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Abstract Let G be an arbitrary group with an identity e, let R be a commutative G-graded
ring and let I be a proper graded ideal of R. In this article, we introduce the concept of graded
2-absorbing I-ideal and graded n-absorbing I-ideal in a commutative G-graded rings which is
a generalization of graded 2-absorbing ideal and graded n-absorbing ideal. A proper graded
ideal P of a G-graded ring R is called a graded 2-absorbing I-ideal if a, b, c ∈ h(R) with
abc ∈ P−IP , then ab ∈ P or ac ∈ P or bc ∈ P . Also a proper graded ideal P of a G-graded ring
R is called a graded n-absorbing I-ideal if a1, a2, . . . , an+1 ∈ h(R) with a1 . . . an+1 ∈ P − IP ,
then a1 . . . ai−1ai+1 . . . an+1 ∈ P for some i ∈ {1, 2, . . . , n + 1} and n ≥ 1. A number of
results and characterizations concerning these classes of graded ideals and their homogeneous
components are given. Furthermore, among many results we prove that every proper graded
ideal of a G-graded ring R is a graded n-absorbing I -ideal if and only if every quotient of R
is a product of (n + 1)-fields and also we give a condition under which the intersection of m
graded ideals of R is a graded n-absorbing I-ideal.

1 Introduction

Prime and primary ideals have key roles in commutative ring theory, many authors have studied
generalizations of prime and primary ideals (see [4], [5], [6], [8]). Later, A. Badawi in [8]
generalized the concept of prime ideals in a different way. He defined a nonzero proper ideal
P of R to be a 2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ P , then ab ∈ P or
ac ∈ P or bc ∈ P . Anderson and Badawi in [4] generalized the concept of 2-absorbing ideals
to n-absorbing ideals. Take n ∈ N, R a commutative ring with unity. An ideal I of R is said to
be an n-absorbing ideal of a ring R if for any x1, x2, . . . , xn+1 ∈ R such that x1 . . . xn+1 ∈ I ,
there are n of the xi’s whose product is in I . Furthermore, the concept of graded 2-absorbing
ideal was introduced and studied by Al-Zoubi, Abu-Dawwas and Ceken in [3]. Akray in [1]
introduced I-prime ideal. An ideal of a ring R is I-prime if for a, b ∈ R with ab ∈ P − IP , then
a ∈ P or b ∈ P for a fixed ideal I of R. Then he defined the concept of n-absorbing I-ideals
in [2]. For a fixed proper ideal I , a proper ideal P of R is called an n-absorbing I-ideal if
a1, a2, . . . , an+1 ∈ R with a1 . . . an+1 ∈ P − IP , then a1 . . . ai−1ai+1 . . . an+1 ∈ P for some
i ∈ {1, 2, . . . , n + 1} and n ≥ 1. In this paper, we introduce the notion of graded 2-absorbing
and graded n-absorbing I-ideals in commutative G-graded rings which are the graded versions
of 2-absorbing and n-absorbing ideals on the one hand and generalizations of graded prime
ideals on the other.

Before we state our results let us recall some notation and terminology. Throughout this work
all rings are assumed to be commutative with nonzero identity. Let G be an abelian group with
identity e. By a G-graded ring we mean a ring R which is a direct sum of a family of additive
subgroups {Rg}g∈G of R with the property that RgRh ⊆ Rgh for all g, h ∈ G. Throughout,
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R =
⊕

g∈G Rg denotes graded ring and we call rg ∈ Rg a homogeneous element of R of degree
g and also the set of all homogeneous elements of R is denoted by h(R) = ∪g∈GRg. Let P be
an ideal of R. Then P is called a graded ideal of R if one of the equivalent conditions hold: (i)
P =

⊕
g∈G Pg, where Pg = P ∩ Rg for all g ∈ G and (ii) a = ag1 + ag2 + . . . + agn ∈ P

implies that agi ∈ P , where agi ∈ Rgi . Let R be a G-graded ring and P be a graded
ideal of R. The quotient ring R/P is a G-graded ring. Indeed, R/P = ⊕g∈G(R/P )g where
R/P = ⊕g∈G(R/P )g = {a+ P |a ∈ Rg}.

Graded rings have been studied since 1955, (see for instance [14], [17]), then various re-
searchers interested in these rings and made several important studies in them and construct
a new branch in ring theory. Grading appear in many circumstances, both in elementary and
advanced levels. Particularly, there is a wide variety of applications of graded algebras in ge-
ometry and physics, for more information on the application of graded rings, see [12].

Let I be a fixed proper ideal of Re. In this article, we introduce the notion of graded 2-
absorbing I-ideal and graded n-absorbing I-ideal in commutative G-graded rings which is a
generalization of graded 2-absorbing and graded n-absorbing ideals. A proper graded ideal P
of a G-graded ring R is called a graded 2-absorbing I-ideal if for a, b, c ∈ h(R) with abc ∈
P − IP , then ab ∈ P or ac ∈ P or bc ∈ P . Also a proper graded ideal P of a G-graded ring
R is called an n-absorbing I-ideal if a1, a2, . . . , an+1 ∈ h(R) with a1 . . . an+1 ∈ P − IP , then
a1 . . . ai−1ai+1 . . . an+1 ∈ P for some i ∈ {1, 2, . . . , n + 1} and n ≥ 1. Among many results
in this paper. We give an example (Example 2.16) of a graded 2-absorbing I-ideal of R that is
not a graded 2-absorbing ideal of R. We show that if P is a proper graded ideal of R such that
Gr(P ) is a graded prime ideal of R and Gr(P ) ̸= P and (P : a) is a graded I-prime ideal of R
for all a ∈ h(Gr(P ))− h(P ), then P is a graded 2-absorbing I-ideal of R (Theorem 2.8). It is
shown that if P1 and P2 are graded primary ideals of R, then Gr(P1P2) is a graded 2-absorbing
I-ideal of R (Theorem 2.14). If Pj is a non zero graded I-prime ideal of a G-graded ring R
for 1 ≤ j ≤ m, then we show that ∩m

j=1Pj is a graded n-absorbing I-ideal (Theorem 3.5). In
(Theorem 3.16) we characterize G-graded rings in which every proper graded ideal is a graded
n-absorbing I-ideal.

2 Graded 2-absorbing I-ideal

Definition 2.1. Let R be a G-graded ring and I be a fixed proper ideal of Re. A proper graded
ideal P of R is called a graded 2-absorbing I-ideal if a, b, c ∈ h(R) with abc ∈ P − IP , then
ab ∈ P or ac ∈ P or bc ∈ P .

From the definition, one can see that any graded 2-absorbing ideal of R is a graded 2-
absorbing I-ideal of R. But, the following example illustrates that the converse need not be
true.

Example 2.2. Assume that R = K[X,Y, Z] is a Z-graded ring with deg(X) = deg(Y ) =
deg(Z) = 1 and K is any field and P = ⟨XY ⟩ is a graded ideal of R generated by homogeneous
elements XY . Then P is a graded 2-absorbing ideal of R. Thus for any graded ideal I of R, P is a
graded 2-absorbing I-ideal of R. Furthermore, take P = ⟨XY Z,X2Y 2⟩ and I = ⟨XY Z,X2Y 2⟩.
Therefore P is a graded 2-absorbing I-ideal, since P − IP = ϕ. However, P is not a graded
2-absorbing ideal, since XY Z ∈ P but XY /∈ P , XZ /∈ P and Y Z /∈ P .

Clearly, every 2-absorbing I-ideal of a graded ring R is also a graded 2-absorbing I-ideal.
However, the next example shows that the converse is not true in general.

Example 2.3. Let R = Z[i] and G = Z2. Then R is a G-graded ring with R0 = Z and R1 = iZ.
Let I = 2R and P = 10R. Then P is not a 2-absorbing I-ideal of R, since

10 = (1 + i)(1 − i)5 ∈ P − IP

while (1 + i)(1 − i) = 2 /∈ P , (1 + i)5 /∈ P and (1 − i)5 /∈ P . To show that P is a graded
2-absorbing I-ideal of R, take a, b, c ∈ h(R) with abc ∈ P − IP . So 10|abc. Suppose 2|a and
5 ∤ a. Then 5 divides b or c and P is a graded 2-absorbing I-ideal of R.
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Theorem 2.4. If P and Q are non zero graded I-prime ideals of a G-graded ring R, then P ∩Q
is a graded 2-absorbing I-ideal.

Proof. Let a, b, c ∈ h(R) with (ab)c ∈ P ∩ Q − I(P ∩ Q). Then (ab)c ∈ P − IP and (ab)c ∈
Q − IQ. Since P is a graded I-prime ideal, so either ab ∈ P or c ∈ P . If ab ∈ P , then either
a ∈ P or b ∈ P . Similarly, a ∈ Q or b ∈ Q or c ∈ Q. Suppose a ∈ P ∩Q. Then ab ∈ P ∩Q and
ac ∈ P ∩Q, since P ∩Q is an ideal. Therefore P ∩Q is a graded 2-absorbing I-ideal.

Theorem 2.5. Let R be a G-graded ring and P be a graded ideal of R. If P is a graded 2-
absorbing I-ideal of R, then P ∩Re is a graded 2-absorbing I-ideal of Re.

Proof. Let a, b, c ∈ Re with abc ∈ P ∩Re − I(P ∩Re). As P is a graded 2-absorbing I-ideal of
R, ab ∈ P or bc ∈ P or ac ∈ P . Thus ab ∈ P ∩Re or ac ∈ P ∩Re or bc ∈ P ∩Re, since Re is a
subring of R. Hence P ∩Re is a graded 2-absorbing I-ideal of Re.

Theorem 2.6. Let P and Q be graded ideals of a G-graded ring R with Q ⊆ P . Then the
following hold:

(i) P is a graded 2-absorbing I-ideal of R if and only if P
Q is a graded 2-absorbing I-ideal of

R
Q .

(ii) If Q and P
Q are graded 2-absorbing I-ideals of R and R

Q respectively, then P is a graded
2-absorbing I-ideals of R.

Proof. (i) Assume that

xyz +Q = (x+Q)(y +Q)(z +Q) ∈ P
Q − I P

Q = P
Q − IP+Q

Q

for some x, y, z ∈ h(R). Then

xyz ∈ P − (IP +Q),

so xyz ∈ P − IP . Since P is a graded 2-absorbing I-ideal, we get xy + Q ∈ P
Q or

xz + Q ∈ P
Q or yz + Q ∈ P

Q . Therefore P
Q is a graded 2-absorbing I-ideal of R

Q . For the
converse, assume abc ∈ P − IP with a, b, c ∈ h(R). Thus abc ∈ P − (IP +Q). Hence

(a+Q)(b+Q)(c+Q) ∈ P
Q − IP+Q

Q = P
Q − I P

Q .

As P
Q is a graded 2-absorbing I-ideal of R

Q , we can conclude that (a + Q)(b + Q) ∈ P
Q or

(a+ Q)(c+ Q) ∈ P
Q or (b+ Q)(c+ Q) ∈ P

Q . Hence ab ∈ P or bc ∈ P or ac ∈ P , which
implies that P is a graded 2-absorbing I-ideal

(ii) Let xyz ∈ P − IP where x, y, z ∈ h(R). Then

(x+Q)(y +Q)(z +Q) = xyz +Q ∈ P
Q .

If xyz ∈ Q, since xyz /∈ IP and Q ⊆ P , then IQ ⊆ IP . Thus xyz /∈ IQ. Hence xyz ∈
Q− IQ. Since Q is a graded 2-absorbing I-ideal, then we conclude either xy ∈ Q ⊆ P or
xz ∈ Q ⊆ P or yz ∈ Q ⊆ P . Now, for the case xyz /∈ Q, we have xyz /∈ IP+Q

Q and

(x+Q)(y +Q)(z +Q) = xyz ∈ P
Q − I P

Q .

Since P
Q are graded 2-absorbing I-ideals of R

Q , we obtain that either xy+Q ∈ P
Q or xz+Q ∈

P
Q or yz +Q ∈ P

Q . Hence xy ∈ P or xz ∈ P or yz ∈ P .

The graded radical of a graded ideal I , denoted by Gr(I), is the set of all x =
∑

g∈G xg ∈ R

such that for each g ∈ G there exists ng ∈ Z+ with x
ng
g ∈ I . Note that, if r is a homogeneous

element, then r ∈ Gr(I) if and only if rn ∈ I for some n ∈ Z+ [16]. The following lemma is
useful in the proof of our next result.
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Lemma 2.7. Let P and I be a proper graded ideals of R. Then I(P : a) ⊂ (IP : a) for all
a ∈ h(R).

Proof. Let x ∈ I(P : a). Then x = ir where ra ∈ P . So xa = ira ∈ IP , this implies that
x ∈ (IP : a). Hence I(P : a) ⊂ (IP : a).

Theorem 2.8. Let P be a proper graded ideal of R such that Gr(P ) is a graded prime ideal of
R and Gr(P ) ̸= P . If (P : a) is a graded I-prime ideal of R for all a ∈ h(Gr(P ))− h(P ), then
P is a graded 2-absorbing I-ideal of R.

Proof. Suppose that a, b, c ∈ h(R) such that abc ∈ P − IP . We have a ∈ Gr(P ) or b ∈ Gr(P )
or c ∈ Gr(P ), since P ⊂ Gr(P ) and Gr(P ) is a graded prime ideal. Assume that a ∈ Gr(P ). If
a ∈ P , then ab ∈ P and we are done. So, let a ∈ Gr(P )−P . Now, bc ∈ (P : a). By Lemma 2.7,
I(P : a) ⊂ (IP : a). So bc /∈ (IP : a). If bc ∈ I(P : a), then abc ∈ IP which is a contradiction.
As (P : a) is a graded I-prime ideal, we coclude that either b ∈ (P : a) or c ∈ (P : a). Hence
ab ∈ P or ac ∈ P . Therefore P is a graded 2-absorbing I-ideal of R.

Recall that a proper graded ideal I of a graded ring R is said to be a graded irreducible ideal
if whenever J1 and J2 are graded ideals of R with I = J1 ∩ J2, then either I = J1 or I = J2
[16]. The following theorem shows the relationship between the graded irreducible ideals and
the 2-absorbing I-ideals of R.

Theorem 2.9. Let P be a graded irreducible ideal of R. If Q2 ⊆ P and (P : r) = (P : r2) for
all r ∈ h(R)−Q, then P is a graded 2-absorbing I-ideal of R.

Proof. Let abc ∈ P − IP for a, b, c ∈ h(R) with ab /∈ P . Then either a /∈ Q or b /∈ Q. Now we
can assume that (P : a) = (P : a2). Take P1 = P + Rac and P2 = P + Rbc. Then P1 and P2
are graded ideals of R containing P . We claim that P = P1 ∩ P2. Let x ∈ P1 ∩ P2. Then we can
write

x = m1 + r1ac = m2 + r2bc

for some m1,m2 ∈ P and r1, r2 ∈ R. Thus

ax = am1 + r1a
2c = am2 + r2abc.

Since abc ∈ P , we conclude that ax ∈ P and r1a
2c ∈ P . Hence by our assumption r1ac ∈ P ,

that is x ∈ P . It means that P = P1 ∩P2. Since P is a graded irreducible ideal, we have P = P1
or P = P2 and so either ac ∈ P or bc ∈ P . Therefore P is a graded 2-absorbing I-ideal of R.

Recall that a proper graded ideal I of a graded ring R is said to be a graded primary ideal
if whenever a, b ∈ h(R) with ab ∈ I , then a ∈ I or b ∈ Gr(I) [16].

Lemma 2.10. [16, Lemma 1.8] Let R be a G-graded ring and I be a graded primary ideal of R.
Then P = Gr(I) is a graded prime ideal of R.

Theorem 2.11. Let P be a graded primary ideal of R such that (Gr(P ))2 ⊆ P . Then P is a
graded 2-absorbing I-ideal of R.

Proof. Assume that abc ∈ P − IP such that a, b, c ∈ h(R). Let ab /∈ P . If c ∈ P , then we are
done. Now, suppose that c /∈ P . Since P is a graded primary ideal, c ∈ Gr(P ) and ab ∈ Gr(P ).
As Gr(P ) is a graded prime ideal, by Lemma 2.10, we have a, c ∈ Gr(P ) or b, c ∈ Gr(P ).
Since (Gr(P ))2 ⊆ P , we conclude that ac ∈ P or bc ∈ P .

We say that a proper graded ideal P of a G-graded ring R is a graded I-primary ideal if
a, b ∈ h(R) with ab ∈ P − IP , then a ∈ P or b ∈ Gr(P ).

Theorem 2.12. If P is a graded I-primary ideal of R. Then Gr(P ) is a graded Gr(I)-prime
ideal.

Proof. Let ab ∈ Gr(P ) − Gr(I)Gr(P ) = Gr(P ) − Gr(IP ) for a, b ∈ h(R). Then (ab)n =
anbn ∈ P for some n ∈ N and (ab)m /∈ IP for all m ∈ N. So anbn ∈ P − IP and as P is a
graded I-primary, an ∈ P or bn ∈ Gr(P ), this yields a ∈ Gr(P ) or b ∈ Gr(P ) which means
Gr(P ) is a graded Gr(I)-prime ideal of R.
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Remark 2.13. Let P be a graded primary ideal of a G-graded ring R and I be a graded ideal.
Then Gr(P ) is a graded I-prime ideal of R.

Theorem 2.14. Let P1 and P2 be graded primary ideals of R. Then Gr(P1P2) is a graded 2-
absorbing I-ideal of R.

Proof. By [15, Proposition 2.4], Gr(P1P2) = Gr(P1∩P2) = Gr(P1)∩Gr(P2). Hence Gr(P1P2)
is a graded 2-absorbing I-ideal of R, by Theorem 2.4 and Remark 2.13

In the following two results we characterize graded 2-absorbing I-ideals and graded I-prime
ideals in decomposition rings.

Theorem 2.15. Let R = R1 ×R2 be a G = G1 ×G2-graded ring where Ri is a Gi-graded ring
for (i = 1, 2). Suppose I1 and I2 be two ideals of (R1)e and (R2)e respectively with I = I1 × I2.
Then the following statements hold:

(i) If I2R2 = R2, then P1 is a graded 2-absorbing I1-ideal of a G1-graded ring R1 if and only
if P1 ×R2 is a graded 2-absorbing I-ideal of a G-graded ring R.

(ii) If I1R1 = R1, then P2 is a graded 2-absorbing I2-ideal of a G2-graded ring R2 if and only
if R1 × P2 is a graded 2-absorbing I-ideal of a G-graded ring R.

Proof. (i) Let P1 be a graded 2-absorbing I1-ideal of a G1-graded ring R1. Assume that
(x1, y1), (x2, y2), (x3, y3) ∈ h(R1)× h(R2) such that

(x1, y1)(x2, y2)(x3, y3) ∈ P1 ×R2 − (I1 × I2)(P1 ×R2)
= P1 ×R2 − (I1P1 × I2R2)
= P1 ×R2 − (I1P1 ×R2)

= (P1 − I1P1)×R2.

This implies that x1x2x2 ∈ P1 − I1P1 and as P1 is a graded 2-absorbing I1-ideal of R1,
we coclude that either x1x2 ∈ P1 or x1x3 ∈ P1 or x2x3 ∈ P1. Therefore, we have
(x1, y1)(x2, y2) ∈ P1 × R2 or (x1, y1)(x3, y3) ∈ P1 × R2 or (x2, y2)(x3, y3) ∈ P1 × R2
which implies P1 × R2 is a graded 2-absorbing I-ideal of R. Conversely, on contrary we
assume that P1 × R2 is a graded 2-absorbing I-ideal of a G-graded ring R and P1 is not a
graded 2-absorbing I1-ideal of R1. Therefore, there exists xyz ∈ P1 but neither xy ∈ P1
nor xz ∈ P1 nor yz ∈ P1. Since

(x, 1)(y, 1)(z, 1) ∈ (P1 − I1P1)×R2 = P1 ×R2 − (I1P1 ×R2)
= P1 ×R2 − (I1 × I2)(P1 ×R2)

and as P1 × R2 is a graded 2-absorbing I-ideal, this yields (x, 1)(y, 1) ∈ P1 × R2 or
(x, 1)(z, 1) ∈ P1 × R2 or (y, 1)(z, 1) ∈ P1 × R2. So we have xy ∈ P1 or xz ∈ P1 or
yz ∈ P1, which is a contradiction to ourassumption. Consequently, P1 becomes a graded
2-absorbing I1-ideal of R1.

(ii) The proof is similar to part (1) and hence omitted.

Lemma 2.16. Let R = R1 × R2 be a G = G1 × G2-graded ring where Ri is a Gi-graded ring
for (i = 1, 2). Suppose I1 and I2 be two ideals of (R1)e and (R2)e respectively with I = I1 × I2.
Then the following statements hold:

(i) If I2R2 = R2, then P1 is a graded I1-prime ideal of a G1-graded ring R1 if and only if
P1 ×R2 is a graded I-prime ideal of a G-graded ring R.

(ii) If I1R1 = R1, then P2 is a graded I2-prime ideal of a G2-graded ring R2 if and only if
R1 × P2 is a graded I-prime ideal of a G-graded ring R.

Theorem 2.17. Let R = R1 × R2 be a G = G1 × G2-graded ring where R1, R2 are G1-graded
ring and G2-graded ring respectively. Suppose I1 and I2 be two ideals of (R1)e and (R2)e
respectively with I = I1×I2 and P be a proper graded ideal of R. Then the following statements
are equivalent:
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(i) P is a graded 2-absorbing I-ideal of a G-graded ring R;

(ii) Either P = P1 ×R2 for some graded 2-absorbing I1-ideal P1 of a G1-graded ring R1 with
I2R2 = R2 or P = R1 × P2 for some graded 2-absorbing I2-ideal P2 of a G2-graded ring
R2 with I1R1 = R1 or P = P1 ×P2 for some graded I1-prime ideal P1 of a G1-graded ring
R1 and some graded I2-prime ideal P2 of a G2-graded ring R2.

Proof.(1) ⇒ (2) Let P be a graded 2-absorbing I-ideal of a G-graded ring R. Then P = P1×P2
for some graded ideal P1 of R1 and some graded ideal P2 of R2. Assume that P1 = R1.
Since P is a proper graded ideal of R, P2 ̸= R2. Let S = R

R1×{0} . Then Q = P
R1×{0} is

a graded 2-absorbing I-ideal of a G-graded ring S by Theorem 2.6 Since S is isomorphic
to R2 and P2 = Q, P2 is a graded 2-absorbing I2-ideal of a G2-graded ring R2. Likewise,
we can assume that P2 = R2. Since P is a proper graded ideal of R, P1 ̸= R1. Now by a
similar argument as in the previous case we can conclude that P1 is a graded 2-absorbing
I1-ideal of a G1-graded ring R1. Suppose that P = P1 × P2 and neither P1 = R1 nor
P2 = R2. To establish the claim, suppose that P1 is not a I1-prime ideal P1 of a G1-graded
ring R1.Therefore, there exist a, b ∈ h(R1) with ab ∈ P1 − I1P1 but neither a ∈ P1 nor
b ∈ P1. Assume that x, y, z ∈ h(R1) such that x = (a, 1), y = (b, 1) and z = (1, 0). Hence
xyz = (ab, 0) ∈ P but neither xy = (ab, 1) ∈ P nor xz = (a, 0) ∈ P nor yz = (b, 0) ∈ P ,
which is a contradiction to our assumption. Therefore, P1 is a I1-prime ideal of a G1-graded
ring R1. Likewise, by similar argument we can conclude that P2 is a I2-prime ideal of a
G2-graded ring R2.

(2) ⇒ (1) If P = P1 × R2 for some graded 2-absorbing I1-ideal P1 of a G1-graded ring R1
or P = R1 × P2 for some graded 2-absorbing I2-ideal P2 of a G2-graded ring R2, then
by Theorem 2.15 P is a graded 2-absorbing I-ideal of a G-graded ring R. Now, suppose
P = P1 × P2 for some graded I1-prime ideal P1 of a G1-graded ring R1 and some graded
I2-prime ideal P2 of a G2-graded ring R2. Thus Q1 = P1×R2 and Q2 = R1×P2 are graded
I-prime ideals of a G-graded ring R by Theorem 2.16. Therefore, Q1 ∩Q2 = P1 ×P2 = P
is a graded 2-absorbing I-ideal of a G-graded ring R by Theorem 2.4.

Lemma 2.18. [10, Theorem 2.1, p.2] Let I ⊆ P be ideals of a ring R, where P is a prime ideal.
Then the following statements are equivalent:

(i) P is a minimal prime ideal of I;

(ii) For each x ∈ P , there is a y ∈ R− P and a nonnegative integer n such that yxn ∈ I .

Theorem 2.19. Let P be a graded 2-absorbing I-ideal of a G-graded ring R. Then there are at
most two graded prime ideals of R that are minimal over P .

Proof. Assume that F = {Pi | Pi is a graded prime ideal of R that is minimal over P} and sup-
pose that F has at least three elements. Let P1, P2 ∈ F be two distinct graded prime ideals.
Hence there is an x1 ∈ P1 − P2 and there is an x2 ∈ P2 − P1 where x1, x2 ∈ h(R). First we
show that x1x2 ∈ P . By Lemma 2.18, there is a c2 /∈ P1 and a c1 /∈ P2 such that c2x

n
1 ∈ P and

c1x
m
2 ∈ P for some n,m ≥ 1. Now we prove that c2x

n
1 /∈ IP and c1x

m
2 /∈ IP . So c1, c2 /∈ IP , if

c2x
n
1 ∈ IP ⊆ P ⊆ P1 ∩ P2 ⊆ P2,

then c2x
n
1 ∈ P2 we conclude that either c2 ∈ P2 or x1 ∈ P2 which is a contradiction. Also by

similar way we get c1x
m
2 /∈ IP . Since x1, x2 /∈ P1∩P2 and being P graded 2-absorbing I-ideal of

R, we conclude that c1x2 ∈ P and c2x1 ∈ P . Since x1, x2 /∈ P1∩P2 and c1x2, c2x1 ∈ P ⊆ P1∩P2,
we obtain c1 ∈ P1 − P2 and c2 ∈ P2 − P1, and thus c1, c2 /∈ P1 ∩ P2. So (c1 + c2)x1x2 ∈ P ,
since c1x2 ∈ P and c2x1 ∈ P . We have c1 + c2 /∈ P1 and c1 + c2 /∈ P2. Since (c1 + c2)x2 /∈ P1
and (c1 + c2)x1 /∈ P2, we conclude that neither (c1 + c2)x2 ∈ P and (c1 + c2)x1 ∈ P , and hence
x1x2 ∈ P . Now suppose P3 ∈ F such that P3 is neither P1 nor P2. Then take y1 ∈ P1−(P2∪P3),
y2 ∈ P2 − (P1 ∪ P3), and y3 ∈ P3 − (P1 ∪ P2). By previous argument y1y2 ∈ P . Since
P ⊆ P1 ∩ P2 ∩ P3 and y1y2 ∈ P , we get that y1 ∈ P3 or y2 ∈ P3 which is a contradiction.
Therefore F has at most two graded prime ideals that are minimal over P .
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3 Graded n-absorbing I-ideals

Definition 3.1. Let R be a G-graded ring and I be a fixed proper ideal of Re and let n ≥
1 be a positive integer. A proper graded ideal P of R is called an n-absorbing I-ideal if
a1, a2, . . . , an+1 ∈ h(R) with a1 . . . an+1 ∈ P − IP , then a1 . . . ai−1ai+1 . . . an+1 ∈ P for some
i ∈ {1, 2, . . . , n+ 1}.

Corollary 3.2. Let P be a graded n-absorbing I-ideal of R. Then P is a graded m-absorbing
I-ideal of R for all m ≥ n.

Lemma 3.3. A proper graded ideal P of a G-graded ring R is a graded n-absorbing I-ideal if
and only if P

IP is a graded n-absorbing 0-ideal.

Theorem 3.4. If P is a proper graded ideal of a G-graded ring R with IGr(P ) = Gr(IP ), then
Gr(P ) is a graded n-absorbing I-ideal.

Proof. Suppose x1x2 . . . xn+1 ∈ Gr(P )− IGr(P ) with x1, x2, . . . , xn+1 ∈ h(R). Then

(x1x2 . . . xn+1)m = x1
mx2

m . . . xn+1
m ∈ P − IP .

Thus being graded n-absorbing I-ideal gives us

x1
mx2

m . . . xi−1
mxi+1

m . . . xn+1
m ∈ P

for some i ∈ {1, 2, . . . , n + 1}. So (x1x2 . . . xi−1xi+1 . . . xn+1)m ∈ P which implies that
x1x2 . . . xi−1xi+1 . . . xn+1 ∈ Gr(P ) for some i ∈ {1, 2, . . . , n+1}. Therefore Gr(P ) is a graded
n-absorbing I-ideal of R.

Based on the following result, exploring that what occurs in a more generic case, in other
terms, what is the intersection structure of m graded I-prime ideals of R.

Theorem 3.5. If Pj is a non zero graded I-prime ideal of a G-graded ring R for 1 ≤ j ≤ m,
then ∩m

j=1Pj is a graded n-absorbing I-ideal.

Proof. Let a1a2 . . . an+1 ∈ ∩m
j=1Pj−I∩m

j=1Pj for a1, a2, . . . , an+1 ∈ h(R). Thus a1a2 . . . an+1 ∈
Pj − IPj for all j = 1, . . . ,m and so ai(a1a2 . . . ai−1ai+1 . . . an+1) ∈ Pj − IPj for all j =
1, . . . ,m and for some i ∈ {1, 2, . . . , n + 1}. Since Pj is a graded I-prime ideal for all j =
1, . . . ,m, we conclude that either ai ∈ Pj or a1a2 . . . ai−1ai+1 . . . an+1 ∈ Pj for all j = 1, . . . ,m.
This yields ai ∈ ∩m

j=1Pj or a1a2 . . . ai−1ai+1 . . . an+1 ∈ ∩m
j=1Pj . If a1a2 . . . ai−1ai+1 . . . an+1 ∈

∩m
j=1Pj , then there is nothing to prove. Now in the other case we get ai(a1a2 . . . ai−1ai+1 . . . an) ∈

∩m
j=1Pj for some i ∈ {1, 2, . . . , n} and ai(a1a2 . . . ai−1ai+1 . . . an−1) ∈ ∩m

j=1Pj for i = n + 1.
Hence ∩m

j=1Pj is a graded n-absorbing I-ideal.

Theorem 3.6. Let Pj be a graded primary ideal of R for each 1 ≤ j ≤ n. Then Gr(P1P2 . . . Pn)
is a graded n-absorbing I-ideal of R.

Proof. The proof is straightforward by using a similar argument as in the Theorem 2.14.

Proposition 3.7. Let P be a graded n-absorbing I-ideal of a G-graded ring R and let S ⊆ R
be a multiplicative closed set of R such that P ∩ S = ∅. Then S−1P is a graded n-absorbing
S−1I-ideal of S−1R.

Proof. Assume r1
x1
, . . . , rn+1

xn+1
∈ h(S−1R) such that

r1r2...rn+1
x1x2...xn+1

∈ S−1P − S−1IS−1P = S−1(P − IP ).

Then we have yr1r2 . . . rn+1 ∈ P − IP for some y ∈ S. By taking yr1 as one element, either
r2r3 . . . rn+1 ∈ P or yr1 . . . ri−1ri+1 . . . rn+1 ∈ P for i = 2, 3, . . . , n+ 1. Hence

r2...rn+1
x2...xn+1

= r2
x2

. . . rn+1
xn+1

∈ S−1P

or
yr1...ri−1ri+1...rn+1
yx1...xi−1xi+1...xn+1

= r1
x1

. . .
ri−1
xi−1

ri+1
xi+1

. . . rn+1
xn+1

∈ S−1P ,
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this implies that S−1P is a graded n-absorbing S−1I-ideal of S−1R.

Theorem 3.8. Let P be a proper graded ideal of a G-graded ring R. If P is a graded n-absorbing
I-ideal that is not a graded n-absorbing ideal, then Pn+1 ⊆ IP .

Proof. Suppose that Pn+1 ⊈ IP . Now we have to show that P is a graded n-absorbing
ideal. Take x1, x2, . . . , xn+1 ∈ h(R) such that x1x2 . . . xn+1 ∈ P . If x1x2 . . . xn+1 /∈ IP
and P is a graded n-absorbing I-ideal, then we are done. Now, for the case x1x2 . . . xn+1 ∈
IP , we have x1x2 . . . xn+1−kP

k ⊆ IP for k = 1, 2, . . . , n, since otherwise we conclude that
x1x2 . . . xn+1−kp1p2 . . . pk /∈ IP for p1, p2, . . . , pk ∈ P and so

x1x2 . . . xn+1−k(xn+2−k + p1) . . . (xn+1 + pk) ∈ P − IP .

As P is a graded n-absorbing I-ideal, x1 . . . xi−1xi+1 . . . xn+1 ∈ P for some i ∈ {1, 2, . . . , n+1}.
Similarly, we can assume that for all i1, i2 . . . in+1−k ∈ {1, 2, . . . , n+1}, xi1 . . . xin+1−k

P k ⊆ IP

with 1 ≤ k ≤ n+ 1. Since Pn+1 ⊈ IP , there exist r1, r2, . . . , rn+1 ∈ P with r1r2 . . . rn+1 /∈ IP .
This yields

(x1 + r1)(x2 + r2) . . . (xn+1 + rn+1) ∈ P − IP .

Since P is a graded n-absorbing I-ideal, we get

(x1 + r1) . . . (xi−1 + ri−1)(xi+1 + ri+1) . . . (xn+1 + rn+1) ∈ P

and so x1 . . . xi−1xi+1 . . . xn+1 ∈ P for some i ∈ {1, 2, . . . , n+ 1}. Consequently, P is a graded
n-absorbing ideal.

We conclude from Theorem 3.8 that a graded n-absorbing I-ideal P with Pn+1 ⊈ IP is a
graded n-absorbing ideal.

Corollary 3.9. Let R be a G-graded ring and P be a proper graded ideal of R. If P is a graded
n-absorbing 0-ideal that is not a graded n-absorbing ideal, then Pn+1 = 0.

Corollary 3.10. Let P be a graded n-absorbing I-ideal of a G-graded ring R with IP ⊆ Pn+2.
Then P is a graded n-absorbing ∩∞

i=1P
i-ideal (n ≥ 1).

Proof. If P is a graded n-absorbing ideal, then P is a graded n-absorbing I-ideal and so is
a graded n-absorbing ∩∞

i=1P
i-ideal. Suppose that P is not a graded n-absorbing ideal, then

Theorem 3.8 gives us Pn+1 ⊆ IP ⊆ Pn+2. Hence IP = P k for each k ≥ n + 1 and hence
∩∞
i=1P

i = IP . Therefore P is a graded n-absorbing ∩∞
i=1P

i-ideal.

Let R and S be two graded rings. If P is a graded n-absorbing 0-ideal of R. Then P × S
need not be a graded n-absorbing 0-ideal of R × S . For a particularly case see [6, Theorem
2]. However, P × S is a graded n-absorbing I-ideal for each I = I1 × I2 where I1 and I2 be
two graded ideals of R and S respectively with ∩∞

i=1(P × S)i ⊆ I(P × S) ⊆ P × S.

Theorem 3.11. (i) Let R and S be two G-graded rings and let P be a graded n-absorbing
0-ideal of R. Then J = P × S is a graded n-absorbing I-ideal of R × S, for each I with
∩∞
i=1(P × S)i ⊆ I(P × S) ⊆ P × S.

(ii) Let R be a G-graded ring and J be a graded finitely generated proper ideal of R. Suppose
that J is a graded n-absorbing I-ideal, where IP ⊆ Jn+2. Then either J is a graded n-
absorbing 0-ideal or Jn+1 ̸= 0 is idempotent and R decomposes as T ×S, where S = Jn+1

and J = P×S, where P is a graded n-absorbing 0-ideal. Hence J is a graded n-absorbing
I-ideal for each I with ∩∞

i=1J
i ⊆ IJ ⊆ J .

Proof. (i) Let R and S be two G-graded rings and let P be a graded n-absorbing 0-ideal of
R. Then P × S need not be a graded n-absorbing 0-ideal of R × S. In fact, P × S is a
graded n-absorbing 0-ideal if and only if P ×S is a graded prime ideal. However, P ×S is
a graded n-absorbing I-ideal for each

∩∞
i=1(P × S)i ⊆ I(P × S).
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If P is a graded n-absorbing ideal, then P × S is a graded n-absorbing ideal and thus is
a graded n-absorbing I-ideal. Assume that P is not a graded n-absorbing ideal. Then
Pn+1 = 0 and (P × S)n+1 = 0 × S. Therefore

∩∞
i=1(P × S)i = ∩∞

i=1P
i × S = 0 × S.

Hence

P × S − ∩∞
i=1(P × S)i = P × S − 0 × S = (P − 0)× S.

Since P is a graded n-absorbing 0-ideal, P ×S is a graded n-absorbing ∩∞
i=1(P ×S)i-ideal

and as

∩∞
i=1(P × S)i ⊆ I(P × S),

P × S is a graded n-absorbing I-ideal.

(ii) If J is a graded n-absorbing ideal, then J is a graded n-absorbing 0-ideal. So we can
assume that J is not a graded n-absorbing ideal. Then Jn+1 ⊆ IP and hence

Jn+1 ⊆ IP ⊆ Jn+2,

so Jn+1 = Jn+2. Hence Jn+1 is idempotent. Since Jn+1 is finitely generated, Jn+1 = (e)
for some idempotent e ∈ R. Suppose Jn+1 = 0. Then IP = 0, and hence J is a graded
n-absorbing 0-ideal. Assume that Jn+1 ̸= 0, and put S = Jn+1 = Re and T = R(1 − e),
so R decomposes T × S. Let P = J(1 − e); so J = P × S, where

Pn+1 = (J(1 − e))n+1 = Jn+1(1 − e)n+1 = (e)(1 − e) = 0.

We claim that P is a graded n-absorbing 0-ideal. Let x1, x2, . . . , xn+1 ∈ h(R) with 0 ̸=
x1x2 . . . xn+1 ∈ P . Then

(x1, 0)(x2, 0) . . . (xn+1, 0) = (x1x2 . . . xn+1, 0) ∈ P × S − (P × S)n+1

= P × S − 0 × S ⊆ P − IP ,

since IP ⊆ Jn+2, which implies that

IP ⊆ Jn+2 = (P × S)n+2 = 0 × S.

Hence J − Jn+1 ⊆ J − IP . As J is a graded n-absorbing I-ideal,

(x1x2 . . . xi−1xi+1 . . . xn+1, 0) ∈ P × S = J

for some i ∈ {1, 2, . . . , n + 1}. Thus x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P . Therefore P is a
graded n-absorbing 0-ideal of R.

Corollary 3.12. Let R be an indecomposable G-graded ring and let P be a graded finitely gen-
erated n-absorbing I-ideal of R, where IP ⊆ Pn+2. Then P is a graded n-absorbing 0-ideal.
Furthermore, if R is a G-graded integral domain, then P is actually a graded n-absorbing ideal.

Corollary 3.13. A proper graded ideal P of a G-graded Noetherian integral domain R is a
graded n-absorbing ideal if and only if P is a graded n-absorbing Pn+1-ideal for n ≥ 2.

Theorem 3.14. Let P be a proper graded ideal of a G-graded ring R. Then the following con-
ditions are equivalent.

(i) P is a graded n-absorbing I-ideal

(ii) For x1, x2, . . . , xn ∈ h(R)− h(P ):

(P : x1x2 . . . xn) = ∪n
i=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn)
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Proof. (1) ⇒ (2) Suppose x1, x2, . . . , xn ∈ h(R) − h(P ) and y ∈ (P : x1x2 . . . xn). Then
x1x2 . . . xny ∈ P . If x1x2 . . . xny /∈ IP , then x1x2 . . . xi−1xi+1 . . . xny ∈ P for some i ∈
{1, 2, . . . , n}, and so y ∈ (P : x1x2 . . . xi−1xi+1 . . . xn). If x1x2 . . . xny ∈ IP , then y ∈ (IP :
x1x2 . . . xn). Hence

(P : x1x2 . . . xn) ⊆ ∪n
i=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn)

The other containment always holds.

(2) ⇒ (1) Suppose x1x2 . . . xn+1 ∈ P − IP . If x1x2 . . . xn ∈ P , then we are done. Assume
that x1x2 . . . xn /∈ P . Thus

(P : x1x2 . . . xn) = ∪n
i=1(P : x1x2 . . . xi−1xi+1 . . . xn) ∪ (IP : x1x2 . . . xn).

Since x1x2 . . . xn+1 ∈ P , xn+1 ∈ (P : x1x2 . . . xn) and the fact x1x2 . . . xn+1 /∈ IP gives
us xn+1 /∈ (IP : x1x2 . . . xn). Hence xn+1 ∈ (P : x1x2 . . . xi−1xi+1 . . . xn), for some i ∈
{1, 2, . . . , n}, that is x1x2 . . . xi−1xi+1 . . . xn+1 ∈ P . Thus P is a graded n-absorbing I-ideal.

In the following result we show that all components of graded n-absorbing I-ideals in de-
composition rings is the product of graded n-absorbing ideals except one of the components is
the whole ring.

Proposition 3.15. Let R = R1 × R2 × . . . × Rn+1, where Ri is a G-graded ring, for i ∈
{1, 2, . . . , n + 1}. If P is a graded n-absorbing I-ideal of R, then either P = IP or P =
P1 × P2 × . . . × Pi−1 × Ri × Pi+1 × . . . × Pn+1 for some i ∈ {1, 2, . . . , n+ 1} and if Pj ̸= Ri

for j ̸= i, then Pj is a graded n-absorbing ideal in Rj .

Proof. Let P = P1 × P2 × . . .× Pn+1 be a graded n-absorbing I-ideal of R and P ̸= IP . Then
there exists (x1, x2, . . . , xn+1) ∈ P − IP , and so

(x1, 1, . . . , 1)(1, x2, . . . , 1) . . . (1, 1, . . . , xn+1) = (x1, x2, . . . , xn+1) ∈ P .

As P is a graded n-absorbing I-ideal, we have (x1, x2, . . . , xi−1, 1, xi+1, . . . , xn+1) ∈ P for some
i ∈ {1, 2, . . . , n+ 1}. Thus (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ P and hence

P = P1 × P2 × . . .× Pi−1 ×Ri × Pi+1 × . . .× Pn+1.

If Pj ̸= Ri for j ̸= i, then we have to prove Pj is a graded n-absorbing ideal in Rj . Let i < j
and let y1y2 . . . yn+1 ∈ Pj . Then

(0, 0, . . . , 0, 1, 0, . . . , 0, y1y2 . . . yn, 0, . . . , 0)
= (0, 0, . . . , 1, 0, . . . , y1, . . . , 0)(0, 0, . . . , 1, 0, . . . , y2, . . . , 0)

. . . (0, 0, . . . , 1, 0, . . . , yn+1, . . . , 0) ∈ P − IP

and the graded n-absorbing I-ideal P gives that

(0, 0, . . . , 0, 1, 0, . . . , 0, y1y2 . . . yk−1yk+1 . . . yn+1, 0, . . . , 0) ∈ P

for some k ∈ {1, 2, . . . , n + 1}. Thus y1y2 . . . yk−1yk+1 . . . yn+1 ∈ Pj and hence Pj is a graded
n-absorbing ideal in Rj . We can do the same arguments for the case j < i.

We characterize G-graded rings in which every proper graded ideal is a graded n-absorbing
I-ideal.

Theorem 3.16. Let R be a G-graded ring and let |Max(R)| ≥ n+ 1 ≥ 2. Every proper graded
ideal of R is a graded n-absorbing I-ideal if and only if every quotient of R is a product of
(n+ 1)-fields.

Proof.
(⇒) : Let m1,m2, . . . ,mn+1 be a distinct graded maximal ideals of R. Then m = m1m2 . . .mn+1
is a graded n-absorbing I-ideal of R. We want to show that m is not a graded n-absorbing ideal.
First to show that mi ⊈ ∪j ̸=imj for all i ∈ {1, 2, . . . , n + 1}, we suppose by contrary that
mi ⊆ ∪j ̸=imj . Then there exists mj with mi ⊆ mj by prime avoidance lemma, which con-
tradicts the fact that mi, i = 1, 2, . . . , n + 1 are distinct graded maximal ideals. Hence there
exists
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xi ∈ mi − ∪n+1
i̸=j=1mj

and so x1x2 . . . xn+1 ∈ m. If there exists j ∈ {1, 2, . . . , n+ 1} with x1x2 . . . xj−1xj+1 . . . xn+1 ∈
m ⊆ mj , then xi ∈ mj , for some i ̸= j, a contradiction. Hence m is not a graded n-absorbing
ideal and so mn+1 = Im. Thus by Chinese remainder theorem,

R
Im

∼= R
mn+1

1
× R

mn+1
2

× . . .× R
mn+1

n+1
.

Put Fi =
R

mn+1
i

. If Fi is not field, then it has a nonzero proper graded ideal K and so

0 × 0 × . . .× 0 ×K × 0 × . . .× 0

is a graded n-absorbing 0-ideal of R
Im . Thus by Proposition 3.15, we have K = Fi or K = 0,

which is impossible. Hence Fi is a field.
(⇐) : Let P be a proper graded ideal of R. Then

R
IP

∼= F1 × F2 × . . .× Fn+1

and
P
IP

∼= P1 × P2 × . . .× Pn+1,

where Pi is an ideal of Fi, i = 1, 2, . . . , n+ 1. If P = IP , there is nothing to prove, otherwise
we have Pj = 0 for at least one j ∈ {1, 2, . . . , n + 1}, since P

IP is proper. Therefore P
IP is a

graded n-absorbing 0-ideal of R
IP and P is a graded n-absorbing I-ideal of R.

Corollary 3.17. Let R be a G-graded ring and let |Max(R)| ≥ n+ 1 ≥ 2. Every proper graded
ideal of R is a graded n-absorbing 0-ideal if and only if R ∼= F1 × F2 × ... × Fn+1, where
F1, F2, ..., Fn+1 are fields.

Theorem 3.18. Let P be a graded n-absorbing I-ideal of a G-graded ring R. Then there are at
most n graded prime ideals of R that are minimal over P .

Proof. Let C = {Qi | Qi is a grade prime ideal of R that is minimal over P} and let C has at
least n elements. Assume Q1, Q2, ..., Qn ∈ C be distinct elements and xi ∈ Qi − ∪i̸=jQj

where xi ∈ h(R) for i = 1, 2, ..., n. By Lemma 2.18 there is a yi /∈ Qi where yi ∈ h(R) for
i = 1, 2, ..., n such that yixti

i ∈ P for some positive integers t1, t2, ..., tn. Since xi /∈ ∩n
j=1Qj for

all i = 1, 2, ..., n and P is graded n-absorbing I-ideal we have yix
n−1
i ∈ P . As xi /∈ ∩n

j=1Qj and
yix

n−1
i ∈ P ⊆ ∩n

j=1Qj we get that yi ∈ Qi − ∪i ̸=jQj and so yi /∈ ∩n
j=1Qj for all i = 1, 2, ..., n.

Since yix
n−1
i ∈ P ,

∑n
j=1 yj

∏n
i=1 x

n−1
i ∈ P and clearly

∑n
j=1 yj /∈ Qi for all i = 1, 2, ..., n.

Also
∑n

j=1 yj
∏n

i̸=r x
n−1
r /∈ P , since

∑n
j=1 yj

∏n
i̸=r x

n−1
r /∈ Qi, for i = 1, 2, ..., n, and being

P graded n-absorbing I-ideal, we obtain
∏n

i=1 x
n−1
i ∈ P . Now, suppose Qn+1 ∈ C such that

Qn+1 ̸= Qi, for i = 1, 2, ..., n. Take zi ∈ Qi − ∪i ̸=jQj for i = 1, 2, ..., n + 1 and by previous
argument,

∏n
i=1 z

n−1
i ∈ P . Since P ⊆ ∩n+1

i=1 Qi and
∏n

i=1 z
n−1
i ∈ P , we have zn+1

i ∈ Qn+1 for
some i = 1, 2, ..., n and consequently, zi ∈ Qn+1 for i = 1, 2, ..., n which is a contraduction.
Therefore C has at most n elements.

Theorem 3.19. Let P be a graded n-absorbing ideal of a G-graded ring R. Then one of the
following statements must hold:

(i) Gr(P ) = Q is a graded prime ideal of R such that Q2 ⊆ P .

(ii) Gr(P ) = ∩n
i=1Qi, (

∏n
i=1 Qi)n−1 ⊆ P and Gr(P ) ⊆ P , where Qi, i = 1, 2, . . . , n are the

only distinct graded prime ideals of R that are minimal over P .

Proof. By Theorem 3.18 we conclude that either Gr(P ) = Q is a graded prime ideal of R or
Gr(P ) = ∩n

i=1Qi, where Qi are the only distinct graded prime ideals of R that are minimal over
P . Assume that Gr(P ) = Q is a graded prime ideal of R and take x, y ∈ Q. By [8, Theorem
2.1], we get xn, yn ∈ P and so x(xn−1 + yn−1)y ∈ P . Since P is a graded n-absorbing ideal

x(xn−1 + yn−1) = xn + xyn−1 ∈ P
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or

(xn−1 + yn−1)y = xn−1y + yn ∈ P or xy ∈ P .

Hence in either case, we have Qn ⊆ P . For the second assertions, suppose Gr(P ) = ∩n
i=1Qi

,where Qi are the only distinct graded prime ideals of R that are minimal over P and take
x, y ∈ Gr(P ). By a bove argument xy ∈ P and so Gr(P )2 ⊆ P . To prove

∏n
i=1 Qi ⊆ P ,

take xi ∈ Pi − ∪n
i ̸=jPj and by the proof of Theorem 3.18, we have xn−1

1 . . . xn−1
n ∈ P . Let

r ∈ Gr(P ) and zi ∈ Pi − ∪n
i ̸=jPj . Then zn−1

1 . . . zn−1
n ∈ P by the proof of Theorem 3.18 and

r + z1 ∈ P1 − ∪n
i ̸=jPj . Hence

rzn−1
2 . . . zn−1

n + zn−1
1 . . . zn−1

n = (r + zn−1
1 )zn−1

2 . . . zn−1
n ∈ P

and so rzn−1
2 . . . zn−1

n ∈ P .

Theorem 3.20. Let P be a graded n-absorbing I-ideal of a G-graded ring R and Q1 ̸= Q2 be
distinct graded prime ideals of R and I(P : a) = (IP : a) for all a ∈ h(R). Then

(i) if Gr(P ) = Q1, then (P :R a) is a graded n-absorbing I-ideal of R with Gr(P :R a) =
Q1,∀a ∈ h(R)−Q1;

(ii) if Gr(P ) = Q1 ∩ Q2, then (P :R a) is a graded n-absorbing I-ideal of R with Gr(P :R
a) = Q1 ∩Q2,∀a ∈ h(R)− {Q1 ∪Q2}.

Proof. (i) Let a ∈ h(R)−Q1 and x1, . . . , xn+1 ∈ h(R) with

x1 . . . xn+1 ∈ (P :R a)− I(P :R a).

Then x1 . . . xn+1a ∈ P − IP since

IP ⊆ I(P :R a) = (IP :R a).

So x1 . . . xi−1xi+1 . . . xn+1a ∈ P or x1 . . . xn−1a ∈ P or x1 . . . xn+1 ∈ P for i = 1, 2, . . . , n−
1, since P is a graded n-absorbing I-ideal. If one of the first two cases holds, then we are
done. If x1 . . . xn+1 ∈ P , then

x1 . . . xi−1xi+1 . . . xn+1 ∈ P

for i = 1, 2, . . . , n+ 1 which implies

x1 . . . xi−1xi+1 . . . xn+1a ∈ P .

Thus (P :R a) is graded n-absorbing I-ideal of a R and as P ⊆ (P :R a) ⊆ Q1, we have
Gr(P :R a) = Q1.

(ii) By similar arguments to that of (1), we can prove (P :R a) is graded n-absorbing I-ideal.
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