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Abstract Cartesian product, tensor product, and strong product are well-known product
graphs, which have been studied in detail. Some of these products are generalized by defining
2-Cartesian product, 2-tensor product, and distance product. Additionally, certain basic graph
parameters of these products have been studied. Recently, a new graph product, 2-strong product
graph has been defined, and the connectedness of this graph has been discussed. In this paper,
we studied chromatic number and clique number of 2-strong product graph.

1 Introduction

The Cartesian product, tensor product, and strong product are well-known product graphs that
have been studied in detail [8]. In [2], [3] & [13], some of these products have been generalized
by defining the 2-Cartesian product, 2-tensor product, and distance product. Graph parameters
such as connectedness, bipartiteness, independence number, etc., have been discussed for these
2-Cartesian product, 2-tensor product, and distance product graphs ([1], [2], [3], [13]). Recently,
in [14], the 2-strong product graph was introduced and its connectedness was discussed. It
is natural to study some more graph parameters of 2-strong product graph. We will focus on
chromatic number and clique number and discuss both these concepts for 2-strong product graph.

The chromatic number of a graph has been generalized in many different ways in the literature
([10],[11]). In fact, for the usual strong product graph, there is no result that gives the chromatic
number of strong product graph in terms of the chromatic number of factor graphs. So, it is
natural to obtain a lower bound and upper bound for it and that work has been done in [12] and
[19]. Further, exact distance-p graph and chromatic number of exact distance-p graph has been
well studied in literature ([5], [6], [9], [15], [16], [17]). We used this concept with p = 2 to
obtain a lower bound and upper bound for the chromatic number of the 2-strong product graph.
Also, we give a condition under which the chromatic number of the 2-strong product graph can
be expressed in terms of the chromatic number of exact distance-2 graph of its factor graphs.
Furthermore, we determine the exact chromatic number of the 2-strong product graph for certain
non-bipartite graphs.

The clique number of exact distance-p graphs has also been studied in [7] and [15]. Taking
this for p = 2, we derive the clique number of 2-strong product graph. Utilizing this concept, we
also establish a lower bound for the chromatic number of the 2-strong product graph.

Throughout this work, we symbolize a cycle with n vertices as Cn, a complete bipartite
graph as Km,n, and a path with n vertices as Pn. A graph is considered connected if every pair
of vertices is connected by a path. The distance dG(x, x′) between two vertices x and x′ in graph
G is defined as the length of the shortest path between them.

We limit our discussion to finite graphs that are simple and connected. For other basic graph
definitions, we refer to [4] and [20].
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2 Bounds for χ(G ⊠2 H)

In [5], χ(G, p) is defined as the minimum number of colors in a vertex coloring of G such that
the colors of two vertices x and x′ are different, in the case where dG(x, x′) = p. Equivalently,
in [15], the same concept is defined as the chromatic number of the exact distance-p graph of G,
i.e., χ(G[♮p]) = χ(G, p).

In the literature, k-distance coloring function f on V (G) is also defined, where f(x) ̸= f(x′)
if d(x, x′) ≤ k for two vertices x and x′ [18]. In [6], exact distance-p n coloring of G is defined
as a map f : V (G) → X , with |X| = n such that for two vertices x & x′, f(x) ̸= f(x′), provided
that dG(x, x′) = p. The exact distance-p chromatic number, symbolized as χ[♮p](G), is defined
as the smallest of these n, and this concept is discussed in the context of planar graphs.

We consider this concept for p = 2 and denote the exact distance-2 chromatic number as
χ2(G), i.e., χ2(G) = χ[♮2](G) = χ(G, 2). Note that when p = 1, this corresponds to the usual
chromatic number χ(G).

In general, there is no direct relation between χ(G) and χ2(G).

Example 2.1. (i) Let G = C2m+1. Then χ(G) = χ2(G) = 3.

(ii) For the graph G in Figure 1, χ(G) = 3 and χ2(G) = 2. Thus χ(G) > χ2(G).

(iii) For the graph H in Figure 1, χ(H) = 3 and χ2(H) = 7. Thus, χ(H) < χ2(H).

G H

Figure 1.

Definition 2.2. [14] The 2-strong product graph, G⊠2 H of two graphs G = (V (G), E(G)) and
H = (V (H), E(H)) is defined as a graph with vertex set V (G⊠2 H) = V (G)× V (H) and two
vertices (x, y) & (x′, y′) are adjacent if dG(x, x′) ∈ {0, 2} & dH(y, y′) ∈ {0, 2}.

In this section, we will discuss the chromatic number of G ⊠2 H . Note that, in the case of
the usual strong product G⊠H , the value of χ(G⊠H) cannot be determined in terms of χ(G)
and χ(H). Therefore, here as well, we establish upper and lower bounds for χ(G ⊠2 H) using
the concepts of χ2(G) and χ2(H).

Theorem 2.3. For two graphs G = (V (G), E(G)) and H = (V (H), E(H)),
χ(G⊠2 H) ≤ χ2(G)χ2(H).

Proof. Let fG : V (G) → X be an exact distance-2 χ2(G)-coloring of G and fH : V (H) → Y
be an exact distance-2 χ2(H)-coloring of H with |X| = χ2(G) and |Y | = χ2(H). Define
f : V (G ⊠2 H) → X × Y by f(x, y) = (fG(x), fH(y)). We prove that f is a χ2(G)χ2(H)-
coloring of G⊠2 H . Let (x, y)(x′, y′) ∈ E(G⊠2 H), i.e., dG⊠2H((x, y)(x′, y′)) = 1.

First, suppose dG(x, x′) = 2 = dH(y, y′). Then, as fG and fH are exact distance-2 χ2(G) and
exact distance-2 χ2(H) coloring of G and H respectively, fG(x) ̸= fG(x′) and fH(y) ̸= fH(y′).
Therefore, (fG(x), fH(y)) ̸= (fG(x′), fH(y′)). If dG(x, x′) = 2 and dH(y, y′) = 0, then we get
fG(x) ̸= fG(x′) and so, f(x, y) ̸= f(x′, y). Similarly, for dG(x, x′) = 0 and dH(y, y′) = 2, we
get the result. Thus, χ(G⊠2 H) ≤ χ2(G)χ2(H).
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Theorem 2.4. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs with
N2(x) ̸= ∅ for some x ∈ V (G) and N2(y) ̸= ∅ for some y ∈ V (H), where
N2(x) = {x′ ∈ V (G) : dG(x, x′) = 2} and N2(y) = {y′ ∈ V (H) : dH(y, y′) = 2}. Then,
χ(G⊠2 H) ≥ max{χ2(G), χ2(H)}+ 2.

Proof. Let us, without loss of generality assume that max{χ2(G), χ2(H)} = χ2(G) = p.
Suppose that χ(G⊠2 H) ≤ p+ 1. Then, there exists a function
f : V (G⊠2 H) → X = {1, 2, 3, . . . , p+ 1} with f(x, y) ̸= f(x′, y′) whenever
(x, y)(x′, y′) ∈ E(G ⊠2 H). Now, let y ∈ V (H) be such that N2(y) ̸= ∅. Then, there exists
y′ ∈ V (H) such that, dH(y, y′) = 2. Define fG : V (G) → X ′ = {1, 2, 3, . . . , p− 1} by

fG(x) =

{
min{f(x, y), f(x, y′)}, if min{f(x, y), f(x, y′)} < p

p− 1, if min{f(x, y), f(x, y′)} = p.

Note that f(x, y) = f(x, y′) = p + 1, cannot be possible as (x, y) and (x, y′) forms an edge in
G⊠2 H as dH(y, y′) = 2. Thus, min{f(x, y), f(x, y′)} ≠ p+ 1.

We prove that fG is exact distance-2 |fG(V (G))| coloring of G, i.e., fG(x) ̸= fG(x′) if
dG(x, x′) = 2. Let x, x′ ∈ V (G) with dG(x, x′) = 2. Then, (x, y), (x, y′), (x′, y), and (x′, y′)
vertices in G ⊠2 H forms a complete graph K4. Thus, f(x, y), f(x, y′), f(x′, y) & f(x′, y′)
are all distinct. So, min{f(x, y), f(x, y′)} and min{f(x′, y), f(x′, y′)} are different. Hence,
if min{f(x, y), f(x, y′)} < p and min{f(x′, y), f(x′, y′)} < p, then fG(x) ̸= fG(x′). Now,
suppose min{f(x, y), f(x, y′)} = p. Then {f(x, y), f(x, y′)} = {p, p+ 1} and so the maximum
value of f(x′, y) and f(x′, y′) is p− 1. Thus,
fG(x′) = min{f(x′, y), f(x′, y′)} ≤ p− 2 < p− 1 = fG(x). Therefore, fG(x) ̸= fG(x′).
Similarly, if min{f(x′, y), f(x′, y′)} = p, then we get fG(x) < fG(x′) and so fG(x) ̸= fG(x′).
Therefore, χ2(G) ≤ |fG(V (G))| ≤ p − 1 < p = χ2(G), which is a contradiction. Hence,
χ(G⊠2 H) ≥ p+ 2 = max{χ2(G), χ2(H)}+ 2.

Note that, for usual strong product, similar results are known [19].

Example 2.5. (i) Let G and H both be graph G in Figure 1. Then,
max{χ2(G), χ2(H)}+ 2 = 4, χ(G⊠2 H) ≤ χ2(G)χ2(H) = 4. Thus,
max{χ2(G), χ2(H)}+ 2 = χ(G⊠2 H) = χ2(G)χ2(H).

(ii) Let G = H = C5. Then, G⊠2 H = G⊠H and χ(G⊠H) = 5 [19]. So, χ(G⊠2 H) = 5
and max{χ2(G), χ2(H)}+ 2 = 5. Also χ2(G)χ2(H) = 9. Thus,
max{χ2(G), χ2(H)}+ 2 = χ(G⊠2 H) < χ2(G)χ2(H).

(iii) Let G and H both be graph H in Figure 1. Then χ2(G) = χ2(H) = 7 and hence
max{χ2(G), χ2(H)}+2 = 9 and χ2(G)χ2(H) = 49. Note that, K49 = K7⊠K7 ⊂ G⊠2H .
Thus χ(G⊠2 H) ≥ 49 and so, χ(G⊠2 H) = χ2(G)χ2(H). Therefore,
max{χ2(G), χ2(H)}+ 2 < χ(G⊠2 H) = χ2(G)χ2(H).

3 ω(G ⊠2 H) & χ(G ⊠2 H)

We recall that for a graph G = (V (G), E(G)), W ⊂ V (G) is defined as a clique if W = V (H),
where H is a complete subgraph of G. The clique number, denoted as ω(G), represents the
number of vertices in the largest clique within graph G [4]. Similarly, a 2-clique is defined as a
subset W of V (G) such that dG(x, x′) = 2 for each distinct x, x′ in W . The 2-clique number is
defined as the number of vertices in the largest 2-clique. This concept is also defined in [7] as
the clique number ω(G[♮2]) of the exact distance-2 graph. We denote this quantity as ω2(G).

In this section, we determine the value of ω(G ⊠2 H). Additionally, we present a condition
under which equality is achieved in Theorem 2.3.

Example 3.1. (i) For G = Pn, (n ≥ 3) or Cn, (n ≥ 4, n ̸= 6), ω2(G) = 2 = ω(G).

(ii) For G = Km,n, (m,n > 2), ω2(G) = max{m,n} > 2 = ω(G).

(iii) For G shown in Figure 2, ω2(G) = 2 < 4 = ω(G).



166 H. S. Mehta and J. George

G

Figure 2.

Remark 3.2. For two graphs G and H , if N2(x) ̸= ∅ and N2(y) ̸= ∅ for some x ∈ V (G) and
y ∈ V (H), then ω(G⊠2 H) ≥ 4.

Now, we obtain clique number of G⊠2 H in terms of ω2(G) and ω2(H).

Proposition 3.3. For two graphs G and H , ω(G⊠2 H) = ω2(G)ω2(H).

Proof. Let W1 and W2 be two 2-cliques in G and H respectively. Then W1 ×W2 is a clique in
G⊠2 H . Thus, ω(G⊠2 H) ≥ ω2(G)ω2(H). Now let Q be a clique in G⊠2 H . If
PG(Q) = {x : (x, y) ∈ Q} and PH(Q) = {y : (x, y) ∈ Q}, then PG(Q) is a 2-clique in G,
because if x, x′, (x ̸= x′) are in PG(Q), then (x, y), (x′, y′) ∈ Q, which is a clique in G ⊠2 H
and so dG(x, x′) = 2. Similarly, PH(Q) is a 2-clique in H . Consequently,
ω(G⊠2 H) ≤ ω2(G)ω2(H).

Corollary 3.4. Maximal cliques in G ⊠2 H are of the form W = WG × WH , where WG is
maximal 2-clique in G and WH is maximal 2-clique in H .

Proof. Using Proposition 3.3, we get the result.

Corollary 3.5. Let G and H be two graphs. If χ2(G) = ω2(G) & χ2(H) = ω2(H), then
ω(G⊠2 H) = χ(G⊠2 H) = χ2(G)χ2(H).

Proof. As ω(G⊠2 H) ≤ χ(G⊠2 H), from Theorem 3.3 & Theorem 2.3, it follows that,
ω(G⊠2 H) = χ(G⊠2 H) = χ2(G)χ2(H).

Using 2-clique number of graphs, we obtain an additional lower bound for χ(G⊠2 H).

Theorem 3.6. Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs with
N2(x) ̸= ∅ for some x ∈ V (G) and N2(y) ̸= ∅ for some y ∈ V (H). Then,

χ(G⊠2 H) ≥ max{χ2(G) + 2ω2(H)− 2, χ2(H) + 2ω2(G)− 2}.

Proof. Let W = {y1, y2, . . . , yn} be a 2-clique in H with n = ω2(H). Note that, ω2(G) ≥ 2 and
hence, by Proposition 3.3, χ(G⊠2 H) ≥ 2n. Let χ(G⊠2 H) = 2n+ ϵ and let
f : V (G⊠2 H) → {1, 2, . . . , 2n+ ϵ} be a proper coloring of G⊠2 H .

For x ∈ V (G), let mx = min{f(x, yi) : 1 ≤ i ≤ n}. Then, mx ≤ n + ϵ + 1. For, if
mx ≥ n+ ϵ+ 2, then f(x, yi) ≥ n+ ϵ+ 2, for every i. But, as (x, y1), (x, y2), . . . , (x, yn) forms
a clique in G⊠2 H , f(x, yi) are all distinct. Thus, in order to color (x, y1), . . . , (x, yn), we need
n colors larger than n+ ϵ+1. But, there are only n−1 colors, n+ ϵ+2, n+ ϵ+3, . . . , n+ ϵ+n
to color n vertices, which is not possible. Thus mx ≤ n+ ϵ+ 1.

Define g : V (G) → {1, 2, . . . , ϵ+ 2} by g(x) =

{
mx, if mx ≤ ϵ+ 1
ϵ+ 2, if ϵ+ 2 ≤ mx ≤ n+ ϵ+ 1.

Claim: g is exact 2-distance coloring, i.e., if x, x′ ∈ V (G) with dG(x, x′) = 2, then
g(x) ̸= g(x′).

Let x, x′ ∈ V (G) with dG(x, x′) = 2. Note that, {(x, yi), (x′, yi) : 1 ≤ i ≤ n} forms
a clique in G ⊠2 H and so all f(x, yi) and f(x′, yi) are distinct. Thus, g(x) ̸= g(x′), if
mx ≤ ϵ + 1 or mx′ ≤ ϵ + 1. Suppose, mx, mx′ ≥ ϵ + 2, then f(x, yi) ≥ ϵ + 2 and
f(x′, yi) ≥ ϵ+ 2, for every i.



CHROMATIC NUMBER OF 2-STRONG PRODUCT GRAPH 167

Therefore, colors of 2n vertices (x, y1), . . . , (x, yn), (x′, y1), . . . (x′, yn) are larger than ϵ+ 1.
But, this is not possible as these 2n vertices forms clique and there are only 2n − 1 colors
ϵ+ 2, ϵ+ 3, . . . , ϵ+ 2n larger than ϵ+ 1. Thus, g(x) ̸= g(x′).

Therefore, χ2(G) ≤ ϵ+ 2 = χ(G⊠2 H)− 2n+ 2 = χ(G⊠2 H)− 2ω2(H) + 2. Therefore,
χ(G⊠2 H) ≥ χ2(G) + 2ω2(H)− 2.

Remark 3.7. Since ω2(G) ≥ 2 and ω2(H) ≥ 2, we have χ2(G) + 2ω2(H) − 2 ≥ χ2(G) + 2.
Consequently, Theorem 3.6 provides a sharper lower bound for χ(G ⊠2 H) compared to the
bound in Theorem 2.4.

4 χ(G ⊠2 H) for some non-bipartite graphs

In this section, we determine the chromatic number of the 2-strong product graph for certain
non-bipartite graphs, such as the wheel graph Wn, the Helm graph Hn, and the closed Helm
graph CHn.

Definition 4.1. [14]

(i) A wheel graph Wn is a graph obtained from star graph K1,n by joining all pendent edges
by a cycle.

(ii) The Helm graph Hn is a graph with 2n+1 vertices, which is obtained from Wn by attaching
one pendant edge each to every vertex on the cycle of Wn.

(iii) Closed Helm graph CHn is obtained from Hn by joining all pendent edges in it by a cycle.

Note that for graph G = Wm, Hm or CHm, we get that,

χ2(G) =

{
n+ 1, if m = 2n+ 1 (n ≥ 4)
n, if m = 2n (n ≥ 5),

& ω2(G) =

{
n, if m = 2n+ 1 (n ≥ 3)
n, if m = 2n (n ≥ 4).

If G and H are Wm, Hm or CHm with m-even, then using Corollary 3.5, we obtain
χ(G⊠2 H) = χ2(G)χ2(H). We will now establish that this equality holds for odd values of m,
i.e., χ(G⊠2 H) = χ2(G)χ2(H) for odd m as well.

Theorem 4.2. χ(W2m+1 ⊠2 W2n) = (m+ 1)n = χ2(W2m+1)χ2(W2n), m, n ∈ N,
m ≥ 3 & n ≥ 4.

Proof. By Theorem 2.3, χ(W2m+1 ⊠2 W2n) ≤ (m+ 1)n. Now, we fix the notations as follows:
Let x1, x2, . . . , x2m be the vertices on the cycle of G = W2m and let {x0} be the center vertex.
Similarly, let y1, y2, . . . , y2n be vertices on the cycle of H = W2n and {y0} be the center vertex.
Let,

X1 = {(xi, yj) : i ∈ {1, 3, 5, . . . , 2m− 1}, j ∈ {1, 3, 5, . . . , 2n− 1}},
X2 = {(xi, yj) : i ∈ {1, 3, 5, . . . , 2m− 1}, j ∈ {2, 4, 6, . . . , 2n}},
X3 = {(xi, yj) : i ∈ {2, 4, 6, . . . , 2m}, j ∈ {1, 3, 5, . . . , 2n− 1}},
X4 = {(xi, yj) : i ∈ {2, 4, 6, . . . , 2m}, j ∈ {2, 4, 6, . . . , 2n}}.

Let (xi, yj) and (xk, yl) be two distinct vertices of X1. Then dG(xi, xk) = 0 or 2 and
dH(yj , yl) = 0 or 2. Thus (xi, yj)(xk, yl) ∈ E(G ⊠2 H). Thus X1 is a clique of size mn in
G⊠2 H . Similarly, X2, X3, and X4 each forms a clique of size mn. Let,

G1 = {(x2m+1, yj) : j ∈ {1, 3, 5, . . . , 2n− 1}},
G2 = {(x2m+1, yj) : j ∈ {2, 4, 6, . . . , 2n}}.

We show that, a vertex in G1 or G2 cannot be given any of mn colors of X1.
Observe that, (x2m+1, y1) ∈ G1 is adjacent to all vertices of clique X1 except vertices in
A = {(x1, yj) : j ∈ {1, 3, 5, . . . , 2n − 1}} and it is adjacent to all vertices of clique X3 ex-
cept vertices in B = {(x2m, yj) : j ∈ {1, 3, 5, . . . , 2n− 1}}. Also, |A| = |B| and A ∪B forms a
clique in G⊠2 H . Therefore, (x2m+1, y1) need a new color apart from mn colors of X1.
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But as G1 forms a clique, all vertices of G1 needs distinct n colors. Thus, atleast mn + n
different colors are required for proper coloring of G⊠2 H . Thus χ(G⊠2 H) ≥ n(m+ 1).

Theorem 4.3. χ(W2m+1 ⊠2 W2n+1) = (m+ 1)(n+ 1) = χ2(W2m+1)χ2(W2n+1), m, n ∈ N &
m,n ≥ 3.

Proof. Let G = W2m+1 and H = W2n+1. We continue the notations of Theorem 4.2. Let

H1 = {(xi, y2n+1) : i ∈ {1, 3, 5, . . . , 2m− 1}},
H2 = {(xi, y2n+1) : i ∈ {2, 4, 6, . . . , 2m}}

and let p = (x2m+1, y2n+1). Then, H1 and H2 forms clique. We note that, as in Theorem 4.2,
vertices in G1 and G2 needs color other than that of X1. By using similar arguments, H1 and H2
needs color other than X1.

First we prove that, the set G1 ∪G2 ∪H1 ∪H2 needs at least m+ n new colors.
As G1 and G2 forms a clique of size n, at least n colors are required for coloring

G1∪G2. Suppose a1, a2, . . . , an are different colors of (x2m+1, y1), (x2m+1, y3), . . . , (x2m+1, y2n−1)
respectively. Then as (x2m+1, y1) is adjacent to all vertices of G2, except (x2m+1, y2), a1 color
can be given to vertex (x2m+1, y2) only. Similarly an color can be given to vertex (x2m+1, y2n)
only.

Again, suppose b1, b2, . . . , bm are the different colors of (x1, y2n+1), (x3, y2n+1), . . . ,
(x2m−1, y2n+1) respectively. Then, by arguments similar to above, (x2, y2n+1) can be given color
b1 only and (x2m, y2n+1) can be given color bm only. But then note that a2, a3, . . . , an, b2, b3, . . . , bm
must be distinct as (G1∪H1)\{(x1, y2n+1)} form a clique. Similarly, the colors a1, a2, . . . , an−1,
b1, b2, . . . , bm−1 must be distinct. Finally, we must have a1 ̸= bm as a1 color is given to
(x2m+1, y1) &(x2m+1, y2) and bm color is given to (x2m−1, y2n+1) and (x2m, y2n+1), but
(x2m+1, y1) & (x2m, y2n+1) are adjacent. Similarly, b1 ̸= an.

Thus all colors a1, a2, . . . , an, b1 b2 . . . , bm are distinct. Therefore,
χ(G⊠2 H) ≥ mn+ (m+ n).

Next, we show that, the vertex p = (x2m+1, y2n+1) requires color other than mn colors of X1.
Note that, X1 ∪X2 ∪X3 ∪X4 can be colored using mn colors. Suppose,

{p} ∪X1 ∪X2 ∪X3 ∪X4 can be colored using mn colors. Now, the size of the set
{p} ∪ X1 ∪ X2 ∪ X3 ∪ X4 is 4mn + 1. So, there must be an independent set say
U ⊂ {p} ∪X1 ∪X2 ∪X3 ∪X4 of size atleast 5, i.e., |U | ≥ 5.

Since each of Xi (1 ≤ i ≤ 4) forms a clique, p ∈ U and |U | = 5. Now as p is adjacent to all
vertices in X1 ∪X2 ∪X3 ∪X4 other than
{(xi, yj) : i ∈ {1, 2m}, 1 ≤ j ≤ 2n} ∪ {(xi, yj) : 1 ≤ i ≤ m, j ∈ {1, 2n}}, we have
U ⊂ {(xi, yj) : i ∈ {1, 2m}, 1 ≤ j ≤ 2n} ∪ {(xi, yj) : 1 ≤ i ≤ 2m, j ∈ {1, 2n}} ∪ {p}. Note
that |U \ {p}| = 4. We fix the following notations:

J1 = {(x1, yj) : j ∈ {1, 3, 5, . . . , 2n− 1}} ∪ {(xi, y1) : i ∈ {1, 3, 5, . . . , 2m− 1}},
J2 = {(x1, yj) : j ∈ {2, 4, 6, . . . , 2n}} ∪ {(xi, y2n) : i ∈ {1, 3, 5, . . . , 2m− 1}},
J3 = {(x2n, yj) : j ∈ {1, 3, 5, . . . , 2n− 1}} ∪ {(xi, y1) : i ∈ {2, 4, 6, . . . , 2m}},
J4 = {(x2m, yj) : j ∈ {2, 4, 6, . . . , 2n}} ∪ {(xi, y2n) : i ∈ {2, 4, 6, . . . , 2m}}.

Then, each of Ji forms a clique and
{(xi, yj) : i ∈ {1, 2m}, 1 ≤ j ≤ 2n} ∪ {(xi, yj) : 1 ≤ i ≤ 2m, j ∈ {1, 2n}} = J1 ∪ J2 ∪ J3 ∪ J4.
Also, U \ {p} is an independent subset of J1 ∪ J2 ∪ J3 ∪ J4 of size 4.

Now, we show that J1 ∪ J2 ∪ J3 ∪ J4 cannot contain an independent set of size 4.
Suppose, vertex of the form (x1, y2j) from J2 is in U \ {p}. Then, (x2, y2n) is the only possible
vertex from J4 which can be in U \ {p}. Also from J3, (x2m, y2n−1) is the only vertex which is
not adjacent to (x2, y2n) and finally (x2m+1, y1) is the only vertex from J1 which is not adjacent
to (x2m, y2n−1). Thus, if (x1, y2j) is in U \ {p}, then U \ {p} is
{(x1, y2j), (x2, y2n), (x2m, y2n−1), (x2m+1, y1)}, which is not possible as (x2, y2n) is adjacent to
(x2m+1, y1).

Similarly, vertex of the form (x2i−1, y2n) is in U \ {p} is also not possible. Thus,
J1 ∪ J2 ∪ J3 ∪ J4 cannot contain independent set of size 4. Thus, there cannot be an independent
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set of size at least 5 in {p} ∪ X1 ∪ X2 ∪ X3 ∪ X4. Therefore, p cannot be given colors of
Xi (i ≤ i ≤ 4).

Finally, note that p is adjacent to all vertices in G1 ∪G2 except, {(x2m+1, y1), (x2m+1, y2n)}.
Thus, p cannot be colored using any ai (≤ i ≤ n). Similarly, p cannot be colored using
bi (1 ≤ i ≤ m), i.e., p requires color other than mn+ (m+ n). Thus p requires a new color.

Thus, χ(G⊠2 H) ≥ mn+m+ n+ 1 = (m+ 1)(n+ 1). Thus we have,
χ(G⊠2 H) = (m+ 1)(n+ 1).

Next, we obtain χ(G⊠2 H) for Hn and CHn.

Corollary 4.4. (i) χ(H2m+1 ⊠2 H2n) = (m+ 1)n = χ2(H2m+1)χ2(H2n), m, n ∈ N,
m ≥ 3 & n ≥ 4.

(ii) χ(H2m+1 ⊠2 H2n+1) = (m+ 1)(n+ 1) = χ2(H2m+1)χ2(H2n+1), m, n ∈ N & m,n ≥ 3.

Proof. (i) By Theorem 2.3, χ(H2m+1 ⊠2 H2n) ≤ (m + 1)n. But, as W2m+1 ⊠2 W2n is an
induced subgraph of H2m+1 ⊠2 H2n, χ(H2m+1 ⊠2 H2n) ≥ χ(W2m+1 ⊠2 W2n) ≥ (m+ 1)n.
Therefore, χ(H2m+1 ⊠2 H2n) = (m + 1)n = χ2(H2m+1)χ2(H2n). By similar arguments,
(ii) follows.

Corollary 4.5. χ(G⊠2 H) = χ2(G)χ2(H), if G = CHm and H = CHn, for every
m,n ∈ N, & m,n ≥ 9.

Proof. By Theorem 2.3, χ(G ⊠2 H) ≤ χ2(G)χ2(H). Now, since Wm is induced subgraph of
CHm, χ(G ⊠2 H) ≥ χ(Wm ⊠2 Wn) = χ2(Wm)χ2(Wn) = χ2(G)χ2(H) for m,n ≥ 7 and
therefore χ(G⊠2 H) = χ2(G)χ2(H).

5 Conclusion remarks

We studied the chromatic number of the 2-strong product graph. We obtained both the upper
bound and the lower bound for the chromatic number of 2-strong product graph in terms of the
exact distance-2 chromatic number of the graphs G and H . We attempted to characterize the
graphs for which we have the exact results. In this direction, we obtained a sufficient condition
for equality in the upper bound. Furthermore, we proved that for non-bipartite graphs such as the
wheel graph, helm graph, and closed helm graph, equality is achieved in Theorem 2.3. It would
also be interesting to discover a sharper lower bound for the chromatic number of the 2-strong
product graph.

Also, we obtained the clique number of the 2-strong product graph in terms of the 2-clique
number of the factor graphs. Moreover, we derived a lower bound for the chromatic number of
2-strong product graph in terms of 2-clique number and exact distance-2 chromatic number of
graphs G and H .
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