distance $d_{G}\left(x, x^{\prime}\right)$ between two vertices x and x^{\prime} in graph G is defined as the length of the shortest path between them.

We limit our discussion to finite graphs that are simple and connected. For other basic graph definitions, we refer to [4] and [20].

2 Bounds for $\chi\left(\boldsymbol{G} \boxtimes_{2} \boldsymbol{H}\right)$

In [5], $\chi(G, p)$ is defined as the minimum number of colors in a vertex coloring of G such that the colors of two vertices x and x^{\prime} are different, in the case where $d_{G}\left(x, x^{\prime}\right)=p$. Equivalently, in [15], the same concept is defined as the chromatic number of the exact distance- p graph of G, i.e., $\chi\left(G^{[h p]}\right)=\chi(G, p)$.

In the literature, k-distance coloring function f on $V(G)$ is also defined, where $f(x) \neq f\left(x^{\prime}\right)$ if $d\left(x, x^{\prime}\right) \leq k$ for two vertices x and x^{\prime} [18]. In [6], exact distance- $p n$ coloring of G is defined as a map $f: V(G) \rightarrow X$, with $|X|=n$ such that for two vertices $x \& x^{\prime}, f(x) \neq f\left(x^{\prime}\right)$, provided that $d_{G}\left(x, x^{\prime}\right)=p$. The exact distance- p chromatic number, symbolized as $\chi^{[h p]}(G)$, is defined as the smallest of these n, and this concept is discussed in the context of planar graphs.

We consider this concept for $p=2$ and denote the exact distance- 2 chromatic number as $\chi_{2}(G)$, i.e., $\chi_{2}(G)=\chi^{\left[\mathrm{h}^{2}\right]}(G)=\chi(G, 2)$. Note that when $p=1$, this corresponds to the usual chromatic number $\chi(G)$.

In general, there is no direct relation between $\chi(G)$ and $\chi_{2}(G)$.
Example 2.1. (i) Let $G=C_{2 m+1}$. Then $\chi(G)=\chi_{2}(G)=3$.
(ii) For the graph G in Figure 1, $\chi(G)=3$ and $\chi_{2}(G)=2$. Thus $\chi(G)>\chi_{2}(G)$.
(iii) For the graph H in Figure 1, $\chi(H)=3$ and $\chi_{2}(H)=7$. Thus, $\chi(H)<\chi_{2}(H)$.

Figure 1.

Definition 2.2. [14] The 2-strong product graph, $G \boxtimes_{2} H$ of two graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$ is defined as a graph with vertex set $V\left(G \boxtimes_{2} H\right)=V(G) \times V(H)$ and two vertices $(x, y) \&\left(x^{\prime}, y^{\prime}\right)$ are adjacent if $d_{G}\left(x, x^{\prime}\right) \in\{0,2\} \& d_{H}\left(y, y^{\prime}\right) \in\{0,2\}$.

In this section, we will discuss the chromatic number of $G \boxtimes_{2} H$. Note that, in the case of the usual strong product $G \boxtimes H$, the value of $\chi(G \boxtimes H)$ cannot be determined in terms of $\chi(G)$ and $\chi(H)$. Therefore, here as well, we establish upper and lower bounds for $\chi\left(G \boxtimes_{2} H\right)$ using the concepts of $\chi_{2}(G)$ and $\chi_{2}(H)$.

Theorem 2.3. For two graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$, $\chi\left(G \boxtimes_{2} H\right) \leq \chi_{2}(G) \chi_{2}(H)$.

Proof. Let $f_{G}: V(G) \rightarrow X$ be an exact distance-2 $\chi_{2}(G)$-coloring of G and $f_{H}: V(H) \rightarrow Y$ be an exact distance-2 $\chi_{2}(H)$-coloring of H with $|X|=\chi_{2}(G)$ and $|Y|=\chi_{2}(H)$. Define
$f: V\left(G \boxtimes_{2} H\right) \rightarrow X \times Y$ by $f(x, y)=\left(f_{G}(x), f_{H}(y)\right)$. We prove that f is a $\chi_{2}(G) \chi_{2}(H)$ coloring of $G \boxtimes_{2} H$. Let $(x, y)\left(x^{\prime}, y^{\prime}\right) \in E\left(G \boxtimes_{2} H\right)$, i.e., $d_{G \boxtimes_{2} H}\left((x, y)\left(x^{\prime}, y^{\prime}\right)\right)=1$.

First, suppose $d_{G}\left(x, x^{\prime}\right)=2=d_{H}\left(y, y^{\prime}\right)$. Then, as f_{G} and f_{H} are exact distance-2 $\chi_{2}(G)$ and exact distance- $2 \chi_{2}(H)$ coloring of G and H respectively, $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$ and $f_{H}(y) \neq f_{H}\left(y^{\prime}\right)$. Therefore, $\left(f_{G}(x), f_{H}(y)\right) \neq\left(f_{G}\left(x^{\prime}\right), f_{H}\left(y^{\prime}\right)\right)$. If $d_{G}\left(x, x^{\prime}\right)=2$ and $d_{H}\left(y, y^{\prime}\right)=0$, then we get $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$ and so, $f(x, y) \neq f\left(x^{\prime}, y\right)$. Similarly, for $d_{G}\left(x, x^{\prime}\right)=0$ and $d_{H}\left(y, y^{\prime}\right)=2$, we get the result. Thus, $\chi\left(G \boxtimes_{2} H\right) \leq \chi_{2}(G) \chi_{2}(H)$.

Theorem 2.4. Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs with
$N^{2}(x) \neq \emptyset$ for some $x \in V(G)$ and $N^{2}(y) \neq \emptyset$ for some $y \in V(H)$, where
$N^{2}(x)=\left\{x^{\prime} \in V(G): d_{G}\left(x, x^{\prime}\right)=2\right\}$ and $N^{2}(y)=\left\{y^{\prime} \in V(H): d_{H}\left(y, y^{\prime}\right)=2\right\}$. Then, $\chi\left(G \boxtimes_{2} H\right) \geq \max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2$.

Proof. Let us, without loss of generality assume that $\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}=\chi_{2}(G)=p$.
Suppose that $\chi\left(G \boxtimes_{2} H\right) \leq p+1$. Then, there exists a function
$f: V\left(G \boxtimes_{2} H\right) \rightarrow X=\{1,2,3, \ldots, p+1\}$ with $f(x, y) \neq f\left(x^{\prime}, y^{\prime}\right)$ whenever
$(x, y)\left(x^{\prime}, y^{\prime}\right) \in E\left(G \boxtimes_{2} H\right)$. Now, let $y \in V(H)$ be such that $N^{2}(y) \neq \emptyset$. Then, there exists $y^{\prime} \in V(H)$ such that, $d_{H}\left(y, y^{\prime}\right)=2$. Define $f_{G}: V(G) \rightarrow X^{\prime}=\{1,2,3, \ldots, p-1\}$ by

$$
f_{G}(x)= \begin{cases}\min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}, & \text { if } \quad \min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}<p \\ p-1, & \text { if } \quad \min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}=p\end{cases}
$$

Note that $f(x, y)=f\left(x, y^{\prime}\right)=p+1$, cannot be possible as (x, y) and $\left(x, y^{\prime}\right)$ forms an edge in $G \boxtimes_{2} H$ as $d_{H}\left(y, y^{\prime}\right)=2$. Thus, $\min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\} \neq p+1$.

We prove that f_{G} is exact distance- $2\left|f_{G}(V(G))\right|$ coloring of G, i.e., $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$ if $d_{G}\left(x, x^{\prime}\right)=2$. Let $x, x^{\prime} \in V(G)$ with $d_{G}\left(x, x^{\prime}\right)=2$. Then, $(x, y),\left(x, y^{\prime}\right),\left(x^{\prime}, y\right)$, and $\left(x^{\prime}, y^{\prime}\right)$ vertices in $G \boxtimes_{2} H$ forms a complete graph K_{4}. Thus, $f(x, y), f\left(x, y^{\prime}\right), f\left(x^{\prime}, y\right) \& f\left(x^{\prime}, y^{\prime}\right)$ are all distinct. So, $\min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}$ and $\min \left\{f\left(x^{\prime}, y\right), f\left(x^{\prime}, y^{\prime}\right)\right\}$ are different. Hence, if $\min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}<p$ and $\min \left\{f\left(x^{\prime}, y\right), f\left(x^{\prime}, y^{\prime}\right)\right\}<p$, then $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$. Now, suppose $\min \left\{f(x, y), f\left(x, y^{\prime}\right)\right\}=p$. Then $\left\{f(x, y), f\left(x, y^{\prime}\right)\right\}=\{p, p+1\}$ and so the maximum value of $f\left(x^{\prime}, y\right)$ and $f\left(x^{\prime}, y^{\prime}\right)$ is $p-1$. Thus,
$f_{G}\left(x^{\prime}\right)=\min \left\{f\left(x^{\prime}, y\right), f\left(x^{\prime}, y^{\prime}\right)\right\} \leq p-2<p-1=f_{G}(x)$. Therefore, $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$.
Similarly, if $\min \left\{f\left(x^{\prime}, y\right), f\left(x^{\prime}, y^{\prime}\right)\right\}=p$, then we get $f_{G}(x)<f_{G}\left(x^{\prime}\right)$ and so $f_{G}(x) \neq f_{G}\left(x^{\prime}\right)$. Therefore, $\chi_{2}(G) \leq\left|f_{G}(V(G))\right| \leq p-1<p=\chi_{2}(G)$, which is a contradiction. Hence, $\chi\left(G \boxtimes_{2} H\right) \geq p+2=\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2$.

Note that, for usual strong product, similar results are known [19].
Example 2.5. (i) Let G and H both be graph G in Figure 1. Then,
$\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2=4, \chi\left(G \boxtimes_{2} H\right) \leq \chi_{2}(G) \chi_{2}(H)=4$. Thus,
$\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2=\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$.
(ii) Let $G=H=C_{5}$. Then, $G \boxtimes_{2} H=G \boxtimes H$ and $\chi(G \boxtimes H)=5$ [19]. So, $\chi\left(G \boxtimes_{2} H\right)=5$ and $\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2=5$. Also $\chi_{2}(G) \chi_{2}(H)=9$. Thus, $\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2=\chi\left(G \boxtimes_{2} H\right)<\chi_{2}(G) \chi_{2}(H)$.
(iii) Let G and H both be graph H in Figure 1. Then $\chi_{2}(G)=\chi_{2}(H)=7$ and hence $\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2=9$ and $\chi_{2}(G) \chi_{2}(H)=49$. Note that, $K_{49}=K_{7} \boxtimes K_{7} \subset G \boxtimes_{2} H$. Thus $\chi\left(G \boxtimes_{2} H\right) \geq 49$ and so, $\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$. Therefore, $\max \left\{\chi_{2}(G), \chi_{2}(H)\right\}+2<\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$.

$3 \boldsymbol{\omega}\left(\boldsymbol{G} \boxtimes_{2} \boldsymbol{H}\right) \& \chi\left(\boldsymbol{G} \boxtimes_{2} \boldsymbol{H}\right)$

We recall that for a graph $G=(V(G), E(G)), W \subset V(G)$ is defined as a clique if $W=V(H)$, where H is a complete subgraph of G. The clique number, denoted as $\omega(G)$, represents the number of vertices in the largest clique within graph G [4]. Similarly, a 2-clique is defined as a subset W of $V(G)$ such that $d_{G}\left(x, x^{\prime}\right)=2$ for each distinct x, x^{\prime} in W. The 2-clique number is defined as the number of vertices in the largest 2-clique. This concept is also defined in [7] as the clique number $\omega\left(G^{[\text {[4] }]}\right)$ of the exact distance-2 graph. We denote this quantity as $\omega_{2}(G)$.

In this section, we determine the value of $\omega\left(G \boxtimes_{2} H\right)$. Additionally, we present a condition under which equality is achieved in Theorem 2.3.

Example 3.1. (i) For $G=P_{n},(n \geq 3)$ or $C_{n},(n \geq 4, n \neq 6), \omega_{2}(G)=2=\omega(G)$.
(ii) For $G=K_{m, n},(m, n>2), \omega_{2}(G)=\max \{m, n\}>2=\omega(G)$.
(iii) For G shown in Figure 2, $\omega_{2}(G)=2<4=\omega(G)$.

Figure 2.

Remark 3.2. For two graphs G and H, if $N^{2}(x) \neq \emptyset$ and $N^{2}(y) \neq \emptyset$ for some $x \in V(G)$ and $y \in V(H)$, then $\omega\left(G \boxtimes_{2} H\right) \geq 4$.

Now, we obtain clique number of $G \boxtimes_{2} H$ in terms of $\omega_{2}(G)$ and $\omega_{2}(H)$.
Proposition 3.3. For two graphs G and $H, \omega\left(G \boxtimes_{2} H\right)=\omega_{2}(G) \omega_{2}(H)$.
Proof. Let W_{1} and W_{2} be two 2-cliques in G and H respectively. Then $W_{1} \times W_{2}$ is a clique in $G \boxtimes_{2} H$. Thus, $\omega\left(G \boxtimes_{2} H\right) \geq \omega_{2}(G) \omega_{2}(H)$. Now let Q be a clique in $G \boxtimes_{2} H$. If
$P_{G}(Q)=\{x:(x, y) \in Q\}$ and $P_{H}(Q)=\{y:(x, y) \in Q\}$, then $P_{G}(Q)$ is a 2-clique in G, because if $x, x^{\prime},\left(x \neq x^{\prime}\right)$ are in $P_{G}(Q)$, then $(x, y),\left(x^{\prime}, y^{\prime}\right) \in Q$, which is a clique in $G \boxtimes_{2} H$ and so $d_{G}\left(x, x^{\prime}\right)=2$. Similarly, $P_{H}(Q)$ is a 2-clique in H. Consequently, $\omega\left(G \boxtimes_{2} H\right) \leq \omega_{2}(G) \omega_{2}(H)$.
Corollary 3.4. Maximal cliques in $G \boxtimes_{2} H$ are of the form $W=W_{G} \times W_{H}$, where W_{G} is maximal 2-clique in G and W_{H} is maximal 2-clique in H.
Proof. Using Proposition 3.3, we get the result.
Corollary 3.5. Let G and H be two graphs. If $\chi_{2}(G)=\omega_{2}(G) \& \chi_{2}(H)=\omega_{2}(H)$, then $\omega\left(G \boxtimes_{2} H\right)=\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$.

Proof. As $\omega\left(G \boxtimes_{2} H\right) \leq \chi\left(G \boxtimes_{2} H\right)$, from Theorem 3.3 \& Theorem 2.3, it follows that, $\omega\left(G \boxtimes_{2} H\right)=\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$.

Using 2-clique number of graphs, we obtain an additional lower bound for $\chi\left(G \boxtimes_{2} H\right)$.
Theorem 3.6. Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs with $N^{2}(x) \neq \emptyset$ for some $x \in V(G)$ and $N^{2}(y) \neq \emptyset$ for some $y \in V(H)$. Then,

$$
\chi\left(G \boxtimes_{2} H\right) \geq \max \left\{\chi_{2}(G)+2 \omega_{2}(H)-2, \chi_{2}(H)+2 \omega_{2}(G)-2\right\}
$$

Proof. Let $W=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a 2-clique in H with $n=\omega_{2}(H)$. Note that, $\omega_{2}(G) \geq 2$ and hence, by Proposition 3.3, $\chi\left(G \boxtimes_{2} H\right) \geq 2 n$. Let $\chi\left(G \boxtimes_{2} H\right)=2 n+\epsilon$ and let $f: V\left(G \boxtimes_{2} H\right) \rightarrow\{1,2, \ldots, 2 n+\epsilon\}$ be a proper coloring of $G \boxtimes_{2} H$.

For $x \in V(G)$, let $m_{x}=\min \left\{f\left(x, y_{i}\right): 1 \leq i \leq n\right\}$. Then, $m_{x} \leq n+\epsilon+1$. For, if $m_{x} \geq n+\epsilon+2$, then $f\left(x, y_{i}\right) \geq n+\epsilon+2$, for every i. But, as $\left(x, y_{1}\right),\left(x, y_{2}\right), \ldots,\left(x, y_{n}\right)$ forms a clique in $G \boxtimes_{2} H, f\left(x, y_{i}\right)$ are all distinct. Thus, in order to color $\left(x, y_{1}\right), \ldots,\left(x, y_{n}\right)$, we need n colors larger than $n+\epsilon+1$. But, there are only $n-1$ colors, $n+\epsilon+2, n+\epsilon+3, \ldots, n+\epsilon+n$ to color n vertices, which is not possible. Thus $m_{x} \leq n+\epsilon+1$.
Define $g: V(G) \rightarrow\{1,2, \ldots, \epsilon+2\}$ by $g(x)=\left\{\begin{array}{lll}m_{x}, & \text { if } \quad m_{x} \leq \epsilon+1 \\ \epsilon+2, & \text { if } \quad \epsilon+2 \leq m_{x} \leq n+\epsilon+1 .\end{array}\right.$
Claim: g is exact 2-distance coloring, i.e., if $x, x^{\prime} \in V(G)$ with $d_{G}\left(x, x^{\prime}\right)=2$, then $g(x) \neq g\left(x^{\prime}\right)$.

Let $x, x^{\prime} \in V(G)$ with $d_{G}\left(x, x^{\prime}\right)=2$. Note that, $\left\{\left(x, y_{i}\right),\left(x^{\prime}, y_{i}\right): 1 \leq i \leq n\right\}$ forms a clique in $G \boxtimes_{2} H$ and so all $f\left(x, y_{i}\right)$ and $f\left(x^{\prime}, y_{i}\right)$ are distinct. Thus, $g(x) \neq g\left(x^{\prime}\right)$, if $m_{x} \leq \epsilon+1$ or $m_{x^{\prime}} \leq \epsilon+1$. Suppose, $m_{x}, m_{x^{\prime}} \geq \epsilon+2$, then $f\left(x, y_{i}\right) \geq \epsilon+2$ and $f\left(x^{\prime}, y_{i}\right) \geq \epsilon+2$, for every i.

Therefore, colors of $2 n$ vertices $\left(x, y_{1}\right), \ldots,\left(x, y_{n}\right),\left(x^{\prime}, y_{1}\right), \ldots\left(x^{\prime}, y_{n}\right)$ are larger than $\epsilon+1$. But, this is not possible as these $2 n$ vertices forms clique and there are only $2 n-1$ colors $\epsilon+2, \epsilon+3, \ldots, \epsilon+2 n$ larger than $\epsilon+1$. Thus, $g(x) \neq g\left(x^{\prime}\right)$.

Therefore, $\chi_{2}(G) \leq \epsilon+2=\chi\left(G \boxtimes_{2} H\right)-2 n+2=\chi\left(G \boxtimes_{2} H\right)-2 \omega_{2}(H)+2$. Therefore, $\chi\left(G \boxtimes_{2} H\right) \geq \chi_{2}(G)+2 \omega_{2}(H)-2$.
Remark 3.7. Since $\omega_{2}(G) \geq 2$ and $\omega_{2}(H) \geq 2$, we have $\chi_{2}(G)+2 \omega_{2}(H)-2 \geq \chi_{2}(G)+2$. Consequently, Theorem 3.6 provides a sharper lower bound for $\chi\left(G \boxtimes_{2} H\right)$ compared to the bound in Theorem 2.4.

$4 \chi\left(G \boxtimes_{2} \boldsymbol{H}\right)$ for some non-bipartite graphs

In this section, we determine the chromatic number of the 2 -strong product graph for certain non-bipartite graphs, such as the wheel graph W_{n}, the Helm graph H_{n}, and the closed Helm graph $C H_{n}$.

Definition 4.1. [14]

(i) A wheel graph W_{n} is a graph obtained from star graph $K_{1, n}$ by joining all pendent edges by a cycle.
(ii) The Helm graph H_{n} is a graph with $2 n+1$ vertices, which is obtained from W_{n} by attaching one pendant edge each to every vertex on the cycle of W_{n}.
(iii) Closed Helm graph $C H_{n}$ is obtained from H_{n} by joining all pendent edges in it by a cycle.

Note that for graph $G=W_{m}, H_{m}$ or $C H_{m}$, we get that,

$$
\chi_{2}(G)=\left\{\begin{array}{ll}
n+1, & \text { if } \quad m=2 n+1(n \geq 4) \\
n, & \text { if } m=2 n(n \geq 5),
\end{array} \& \quad \omega_{2}(G)=\left\{\begin{array}{lll}
n, & \text { if } \quad m=2 n+1(n \geq 3) \\
n, & \text { if } \quad m=2 n(n \geq 4) .
\end{array}\right.\right.
$$

If G and H are W_{m}, H_{m} or $C H_{m}$ with m-even, then using Corollary 3.5 , we obtain $\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$. We will now establish that this equality holds for odd values of m, i.e., $\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$ for odd m as well.

Theorem 4.2. $\chi\left(W_{2 m+1} \boxtimes_{2} W_{2 n}\right)=(m+1) n=\chi_{2}\left(W_{2 m+1}\right) \chi_{2}\left(W_{2 n}\right), m, n \in \mathbb{N}$, $m \geq 3$ \& $n \geq 4$.

Proof. By Theorem 2.3, $\chi\left(W_{2 m+1} \boxtimes_{2} W_{2 n}\right) \leq(m+1) n$. Now, we fix the notations as follows: Let $x_{1}, x_{2}, \ldots, x_{2 m}$ be the vertices on the cycle of $G=W_{2 m}$ and let $\left\{x_{0}\right\}$ be the center vertex. Similarly, let $y_{1}, y_{2}, \ldots, y_{2 n}$ be vertices on the cycle of $H=W_{2 n}$ and $\left\{y_{0}\right\}$ be the center vertex. Let,

$$
\begin{aligned}
& X_{1}=\left\{\left(x_{i}, y_{j}\right): i \in\{1,3,5, \ldots, 2 m-1\}, j \in\{1,3,5, \ldots, 2 n-1\}\right\}, \\
& X_{2}=\left\{\left(x_{i}, y_{j}\right): i \in\{1,3,5, \ldots, 2 m-1\}, j \in\{2,4,6, \ldots, 2 n\}\right\}, \\
& X_{3}=\left\{\left(x_{i}, y_{j}\right): i \in\{2,4,6, \ldots, 2 m\}, j \in\{1,3,5, \ldots, 2 n-1\}\right\}, \\
& X_{4}=\left\{\left(x_{i}, y_{j}\right): i \in\{2,4,6, \ldots, 2 m\}, j \in\{2,4,6, \ldots, 2 n\}\right\} .
\end{aligned}
$$

Let $\left(x_{i}, y_{j}\right)$ and $\left(x_{k}, y_{l}\right)$ be two distinct vertices of X_{1}. Then $d_{G}\left(x_{i}, x_{k}\right)=0$ or 2 and $d_{H}\left(y_{j}, y_{l}\right)=0$ or 2 . Thus $\left(x_{i}, y_{j}\right)\left(x_{k}, y_{l}\right) \in E\left(G \boxtimes_{2} H\right)$. Thus X_{1} is a clique of size $m n$ in $G \boxtimes_{2} H$. Similarly, X_{2}, X_{3}, and X_{4} each forms a clique of size $m n$. Let,

$$
\begin{aligned}
& G_{1}=\left\{\left(x_{2 m+1}, y_{j}\right): j \in\{1,3,5, \ldots, 2 n-1\}\right\}, \\
& G_{2}=\left\{\left(x_{2 m+1}, y_{j}\right): j \in\{2,4,6, \ldots, 2 n\}\right\} .
\end{aligned}
$$

We show that, a vertex in G_{1} or G_{2} cannot be given any of $m n$ colors of X_{1}.
Observe that, $\left(x_{2 m+1}, y_{1}\right) \in G_{1}$ is adjacent to all vertices of clique X_{1} except vertices in $A=\left\{\left(x_{1}, y_{j}\right): j \in\{1,3,5, \ldots, 2 n-1\}\right\}$ and it is adjacent to all vertices of clique X_{3} except vertices in $B=\left\{\left(x_{2 m}, y_{j}\right): j \in\{1,3,5, \ldots, 2 n-1\}\right\}$. Also, $|A|=|B|$ and $A \cup B$ forms a clique in $G \boxtimes_{2} H$. Therefore, $\left(x_{2 m+1}, y_{1}\right)$ need a new color apart from $m n$ colors of X_{1}.

But as G_{1} forms a clique, all vertices of G_{1} needs distinct n colors. Thus, atleast $m n+n$ different colors are required for proper coloring of $G \boxtimes_{2} H$. Thus $\chi\left(G \boxtimes_{2} H\right) \geq n(m+1)$.

Theorem 4.3. $\chi\left(W_{2 m+1} \boxtimes_{2} W_{2 n+1}\right)=(m+1)(n+1)=\chi_{2}\left(W_{2 m+1}\right) \chi_{2}\left(W_{2 n+1}\right), m, n \in \mathbb{N} \&$ $m, n \geq 3$.

Proof. Let $G=W_{2 m+1}$ and $H=W_{2 n+1}$. We continue the notations of Theorem 4.2. Let

$$
\begin{aligned}
& H_{1}=\left\{\left(x_{i}, y_{2 n+1}\right): i \in\{1,3,5, \ldots, 2 m-1\}\right\} \\
& H_{2}=\left\{\left(x_{i}, y_{2 n+1}\right): i \in\{2,4,6, \ldots, 2 m\}\right\}
\end{aligned}
$$

and let $p=\left(x_{2 m+1}, y_{2 n+1}\right)$. Then, H_{1} and H_{2} forms clique. We note that, as in Theorem 4.2, vertices in G_{1} and G_{2} needs color other than that of X_{1}. By using similar arguments, H_{1} and H_{2} needs color other than X_{1}.

First we prove that, the set $G_{1} \cup G_{2} \cup H_{1} \cup H_{2}$ needs at least $m+n$ new colors.
As G_{1} and G_{2} forms a clique of size n, at least n colors are required for coloring $G_{1} \cup G_{2}$. Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are different colors of $\left(x_{2 m+1}, y_{1}\right),\left(x_{2 m+1}, y_{3}\right), \ldots,\left(x_{2 m+1}, y_{2 n-1}\right)$ respectively. Then as $\left(x_{2 m+1}, y_{1}\right)$ is adjacent to all vertices of G_{2}, except $\left(x_{2 m+1}, y_{2}\right)$, a color can be given to vertex $\left(x_{2 m+1}, y_{2}\right)$ only. Similarly a_{n} color can be given to vertex $\left(x_{2 m+1}, y_{2 n}\right)$ only.

Again, suppose $b_{1}, b_{2}, \ldots, b_{m}$ are the different colors of $\left(x_{1}, y_{2 n+1}\right),\left(x_{3}, y_{2 n+1}\right), \ldots$,
$\left(x_{2 m-1}, y_{2 n+1}\right)$ respectively. Then, by arguments similar to above, $\left(x_{2}, y_{2 n+1}\right)$ can be given color b_{1} only and $\left(x_{2 m}, y_{2 n+1}\right)$ can be given color b_{m} only. But then note that $a_{2}, a_{3}, \ldots, a_{n}, b_{2}, b_{3}, \ldots, b_{m}$ must be distinct as $\left(G_{1} \cup H_{1}\right) \backslash\left\{\left(x_{1}, y_{2 n+1}\right)\right\}$ form a clique. Similarly, the colors $a_{1}, a_{2}, \ldots, a_{n-1}$, $b_{1}, b_{2}, \ldots, b_{m-1}$ must be distinct. Finally, we must have $a_{1} \neq b_{m}$ as a_{1} color is given to $\left(x_{2 m+1}, y_{1}\right) \&\left(x_{2 m+1}, y_{2}\right)$ and b_{m} color is given to $\left(x_{2 m-1}, y_{2 n+1}\right)$ and $\left(x_{2 m}, y_{2 n+1}\right)$, but $\left(x_{2 m+1}, y_{1}\right) \&\left(x_{2 m}, y_{2 n+1}\right)$ are adjacent. Similarly, $b_{1} \neq a_{n}$.

Thus all colors $a_{1}, a_{2}, \ldots, a_{n}, b_{1} b_{2} \ldots, b_{m}$ are distinct. Therefore, $\chi\left(G \boxtimes_{2} H\right) \geq m n+(m+n)$.

Next, we show that, the vertex $p=\left(x_{2 m+1}, y_{2 n+1}\right)$ requires color other than $m n$ colors of X_{1}.
Note that, $X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ can be colored using $m n$ colors. Suppose,
$\{p\} \cup X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ can be colored using $m n$ colors. Now, the size of the set $\{p\} \cup X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ is $4 m n+1$. So, there must be an independent set say $U \subset\{p\} \cup X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ of size atleast 5, i.e., $|U| \geq 5$.

Since each of $X_{i} \quad(1 \leq i \leq 4)$ forms a clique, $p \in U$ and $|U|=5$. Now as p is adjacent to all vertices in $X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ other than
$\left\{\left(x_{i}, y_{j}\right): i \in\{1,2 m\}, 1 \leq j \leq 2 n\right\} \cup\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq m, j \in\{1,2 n\}\right\}$, we have $U \subset\left\{\left(x_{i}, y_{j}\right): i \in\{1,2 m\}, 1 \leq j \leq 2 n\right\} \cup\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq 2 m, j \in\{1,2 n\}\right\} \cup\{p\}$. Note that $|U \backslash\{p\}|=4$. We fix the following notations:

$$
\begin{aligned}
& J_{1}=\left\{\left(x_{1}, y_{j}\right): j \in\{1,3,5, \ldots, 2 n-1\}\right\} \cup\left\{\left(x_{i}, y_{1}\right): i \in\{1,3,5, \ldots, 2 m-1\}\right\} \\
& J_{2}=\left\{\left(x_{1}, y_{j}\right): j \in\{2,4,6, \ldots, 2 n\}\right\} \cup\left\{\left(x_{i}, y_{2 n}\right): i \in\{1,3,5, \ldots, 2 m-1\}\right\} \\
& J_{3}=\left\{\left(x_{2 n}, y_{j}\right): j \in\{1,3,5, \ldots, 2 n-1\}\right\} \cup\left\{\left(x_{i}, y_{1}\right): i \in\{2,4,6, \ldots, 2 m\}\right\}, \\
& J_{4}=\left\{\left(x_{2 m}, y_{j}\right): j \in\{2,4,6, \ldots, 2 n\}\right\} \cup\left\{\left(x_{i}, y_{2 n}\right): i \in\{2,4,6, \ldots, 2 m\}\right\} .
\end{aligned}
$$

Then, each of J_{i} forms a clique and
$\left\{\left(x_{i}, y_{j}\right): i \in\{1,2 m\}, 1 \leq j \leq 2 n\right\} \cup\left\{\left(x_{i}, y_{j}\right): 1 \leq i \leq 2 m, j \in\{1,2 n\}\right\}=J_{1} \cup J_{2} \cup J_{3} \cup J_{4}$. Also, $U \backslash\{p\}$ is an independent subset of $J_{1} \cup J_{2} \cup J_{3} \cup J_{4}$ of size 4 .

Now, we show that $J_{1} \cup J_{2} \cup J_{3} \cup J_{4}$ cannot contain an independent set of size 4.
Suppose, vertex of the form $\left(x_{1}, y_{2 j}\right)$ from J_{2} is in $U \backslash\{p\}$. Then, $\left(x_{2}, y_{2 n}\right)$ is the only possible vertex from J_{4} which can be in $U \backslash\{p\}$. Also from $J_{3},\left(x_{2 m}, y_{2 n-1}\right)$ is the only vertex which is not adjacent to $\left(x_{2}, y_{2 n}\right)$ and finally $\left(x_{2 m+1}, y_{1}\right)$ is the only vertex from J_{1} which is not adjacent to $\left(x_{2 m}, y_{2 n-1}\right)$. Thus, if $\left(x_{1}, y_{2 j}\right)$ is in $U \backslash\{p\}$, then $U \backslash\{p\}$ is
$\left\{\left(x_{1}, y_{2 j}\right),\left(x_{2}, y_{2 n}\right),\left(x_{2 m}, y_{2 n-1}\right),\left(x_{2 m+1}, y_{1}\right)\right\}$, which is not possible as $\left(x_{2}, y_{2 n}\right)$ is adjacent to $\left(x_{2 m+1}, y_{1}\right)$.

Similarly, vertex of the form $\left(x_{2 i-1}, y_{2 n}\right)$ is in $U \backslash\{p\}$ is also not possible. Thus, $J_{1} \cup J_{2} \cup J_{3} \cup J_{4}$ cannot contain independent set of size 4 . Thus, there cannot be an independent
set of size at least 5 in $\{p\} \cup X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$. Therefore, p cannot be given colors of $X_{i}(i \leq i \leq 4)$.

Finally, note that p is adjacent to all vertices in $G_{1} \cup G_{2}$ except, $\left\{\left(x_{2 m+1}, y_{1}\right),\left(x_{2 m+1}, y_{2 n}\right)\right\}$. Thus, p cannot be colored using any $a_{i}(\leq i \leq n)$. Similarly, p cannot be colored using $b_{i}(1 \leq i \leq m)$, i.e., p requires color other than $m n+(m+n)$. Thus p requires a new color.

Thus, $\chi\left(G \boxtimes_{2} H\right) \geq m n+m+n+1=(m+1)(n+1)$. Thus we have, $\chi\left(G \boxtimes_{2} H\right)=(m+1)(n+1)$.

Next, we obtain $\chi\left(G \boxtimes_{2} H\right)$ for H_{n} and $C H_{n}$.
Corollary 4.4. (i) $\chi\left(H_{2 m+1} \boxtimes_{2} H_{2 n}\right)=(m+1) n=\chi_{2}\left(H_{2 m+1}\right) \chi_{2}\left(H_{2 n}\right), m, n \in \mathbb{N}$, $m \geq 3 \& n \geq 4$.
(ii) $\chi\left(H_{2 m+1} \boxtimes_{2} H_{2 n+1}\right)=(m+1)(n+1)=\chi_{2}\left(H_{2 m+1}\right) \chi_{2}\left(H_{2 n+1}\right), m, n \in \mathbb{N} \& m, n \geq 3$.

Proof. (i) By Theorem 2.3, $\chi\left(H_{2 m+1} \boxtimes_{2} H_{2 n}\right) \leq(m+1) n$. But, as $W_{2 m+1} \boxtimes_{2} W_{2 n}$ is an induced subgraph of $H_{2 m+1} \boxtimes_{2} H_{2 n}, \chi\left(H_{2 m+1} \boxtimes_{2} H_{2 n}\right) \geq \chi\left(W_{2 m+1} \boxtimes_{2} W_{2 n}\right) \geq(m+1) n$. Therefore, $\chi\left(H_{2 m+1} \boxtimes_{2} H_{2 n}\right)=(m+1) n=\chi_{2}\left(H_{2 m+1}\right) \chi_{2}\left(H_{2 n}\right)$. By similar arguments, (ii) follows.

Corollary 4.5. $\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$, if $G=C H_{m}$ and $H=C H_{n}$, for every $m, n \in \mathbb{N}$, \& $m, n \geq 9$.

Proof. By Theorem 2.3, $\chi\left(G \boxtimes_{2} H\right) \leq \chi_{2}(G) \chi_{2}(H)$. Now, since W_{m} is induced subgraph of $C H_{m}, \chi\left(G \boxtimes_{2} H\right) \geq \chi\left(W_{m} \boxtimes_{2} W_{n}\right)=\chi_{2}\left(W_{m}\right) \chi_{2}\left(W_{n}\right)=\chi_{2}(G) \chi_{2}(H)$ for $m, n \geq 7$ and therefore $\chi\left(G \boxtimes_{2} H\right)=\chi_{2}(G) \chi_{2}(H)$.

5 Conclusion remarks

We studied the chromatic number of the 2-strong product graph. We obtained both the upper bound and the lower bound for the chromatic number of 2-strong product graph in terms of the exact distance-2 chromatic number of the graphs G and H. We attempted to characterize the graphs for which we have the exact results. In this direction, we obtained a sufficient condition for equality in the upper bound. Furthermore, we proved that for non-bipartite graphs such as the wheel graph, helm graph, and closed helm graph, equality is achieved in Theorem 2.3. It would also be interesting to discover a sharper lower bound for the chromatic number of the 2 -strong product graph.

Also, we obtained the clique number of the 2 -strong product graph in terms of the 2 -clique number of the factor graphs. Moreover, we derived a lower bound for the chromatic number of 2 -strong product graph in terms of 2-clique number and exact distance-2 chromatic number of graphs G and H.

References

[1] U. P. Acharya, A study of new generalized product of graphs, Thesis, Sardar Patel University, India (2016).
[2] U. P. Acharya and H. S. Mehta, 2-Cartesian product of special graphs, Int. J. of Math. and Soft Computing, 4(1), 139-144 (2014).
[3] U. P. Acharya and H. S. Mehta, 2-Tensor product of graphs, Int. J. of Math. and Sci. Computing, 4(1), 21-24 (2014).
[4] R. Balakrishnan and K. Ranganathan, Textbook of Graph Theory, Springer, New York, (2000).
[5] N. Bousquet, L. Esperet, A. Harutyunyan and R. Verclos, Exact distance coloring in trees, Combin. Probab. Comput., 28, 177-186 (2019).
[6] F. Foucaud, H. Hocquard, S. Mishra, N. Narayanan, R. Naserasr, E. Sopena and P. Valicov, Exact square coloring of subcubic planar graphs, Discrete Appl. Math., 293(1), 74-89 (2021).
[7] F. Foucaud, S. Mishra, N. Narayanan, R. Naserasr and P. Valicov, Cliques in exact distance powers of graphs of given maximum degree, Procedia Comput. Sci., 195(1), 427-436 (2021).
[8] R. Hammack, W. Imrich, and S. Klavzar, Handbook of Product Graphs, CRC Press, Taylor \& Francis Group, New York, (2011).
[9] J. V. Heuvel, H. A. Kierstead and D. A. Quiroz, Chromatic numbers of exact distance graphs, J. of Combin. Theory, Series B, 134, 143-163 (2019).
[10] J. V. Heuvel and S. McGuinnes, Colouring the square of planar graph, J. of Graph Theory, 42, 110-124 (2003).
[11] J. L. Kim and S. J. Kim, The 2-distance coloring of the Cartesian product of cycles using optimal Lee codes, Discrete Appl. Math., 159, 2222-2228 (2011).
[12] S. Klavzar and U. Milutinovic, Strong product of Kneser graphs, Discrete Math., 133, 297-300 (1994).
[13] H. S. Mehta and U. P. Acharya, Distance product of graphs, Applications and Applied Mathematics: An International Journal (AAM), 13(1), 190-198 (2018).
[14] H. S. Mehta and J. George, 2-Strong product and connectedness, South East Asian J. of Math. and Math. Sci., 20, 235-246 (2022).
[15] J. Nesetril and P. O. Mendez, Sparsity- Graphs Structures and Algorithm, Springer-verlag, Berlin, Heidelberg, (2012).
[16] Priyamvada and B. S. Panda, Exact square coloring of graphs resulting from some graph operations and products, AKCE Int. J. Graphs Comb, (2022), https://doi.org/10.1080/09728600.2022.2094736.
[17] D. A. Quiroz, Colouring exact distance graphs of chordal graphs, Discrete Math., 343(5), 111769 (2020).
[18] Z. Shao, A. Vesel and J. Xu, The k-distance independence number and 2-distance chromatic number of Cartesian product of cycles, The Bull. of the Malay. Math. Soc. Ser. 2, 41, 1377-1391 (2018).
[19] K. Vesztergombi, Some remarks on the chromatic number of the strong product of graphs, Acta Cybern., 4, 207-212 (1980).
[20] D. B. West, Introduction to Graph Theory, Prentice Hall, New Jersey, (2001).

Author information

H. S. Mehta, Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, India.

E-mail: hs_mehta@spuvvn.edu
J. George, Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, India.

E-mail: johnsongeorge157@gmail.com

Received: 2022-09-25
Accepted: 2023-08-31

