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Abstract In this paper, we determine the bounded spherical functions associated with the
Gelfand pair formed by the (4n + 3)-dimensional quaternionic Heisenberg group Hn

q and the
quaternionic unitary group Sp(n). We define the spherical Fourier transform and prove the
Plancherel and inversion formulas. Additionally, we determine the heat kernel associated with
the sub-Laplacian on Hn

q .

1 Introduction

The quaternionic Heisenberg group Hn ×R3 was first introduced by Barker and Salamon in
their paper [2], is a two-step nilpotent Lie group with a dimension of 4n + 3. This group is an
H-type group; we can see [11] for the properties of the H-type group, and it can be regarded as
the nilpotent part in Iwasawa decomposition of Lorentz group Sp(1, n+ 1) (see [7] p. 375).

The quaternionic Heisenberg group plays an essential role in several branches of mathemat-
ics and physics, including harmonic analysis, representations theory, partial differential equa-
tions, and quantum mechanics.

Several authors [1, 9] have studied some properties of the quaternionic Heisenberg group
of dimension 7. This paper aims to determine the expressions of the bounded spherical functions
associated with the Gelfand pair formed by the (4n + 3)-dimensional quaternionic Heisenberg
group and the quaternionic unitary group Sp(n) and using the spherical Fourier transform to
determine an integral representation of the heat kernel associated with the sub-Laplacian on Hn

q .

The remaining part of the paper is organized as follows. In Section 2, we give the nec-
essary definitions and properties of the (4n + 3)-dimensional quaternionic Heisenberg group,
the Gelfand pair, the spherical functions, and their relation to representations. In section 3,
we construct the bounded spherical functions associated with the Gelfand pair formed by the
(4n + 3)-dimensional quaternionic Heisenberg group Hn

q and the quaternionic unitary group
Sp(n). In Section 4, we define the spherical Fourier transform and we give the Plancherel and
the inversion formulas. Finally, we determine the heat kernel of the (4n+3)-dimensional quater-
nionic Heisenberg group.
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2 Preliminaries

2.1 The quaternionic Heisenberg group and its representations

Quaternion algebra H, initially introduced by Hamilton in 1843, is an associative, non-
commutative, and division algebra. It is constructed with a basis consisting of elements (1, i, j, k)
and possesses the following properties:

i2 = j2 = k2 = ijk = −1.

Let q = q0 + q1i+ q2j + q3k a quaternion where q0, q1, q2, q3 are real numbers.

• The real and imaginary parts of q are Re q = q0, and Im q = q1i+ q2j + q3k.
• We will identify Im q with the triplet (q1, q2, q3) of R3.
• The conjugate and module (norm) of q are defined by

q = q0 − q1i− q2j − q3k, |q|2 = qq =
3∑

p=0

q2
p

satisfying
qq′ = q′q, |qq

′
| = |q||q

′
|.

For q and w in Hn, let us define the scalar product of q and w by

(q, w) = w1q1 + ...+ wnqn,

so that if a and b are two numbers of H then (qa, qb) = b(q, w)a.
The set Hn being considered as right quaternionic vector space, let Sp(n) be the group of trans-
formations of Hn which are H−linear and (uq, uw) = (q, w) [7].
Sp(n) is called the quaternionic unitary group, also called the compact symplectic group.
By identifying u with the matrix that represents it in the canonical base we have

Sp(n) := {u ∈Mn(H) : u∗u = uu∗ = I}.

Note that Sp(n) is isomorphic to Sp(n,C) ∩ U(2n).
The inner product of q and w is defined by

⟨q, w⟩ = Re(q, w) = Re(w1q1) + ...+Re(wnqn).

The associated norm to both the scalar product and the inner product is identical and represented
by the notation || · ||.

Let Hn
q = Hn × R3 = {(q, t), q ∈ Hn, t ∈ R3}, with the group law is defined as

follows:

(q, t)(w, s) = (q + w, t+ s− 2Im(q, w)).

Then Hn
q is called the quaternionic Heisenberg group and is a two-step nilpotent Lie group with

center {0} ×R3.
The Haar measure on Hn

q coincides with the Lebesgue measure dqdt on Hn ×R3.
The inner product in L2(Hn

q , dqdt) is defined by

⟨f, g⟩ =
∫
Hn

q

f(q, t)g(q, t)dqdt.

For λ ∈ R3\{0}, the map Jλ : q 7−→ qλ̃ define a complexe structure of Hn, where

λ̃ =
λ

|λ|
and qλ̃ = (q1λ̃, ...., qnλ̃).

Let’s consider the Fock space Fλ consisting of holomorphic functions F defined on (Hn, Jλ) ≃
C2n, where F satisfies the following condition:
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||F ||2λ =

(
2|λ|
π

)2n ∫
Hn

|F (q)|2e−2|λ|||q||2dq <∞.

The corresponding irreducible unitary representation πλ(x, t) of Hn
q on Fλ is realized by

πλ(x, t)F (q) = ei⟨λ,t⟩−|λ|(|x|2+2⟨q,x⟩−2i⟨qλ̃,x⟩)F (q + x), for F ∈ Fλ.

All irreducible infinite-dimensional unitary representations of Hn
q is determined up to equiva-

lence by the condition πλ(0, t) = ei⟨λ,t⟩IdFλ
, λ ∈ R3 (see [11]).

We choose an orthonormal basis {e0, e1, e2, e3} of H such that

e0 = 1, e1 = λ̃, e2λ̃ = e3.

For q = q0 + q1λ̃+ q2e2 + q3e3, we write

z1 = q0 + iq1, z2 = q2 + iq3.

For q = (q1, ...., qn) ∈ Hn, we associated the element (z1, ......, z2n) of C2n, where

zp = qp,0 + iqp,1, zp+n = qp,2 + iqp,3 and

qp = qp,0 + qp,1λ̃+ qp,2e2 + qp,3e3. (2.1)

The space Pλ(Hn) of holomorphic polynomials on (Hn, Jλ) ≃ C2n is dense in Fλ, and contains
an orthonormal basis given by {uλα : α ∈ N2n}( see [8]), where

uλα(q) = (α!)
−1

2 (2|λ|)
|α|

2 qα = (α1!)
−1

2 (2|λ|)
α1
2 zα1

1 ...(α2n!)
−1

2 (2|λ|)
α2n

2 zα2n
2n .

Besides the infinite dimensional representations, Hn
q has the one-dimensional representations

τw(q, t) = ei⟨w,q⟩, for (q, t) ∈ Hn
q and w ∈ Hn.

The πλ (λ ∈ R3) and the τw fill up the unitary dual of Hn
q .

2.2 Fourier transform on Hn
q

We associate to an integrable and square-integrable function f on Hn
q , the Fourier transform

f̂(λ) :=
∫
Hn

q

f(q, t)πλ(q, t)dqdt, λ ∈ R3\{0} .

Then f̂(λ) is a bounded operator on Fλ. Furthermore, if ϕ, ψ ∈ Fλ, then

⟨f̂(λ)ϕ, ψ⟩ =
∫
Hn

q

f(q, t)⟨πλ(q, t)ϕ, ψ⟩dqdt.

Let S2 denote the Hilbert-Schmidt operators on L2(Hn
q ) with the inner product

⟨S, T ⟩ = trace(ST ∗) (where T ∗ is the adjoint operator of S) and dσ(λ) be the measure, defined
on R3\{0} by

dσ(λ) =
22n−3

π2n+3 |λ|
2ndλ.

The Plancherel and inversion formulas for Hn
q can be proven in the same manner as [6]:

Theorem 2.1. (Plancherel formula).
Let f ∈ L1 ∩ L2(Hn

q ), then f̂(λ) is a Hilbert-Schmidt operator, and we have∫
Hn

q

|f(q, t)|2dqdt =

∫
R3\{0}

||f̂(λ)||2HSdσ(λ)

=
∑

α∈N2n

∑
β∈N2n

∫
R3\{0}

|⟨f̂(λ)uλα, uλβ⟩|2dσ(λ).

Furthermore, the Fourier transform can be uniquely extended to L2(Hn
q ).



4 Walid Amghar and Said Fahlaoui

Theorem 2.2. (Inversion formula).
Let f be a function in the Schwartz space S(Hn

q ) on Hn
q . Then for all (q, t) ∈ Hn

q ,

f(q, t) =

∫
R3\{0}

trace(π∗
λ(q, t)f̂(λ))dσ(λ).

2.3 Spherical Functions and Representations

In this subsection, we recall some properties of the Gelfand pairs, the representations, and
the spherical functions, which will be used in the proof of Theorem (3.2). For details, we refer
the reader to [3, 4, 10].

Let N be a connected and simply connected nilpotent Lie group and K a compact group
acting continuously on N by automorphism. The semi-direct product K ⋉ N is defined by the
law:

(u, x)(v, y) = (uv, x u.y).

Let dx be the Haar measure on N and dk the normalized Haar measure on K.
We denote by N̂ the set of equivalence classes of irreducible unitary representations of N.

Remark 2.3. A bi-K-invariant function on K ⋉N can be identified with a K-invariant function
on N .

Definition 2.4. We say that (K,N) is a Gelfand pair when the algebra L1
K(N) of K−invariant

integrable functions on N is commutative under convolution. Equivalently, the algebra L1(K ⋉
N//K) of integrable bi-K-invariant functions on the semi-direct productK⋉N is commutative.

There are several equivalent ways of defining K-spherical functions associated with a Gelfand
pair.

Definition 2.5. A K-spherical function associated with the Gelfand pair (K,N) is a continuous
K-invariant function ϕ on N with complex-valued, such that

ϕ(e) = 1,
∫
K

ϕ(x u.y)du = ϕ(x)ϕ(y).

Notation:
• Let π be a unitary irreducible representation of N on a Hilbert space Hπ.

• Let u ∈ K, define πu on N by πu(x) = π(u.x) for all x ∈ N .

• Kπ = {u ∈ K such that πu is unitary equivalent to π}.
• For u ∈ Kπ, we choose an intertwining operator µπ(u) such that

πu(x) = µπ(u)π(x)µπ(u)
∗.

Theorem 2.6. [4, 5] (K,N) is a Gelfand pair if and only if µπ decomposes into irreducibles
components without multiplicities , for all π ∈ N̂ .

For (π,Hπ) ∈ N̂ , let Hπ =
∑
α

Vα be the decomposition of Hπ into irreducible subspaces

invariant under the action of µπ. Then we have the following theorem:

Theorem 2.7. [4] Let (K,N) be a Gelfand pair, then

(i) ϕ is a bounded K-spherical function if and only if there exists a unitary vector ξ in Vα and
π ∈ N̂ , such that for all x ∈ N ,

ϕ(x) = ϕπ,ξ(x) :=
∫
K

⟨π(u.x)ξ, ξ⟩du.
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(ii) ϕπ,ξ = ϕπ′ ,η if and only if there exists u ∈ K such that π
′ ∼ πu and ξ, η belongs to the

same Vα.

Corollary 2.8. [3] Suppose that Kπ = K and let {v1, ..., vdα} an orthonormal basis of Vα, then

ϕπ,α(x) =
1
l

dα∑
p=1

⟨π(x)vp, vp⟩.

2.4 The sub-Laplacian on Hn
q :

Using the coordinates (q1, ..., qn, t1, t2, t3) on Hn
q , with qr = qr,0 + qr,1i + qr,2j + qr,3k, for

1 ≤ r ≤ n. Then the (4n+ 3)-dimensional Lie algebra of Hn
q is generated by the left-invariant

vector fields X0
r , X

1
r , X2

r , X
3
r , T1, T2 and T3, (see [2]), where

Ts =
∂

∂ts
,

X0
r =

∂

∂qr,0
− 2qr,1T1 − 2qr,2T2 − 2qr,3T3,

X1
r =

∂

∂qr,1
+ 2qr,0T1 + 2qr,3T2 − 2qr,2T3,

X2
r =

∂

∂qr,2
− 2qr,3T1 + 2qr,0T2 + 2qr,1T3,

X3
r =

∂

∂qr,3
+ 2qr,2T1 − 2qr,1T2 + 2qr,0T3.

The Lie brackets are given by:
[X0

r , X
1
s ] = [X2

r , X
3
s ] = 4δrsT1,

[X0
r , X

2
s ] = [X3

r , X
1
s ] = 4δrsT2,

[X0
r , X

3
s ] = [X1

r , X
2
s ] = 4δrsT3,

and the other Lie brackets are all null.

Proposition 2.9. [13] We define the sub-Laplacian ∆0 on Hn
q by

∆0 =
n∑

r=1

3∑
s=0

(Xs
r )

2
, then

∆0 =
n∑

r=1

3∑
s=0

∂2

∂q2
r,s

+ 4
n∑

r=1

3∑
s=1

(
qr,0

∂2

∂qr,s∂ts
− qr,s

∂2

∂qr,0∂ts

)

+ 4
n∑

r=1

3∑
s=0

q2
r,s

3∑
p=1

∂2

∂t2p
+ 4

n∑
r=1

∑
(s,p,w)

qr,s

(
∂2

∂qr,p∂tw
− ∂2

∂qr,w∂ts

)
,

where (r, s, w) means the cyclic permutation of (1, 2, 3).

3 Bounded spherical functions on Hn
q

3.1 A Gelfand pair associated to Hn
q

Let u ∈ Sp(n), we define the application ψu by ψu(q, t) = (u.q, t), for (q, t) ∈ Hn
q , with u.q is

the standard action of Sp(n) on Hn. Then ψu is an automorphism of Hn
q .
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Indeed for (q, t), (w, s) ∈ Hn
q and u ∈ Sp(n)

ψu(q, t)ψu(w, s) = (u.q, t)(u.w, s)

= (u.q + u.w, t+ s− 2Im(u.q, u.w))

= (u.q + u.w, t+ s− 2Im(q, w))

= (u.(q + w), t+ s− 2Im(q, w))

= ψu((q, t)(w, s))

and it is clear that ψk is bijective. Moreover, the map ψ : u 7−→ ψu is a homomorphism of the
group Sp(n) into the group Aut(Hn

q ) of the automorphisms of Hn
q .

Then we can define the semi-product Sp(n)⋉Hn
q , equipped with the following product

(u, q, t)(u
′
, q

′
, t

′
) = (uu

′
, (q, t)(u.q

′
, t

′
)).

Let λ ∈ R3\{0}, then we can define the representation πu
λ by πu

λ(q, t) = πλ(u.q, t), which
coincide with πλ at the center. Then πu

λ is unitarily equivalent to πλ and we have the unitary
intertwining operator µλ such that

πλ(u.q, t) = µλ(u)πλ(q, t)µλ(u)
−1.

Precisely, we set

µλ(u)F (q) = F (u−1.q), for F ∈ Fλ, u ∈ Sp(n) and q ∈ Hn.

Indeed

µλ(u
−1)[πλ(u.q, t)F ](w) = [πλ(u.q, t)F ](u.w)

= πλ(q, t)(µλ(u
−1))F (w).

Theorem 3.1. (Sp(n),Hn
q ) is a Gelfand pair.

Proof. (Sp(n),Hn
q ) is a Gelfand pair if and only the action of Sp(n) on Fλ by µλ decomposes

into irreducible components of multiplicity one for all λ ∈ R3 (2.6).
According to the table 1.8 in [3], we find that the action of Sp(n) on Fλ is multiplicity free.
We conclude that (Sp(n),Hn

q ) is a Gelfand pair.

3.2 Bounded spherical functions on Hn
q

For all the rest, we denote the Sp(n) as K.

Theorem 3.2. The bounded spherical functions of the Gelfand pair (K,Hn
q ) are giving by

(i) The functions ϕλ,m parametrized by λ ∈ R3\{0} and m ∈ N:

ϕλ,m(q, t) =
(2n− 1)!m!
(m+ 2n− 1)!

ei⟨λ,t⟩e−|λ|∥q∥2
L2n−1
m (2|λ|∥q∥2),m ∈ N,

where L2n−1
m is the Laguerre polynomial of order 2n− 1 and of degree m.

(ii) The functions ϕr parametrized by r ∈ R+ :

ϕr(q, t)) = J2n−1(r∥q∥),

Where J2n−1 is the Bessel function of order 2n-1.

Proof.
(1) For the infinite-dimensional representation, we have πu

λ is unitarily equivalent to πλ for
every λ ∈ R3\{0}, where the unitary intertwining operator µλ is given by

µλ(u)F (q) = F (u−1.q), for F ∈ Fλ, u ∈ K and q ∈ Hn.
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As (K,Hn
q ) is a Gelfand pair, then by theorem (2.6) the space Fλ ( or equivalently the dense

subspace Pλ(Hn)) decomposes into µλ-irreducible subspaces without multiplicities. For each
u ∈ Sp(n) and m ∈ N∗, let Pλ,m be the subspace of homogeneous polynomials of degree m,
then µλ(u) preserves each Pλ,m and is irreducible under this action, then the decomposition of
Pλ(Hn) is given by

Pλ(Hn) =
∑
m∈N

Pλ,m.

The space Pλ,m has the orthonormal basis {uλα : |α| = m}. The dimension of this space is
equal to (m+2n−1)!

(2n−1)!m! and we note it by dm [8].
Then by corollary (2.8), the K-spherical bounded functions of Hq associated to πλ is charac-

terized by :

ϕλ,m(q, t) =
1
dm

∑
|α|=m

⟨πλ(q, t)uλα, uλα⟩

=
(2n− 1)!m!
(m+ 2n− 1)!

ei⟨λ,t⟩
∑

|α|=m

⟨πλ(q, 0)uλα, uλα⟩.

Let w ∈ Hn, we denote by ξp = wp,0 + iwp,1, ξp+n = wp,2 + iwp,3 and ξ = (ξ1, ..., ξ2n)

for wp = wp,0 + wp,1λ̃+ wp,2e2 + wp,3e3. Combining with (2.1), we have

⟨w, q⟩ − i⟨wλ̃, q⟩ =
2n∑
p=1

ξp.zp.

Since

⟨πλ(q, 0)uλα, uλα⟩ =

(
2|λ|
π

)2n ∫
Hn

e−|λ|(||q||2+2⟨w,q⟩−2i⟨wλ̃,q⟩)uλα(w + q)uλα(w)e
−2|λ|||w||2dw

=

(
2|λ|
π

)2n ∫
C2n

e−|λ|(||z||2+2ξ.z∗
)uλα(ξ + z)uλα(ξ)e

−2|λ|||ξ||2dξ,

then (see [3, 8]) ∑
|α|=m

⟨πλ(q, 0)uα,λ, uα,λ⟩ = e−|λ||q|2L2n−1
m (2|λ||q|2).

Hence ϕλ,m(q, t) = (2n−1)!m!
(m+2n−1)!e

i⟨λ,t⟩e−|λ||q|2L2n−1
m (2|λ||q|2).

(2) For the one-dimensional representation τw, we have

τw(u.q, t) = ei⟨u
−1.w,q⟩, for (q, t) ∈ Hn

q and w ∈ Hn.

Then by theorem (2.7), we have the K−spherical function

ϕw(q, t) =

∫
K

ei⟨u
−1.w,q⟩du.

Thus the spherical function ϕw(q, t) is independent of t and depend only on the K−orbit in Hn

( by theorem (2.7) ). Let µK.w denote the unit measure supported on the K−orbit through w.
As a distribution, this is given by

⟨µK.w, f⟩ =
∫
K

f(k−1.w, 0)du, ∀f ∈ C∞
c (Hn

q ).

We define the Euclidean Fourier transform of f by

f̂(w, s) =

∫
Hn×R3

f(q, t)ei(⟨w,q⟩+⟨s,t⟩)dqdt.
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Note that ∫
Hn

q

ϕw(q, t)f(q, t)dqdt =

∫
K

∫
Hn

q

f(q, t)ei⟨u
−1.w,q⟩dqdtdu

=

∫
K

f̂(u−1.w, 0)du

= ⟨µ̂K.w, f⟩

for all f ∈ C∞
c (Hn

q ). Therefore we have ϕw(q, t) = µ̂K.w(q, 0).
Since the distinct K-orbits are parametrised by real r ≥ 0, then

(i) for r = 0, we have the trivial representation, and the K-spherical function associated with
that is ϕ0(q, t) = 1 ( du is a normalized Haar measure on K).

(ii) For r > 0 the sphere Sr of radius r in Hn is a K-orbit and the associated K-spherical
function is ϕr = µ̂r, where µr is the normalised surface measure on Sr.
Since the Fourier transform of the unit measure on the (4n− 1)-sphere is given in terms of
the Bessel function (see [8] p.25), then

ϕr(q, t) = J2n−1(r||q||),

where J2n−1 is the Besel function of order (2n− 1).

4 Spherical Fourier transform on Hn
q

Theorem 4.1. Let f be an integrable K−invariant function on Hn
q , then for λ ∈ R3\{0} and

m ∈ N, the space Pλ,m is an eigen-subspace of f̂(λ) with eigenvalue f̂(λ,m), where

f̂(λ,m) :=
∫
Hn

q

f(q, t)ϕλ,m(q, t)dqdt.

Proof. Pλ,m is a subspace of Fλ and is invariant under the action of the compact group K and
is irreducible under its action, furthermore for u ∈ K and q ∈ Hn, we have

µλ(u)πλ(q) = πλ(q)µλ(u),

then µλ(u)πλ(f) = πλ(f)µλ(u).
Therefore, according to Schur’s lemma the subspace Pλ,m is an eigenspace of πλ(f).
Then, for φ ∈ Pλ,m, we have f̂(λ)φ = ⟨f̂(λ)ξ, ξ⟩φ with ξ ∈ Pλ,m and ||ξ|| = 1.
Hence, f̂(λ)φ = f̂(λ,m)φ.

Definition 4.2. Let f be an integrable K-invariant function on Hn
q . The spherical Fourier trans-

form of f is defined by

f̂(λ,m) :=
∫
Hn

q

f(q, t)ϕλ,m(q, t)dqdt,

for all (λ,m) in R3\{0} ×N.

Let f and g be two integrable K-invariant functions on Hn
q , then it is easy to prove that:

f̂ ∗ g(λ,m) = f̂(λ,m)ĝ(λ,m), where ′ ∗′ is the convolution product defined by

f ∗ g(q, t) =
∫
Hn

q

f(p, r)g((−p,−r)(q, t))dpdr, for f, g ∈ L1(Hn
q ).
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Theorem 4.3. Inversion and Plancherel formulas.

(i) If f is integrable and square-integrable on Hn
q , then

∫
Hn

q

|f(q, t)|2dqdt =
∫
R3\{0}

∞∑
m=0

(m+ 2n− 1)!
(2n− 1)!m!

|f̂(λ,m)|2dσ(λ). (1)

(ii) If the quantity
∫
R3\{0}

∞∑
m=0

(m+ 2n− 1)!
(2n− 1)!m!

ϕλ,m(−q,−t)f̂(λ,m)dσ(λ) is finite, then

f(q, t) =

∫
R3\{0}

∞∑
m=0

(m+ 2n− 1)!
(2n− 1)!m!

ϕλ,m(−q,−t)f̂(λ,m)dσ(λ). (2)

Proof. (i) The space Pλ,m is an eigen-subpace of f̂(λ) for the eigenvalue f̂(λ,m), and since
the dimension of Pλ,m is (m+2n−1)!

(2n−1)!m! , then

||f̂(λ)||2HS =
∞∑

m=0

(m+ 2n− 1)!
(2n− 1)!m!

|f̂(λ,m)|2.

According to the Plancherel formula (2.1), we obtain the formula (1).

(ii) π∗
λ(q, t) is a bounded operator and f̂(λ) is a trace class operator, then π∗

λ(q, t)f̂(λ) is a trace
classs operator, so

trace(π∗
λ(q, t)f̂(λ)) =

∞∑
m=0

∑
|α|=m

⟨π∗
λ(q, t)f̂(λ)u

λ
α, u

λ
α⟩

=
∞∑

m=0

f̂(λ,m)
∑

|α|=m

⟨πλ(−q,−t)uλα, uλα⟩

=
∞∑

m=0

(m+ 2n− 1)!
(2n− 1)!m!

ϕλ,m(−q,−t)f̂(λ,m).

According to the inversion formula (2.2), we obtain the formula (2).

5 The heat kernel on (4n + 3)-dimensional quaternionic Heisenberg group

There are various methods to determine the heat kernel associated with the sub-Laplacian on
Hn

q (see for example [12, 13]). In this paragraph, we will give a method based on the inversion
formula of the spherical Fourier transform. We recall the following result:

Proposition 5.1.

(i) The spherical function ϕλ,m is a eigenfunction of the sub-Laplacian ∆0 :

∆0ϕλ,m = −8|λ|(n+m)ϕλ,m.

(ii) If f : Hn
q −→ C is a K-invariant C2 function and compact support, then

∆̂0f(λ,m) = −8|λ|(n+m)f̂(λ,m).

Proof. See, for example, [8], for proof of this result.
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Let us consider the heat equation associated with the sub-laplacian

∂g

∂s
(s; q, t) = ∆0g(s; q, t)

with the initial condition g(0; q, t) = h(q, t), where h : Hn
q −→ C is a known continuous

function and g : [0,+∞[×Hn
q −→ C is a continuous function on [0,+∞[×Hn

q and class C2 on
]0,+∞[×Hn

q to be determined.
Suppose that h and g are K-invariant functions and taking the spherical Fourier transform of the
previous equations, then we obtain

∂ĝ

∂s
(s;λ,m) = −8|λ|(n+m)ĝ(s;λ,m)

ĝ(0;λ,m) = ĥ(λ,m),

therfore ĝ(s;λ,m) = e−8|λ|(n+m)s ĥ(λ,m).
Let ps(q, t) be an integrable K-invariant function on Hn

q such that

p̂s(λ,m) = e−8|λ|(n+m)s,

then g(s, q, t) = (ps ∗ h)(q, t).
Applying the inversion formula (4.3), we have

ps(q, t) =

∫
R3\{0}

∞∑
m=0

dmϕλ,m(−q,−t)p̂s(λ,m) dσ(λ)

=

∫
R3\{0}

∞∑
m=0

dmϕλ,m(−q,−t) e−8|λ|(n+m)s dσ(λ)

=

∫
R3\{0}

∞∑
m=0

e−i⟨λ,t⟩ e−|λ|||q||2 L2n−1
m (2|λ|||q||2) e−8|λ|(n+m)s dσ(λ)

=

∫
R3\{0}

e−i⟨λ,t⟩ e−|λ|||q||2 e−8|λ|ns

( ∞∑
m=0

L2n−1
m (2|λ|||q||2)

(
e−8|λ|s

)m)
dσ(λ),

for |z| < 1, we have from [8, p.71] that

∞∑
m=0

Lα
m(w) zm = (1 − z)−α−1 e−

z
1−z .w,

then

ps(q, t) =

∫
R3\{0}

e−i⟨λ,t⟩ e−|λ|||q||2 e−8|λ|ns
(

1 − e−8|λ|.s
)−2n

exp
(
− e−8|λ|.s

1 − e−8|λ|.s 2|λ|||q||2
)
dσ(λ)

=
1

8π2n+3

∫
R3\{0}

e−i⟨λ,t⟩
(

|λ|
sinh(4|λ|s)

)2n

exp
(
−|λ|||q||2 coth(4|λ|s)

)
dλ.

We deduce the following theorem:

Theorem 5.2. The heat kernel on the quaternionic Heisenberg group Hn
q is given by

ps(q, t) =
1

8π2n+3

∫
R3
e−i⟨λ,t⟩

(
|λ|

sinh(4|λ|s)

)2n

exp
(
−|λ|||q||2 coth(4|λ|s)

)
dλ.
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