Graded n-absorbing I-ideals

I. Akray, Adil K. Jabbar and Shadan A. Othman
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13A02; Secondary 13A15; 16W50.
Keywords and phrases: I-prime ideal, n-absorbing ideal, graded I-prime ideal, graded n-absorbing ideal.

Abstract

The authors would like to thank the referees and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract

Let G be an arbitrary group with an identity e, let R be a commutative G-graded ring and let I be a proper graded ideal of R. In this article, we introduce the concept of graded 2 -absorbing I-ideal and graded n-absorbing I-ideal in a commutative G-graded rings which is a generalization of graded 2 -absorbing ideal and graded n-absorbing ideal. A proper graded ideal P of a G-graded ring R is called a graded 2-absorbing I-ideal if $a, b, c \in h(R)$ with $a b c \in P-I P$, then $a b \in P$ or $a c \in P$ or $b c \in P$. Also a proper graded ideal P of a G-graded ring R is called a graded n-absorbing I-ideal if $a_{1}, a_{2}, \ldots, a_{n+1} \in h(R)$ with $a_{1} \ldots a_{n+1} \in P-I P$, then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$ and $n \geq 1$. A number of results and characterizations concerning these classes of graded ideals and their homogeneous. components are given. Furthermore, among many results we prove that every proper graded ideal of a G-graded ring R is a graded n-absorbing I-ideal if and only if every quotient of R is a product of $(n+1)$-fields and also we give a condition under which the intersection of m graded ideals of R is a graded n-absorbing I-ideal.

1 Introduction

Prime and primary ideals have key roles in commutative ring theory, many authors have studied generalizations of prime and primary ideals (see [4], [5], [6], [8]). Later, A. Badawi in [8] generalized the concept of prime ideals in a different way. He defined a nonzero proper ideal P of R to be a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in P$, then $a b \in P$ or $a c \in P$ or $b c \in P$. Anderson and Badawi in [4] generalized the concept of 2-absorbing ideals to n-absorbing ideals. Take $n \in \mathbb{N}, R$ a commutative ring with unity. An ideal I of R is said to be an n-absorbing ideal of a ring R if for any $x_{1}, x_{2}, \ldots, x_{n+1} \in R$ such that $x_{1} \ldots x_{n+1} \in I$, there are n of the x_{i} 's whose product is in I. Furthermore, the concept of graded 2-absorbing ideal was introduced and studied by Al-Zoubi, Abu-Dawwas and Ceken in [3]. Akray in [1] introduced I-prime ideal. An ideal of a ring R is I-prime if for $a, b \in R$ with $a b \in P-I P$, then $a \in P$ or $b \in P$ for a fixed ideal I of R. Then he defined the concept of n-absorbing I-ideals in [2]. For a fixed proper ideal I, a proper ideal P of R is called an n-absorbing I-ideal if $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ with $a_{1} \ldots a_{n+1} \in P-I P$, then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$ and $n \geq 1$. In this paper, we introduce the notion of graded 2 -absorbing and graded n-absorbing I-ideals in commutative G-graded rings which are the graded versions of 2-absorbing and n-absorbing ideals on the one hand and generalizations of graded prime ideals on the other.

Before we state our results let us recall some notation and terminology. Throughout this work all rings are assumed to be commutative with nonzero identity. Let G be an abelian group with identity e. By a G-graded ring we mean a ring R which is a direct sum of a family of additive subgroups $\left\{R_{g}\right\}_{g \in G}$ of R with the property that $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. Throughout,
$R=\bigoplus_{g \in G} R_{g}$ denotes graded ring and we call $r_{g} \in R_{g}$ a homogeneous element of R of degree g and also the set of all homogeneous elements of R is denoted by $h(R)=\cup_{g \in G} R_{g}$. Let P be an ideal of R. Then P is called a graded ideal of R if one of the equivalent conditions hold: (i) $P=\bigoplus_{g \in G} P_{g}$, where $P_{g}=P \cap R_{g}$ for all $g \in G$ and (ii) $a=a_{g_{1}}+a_{g_{2}}+\ldots+a_{g_{n}} \in P$ implies that $a_{g_{i}} \in P$, where $a_{g_{i}} \in R_{g_{i}}$. Let R be a G-graded ring and P be a graded ideal of R. The quotient ring R / P is a G-graded ring. Indeed, $R / P=\oplus_{g \in G}(R / P)_{g}$ where $R / P=\oplus_{g \in G}(R / P)_{g}=\left\{a+P \mid a \in R_{g}\right\}$.

Graded rings have been studied since 1955, (see for instance [14], [17]), then various researchers interested in these rings and made several important studies in them and construct a new branch in ring theory. Grading appear in many circumstances, both in elementary and advanced levels. Particularly, there is a wide variety of applications of graded algebras in geometry and physics, for more information on the application of graded rings, see [12].

Let I be a fixed proper ideal of R_{e}. In this article, we introduce the notion of graded 2absorbing I-ideal and graded n-absorbing I-ideal in commutative G-graded rings which is a generalization of graded 2-absorbing and graded n-absorbing ideals. A proper graded ideal P of a G-graded ring R is called a graded 2-absorbing I-ideal if for $a, b, c \in h(R)$ with abc \in $P-I P$, then $a b \in P$ or ac $\in P$ or $b c \in P$. Also a proper graded ideal P of a G-graded ring R is called an n-absorbing I-ideal if $a_{1}, a_{2}, \ldots, a_{n+1} \in h(R)$ with $a_{1} \ldots a_{n+1} \in P-I P$, then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$ and $n \geq 1$. Among many results in this paper. We give an example (Example 2.16) of a graded 2-absorbing I-ideal of R that is not a graded 2-absorbing ideal of R. We show that if P is a proper graded ideal of R such that $G r(P)$ is a graded prime ideal of R and $G r(P) \neq P$ and $(P: a)$ is a graded I-prime ideal of R for all $a \in h(G r(P))-h(P)$, then P is a graded 2-absorbing I-ideal of R (Theorem 2.8). It is shown that if P_{1} and P_{2} are graded primary ideals of R, then $G r\left(P_{1} P_{2}\right)$ is a graded 2-absorbing I-ideal of R (Theorem 2.14). If P_{j} is a non zero graded I-prime ideal of a G-graded ring R for $1 \leq j \leq m$, then we show that $\cap_{j=1}^{m} P_{j}$ is a graded n-absorbing I-ideal (Theorem 3.5). In (Theorem 3.16) we characterize G-graded rings in which every proper graded ideal is a graded n-absorbing I-ideal.

2 Graded 2-absorbing I-ideal

Definition 2.1. Let R be a G-graded ring and I be a fixed proper ideal of R_{e}. A proper graded ideal P of R is called a graded 2-absorbing I-ideal if $a, b, c \in h(R)$ with $a b c \in P-I P$, then $a b \in P$ or $a c \in P$ or $b c \in P$.

From the definition, one can see that any graded 2-absorbing ideal of R is a graded 2absorbing I-ideal of R. But, the following example illustrates that the converse need not be true.

Example 2.2. Assume that $R=K[X, Y, Z]$ is a \mathbb{Z}-graded ring with $\operatorname{deg}(X)=\operatorname{deg}(Y)=$ $\operatorname{deg}(Z)=1$ and K is any field and $P=\langle X Y\rangle$ is a graded ideal of R generated by homogeneous elements $X Y$. Then P is a graded 2-absorbing ideal of R. Thus for any graded ideal I of R, P is a graded 2-absorbing I-ideal of R. Furthermore, take $P=\left\langle X Y Z, X^{2} Y^{2}\right\rangle$ and $I=\left\langle X Y Z, X^{2} Y^{2}\right\rangle$. Therefore P is a graded 2-absorbing I-ideal, since $P-I P=\phi$. However, P is not a graded 2-absorbing ideal, since $X Y Z \in P$ but $X Y \notin P, X Z \notin P$ and $Y Z \notin P$.

Clearly, every 2-absorbing I-ideal of a graded ring R is also a graded 2-absorbing I-ideal. However, the next example shows that the converse is not true in general.

Example 2.3. Let $R=\mathbb{Z}[i]$ and $G=\mathbb{Z}_{2}$. Then R is a G-graded ring with $R_{0}=\mathbb{Z}$ and $R_{1}=i \mathbb{Z}$. Let $I=2 R$ and $P=10 R$. Then P is not a 2 -absorbing I-ideal of R, since

$$
10=(1+i)(1-i) 5 \in P-I P
$$

while $(1+i)(1-i)=2 \notin P,(1+i) 5 \notin P$ and $(1-i) 5 \notin P$. To show that P is a graded 2-absorbing I-ideal of R, take $a, b, c \in h(R)$ with $a b c \in P-I P$. So $10 \mid a b c$. Suppose 2|a and $5 \nmid a$. Then 5 divides b or c and P is a graded 2-absorbing I-ideal of R.

Theorem 2.4. If P and Q are non zero graded I-prime ideals of a G-graded ring R, then $P \cap Q$ is a graded 2-absorbing I-ideal.

Proof. Let $a, b, c \in h(R)$ with $(a b) c \in P \cap Q-I(P \cap Q)$. Then $(a b) c \in P-I P$ and $(a b) c \in$ $Q-I Q$. Since P is a graded I-prime ideal, so either $a b \in P$ or $c \in P$. If $a b \in P$, then either $a \in P$ or $b \in P$. Similarly, $a \in Q$ or $b \in Q$ or $c \in Q$. Suppose $a \in P \cap Q$. Then $a b \in P \cap Q$ and $a c \in P \cap Q$, since $P \cap Q$ is an ideal. Therefore $P \cap Q$ is a graded 2-absorbing I-ideal.

Theorem 2.5. Let R be a G-graded ring and P be a graded ideal of R. If P is a graded 2absorbing I-ideal of R, then $P \cap R_{e}$ is a graded 2-absorbing I-ideal of R_{e}.

Proof. Let $a, b, c \in R_{e}$ with $a b c \in P \cap R_{e}-I\left(P \cap R_{e}\right)$. As P is a graded 2-absorbing I-ideal of $R, a b \in P$ or $b c \in P$ or $a c \in P$. Thus $a b \in P \cap R_{e}$ or $a c \in P \cap R_{e}$ or $b c \in P \cap R_{e}$, since R_{e} is a subring of R. Hence $P \cap R_{e}$ is a graded 2-absorbing I-ideal of R_{e}.

Theorem 2.6. Let P and Q be graded ideals of a G-graded ring R with $Q \subseteq P$. Then the following hold:
(i) P is a graded 2-absorbing I-ideal of R if and only if $\frac{P}{Q}$ is a graded 2-absorbing I-ideal of $\frac{R}{Q}$.
(ii) If Q and $\frac{P}{Q}$ are graded 2-absorbing I-ideals of R and $\frac{R}{Q}$ respectively, then P is a graded 2-absorbing I-ideals of R.

Proof. (i) Assume that

$$
x y z+Q=(x+Q)(y+Q)(z+Q) \in \frac{P}{Q}-I \frac{P}{Q}=\frac{P}{Q}-\frac{I P+Q}{Q}
$$

for some $x, y, z \in h(R)$. Then

$$
x y z \in P-(I P+Q)
$$

so $x y z \in P-I P$. Since P is a graded 2-absorbing I-ideal, we get $x y+Q \in \frac{P}{Q}$ or $x z+Q \in \frac{P}{Q}$ or $y z+Q \in \frac{P}{Q}$. Therefore $\frac{P}{Q}$ is a graded 2-absorbing I-ideal of $\frac{R}{Q}$. For the converse, assume $a b c \in P-I P$ with $a, b, c \in h(R)$. Thus $a b c \in P-(I P+Q)$. Hence

$$
(a+Q)(b+Q)(c+Q) \in \frac{P}{Q}-\frac{I P+Q}{Q}=\frac{P}{Q}-I \frac{P}{Q}
$$

As $\frac{P}{Q}$ is a graded 2-absorbing I-ideal of $\frac{R}{Q}$, we can conclude that $(a+Q)(b+Q) \in \frac{P}{Q}$ or $(a+Q)(c+Q) \in \frac{P}{Q}$ or $(b+Q)(c+Q) \in \frac{P}{Q}$. Hence $a b \in P$ or $b c \in P$ or $a c \in P$, which implies that P is a graded 2 -absorbing I-ideal
(ii) Let $x y z \in P-I P$ where $x, y, z \in h(R)$. Then

$$
(x+Q)(y+Q)(z+Q)=x y z+Q \in \frac{P}{Q}
$$

If $x y z \in Q$, since $x y z \notin I P$ and $Q \subseteq P$, then $I Q \subseteq I P$. Thus $x y z \notin I Q$. Hence $x y z \in$ $Q-I Q$. Since Q is a graded 2-absorbing I-ideal, then we conclude either $x y \in Q \subseteq P$ or $x z \in Q \subseteq P$ or $y z \in Q \subseteq P$. Now, for the case $x y z \notin Q$, we have $\overline{x y z} \notin \frac{I P+Q}{Q}$ and

$$
(x+Q)(y+Q)(z+Q)=\overline{x y z} \in \frac{P}{Q}-I \frac{P}{Q}
$$

Since $\frac{P}{Q}$ are graded 2-absorbing I-ideals of $\frac{R}{Q}$, we obtain that either $x y+Q \in \frac{P}{Q}$ or $x z+Q \in$ $\frac{P}{Q}$ or $y z+Q \in \frac{P}{Q}$. Hence $x y \in P$ or $x z \in P$ or $y z \in P$.

The graded radical of a graded ideal I, denoted by $G r(I)$, is the set of all $x=\sum_{g \in G} x_{g} \in R$ such that for each $g \in G$ there exists $n_{g} \in \mathbb{Z}^{+}$with $x_{g}^{n_{g}} \in I$. Note that, if r is a homogeneous element, then $r \in G r(I)$ if and only if $r^{n} \in I$ for some $n \in \mathbb{Z}^{+}$[16]. The following lemma is useful in the proof of our next result.

Lemma 2.7. Let P and I be a proper graded ideals of R. Then $I(P: a) \subset(I P: a)$ for all $a \in h(R)$.

Proof. Let $x \in I(P: a)$. Then $x=i r$ where $r a \in P$. So $x a=i r a \in I P$, this implies that $x \in(I P: a)$. Hence $I(P: a) \subset(I P: a)$.

Theorem 2.8. Let P be a proper graded ideal of R such that $G r(P)$ is a graded prime ideal of R and $\operatorname{Gr}(P) \neq P$. If $(P: a)$ is a graded I-prime ideal of R for all $a \in h(G r(P))-h(P)$, then P is a graded 2-absorbing I-ideal of R.

Proof. Suppose that $a, b, c \in h(R)$ such that $a b c \in P-I P$. We have $a \in G r(P)$ or $b \in G r(P)$ or $c \in G r(P)$, since $P \subset G r(P)$ and $G r(P)$ is a graded prime ideal. Assume that $a \in G r(P)$. If $a \in P$, then $a b \in P$ and we are done. So, let $a \in G r(P)-P$. Now, $b c \in(P: a)$. By Lemma 2.7, $I(P: a) \subset(I P: a)$. So $b c \notin(I P: a)$. If $b c \in I(P: a)$, then $a b c \in I P$ which is a contradiction. As $(P: a)$ is a graded I-prime ideal, we coclude that either $b \in(P: a)$ or $c \in(P: a)$. Hence $a b \in P$ or $a c \in P$. Therefore P is a graded 2-absorbing I-ideal of R.

Recall that a proper graded ideal I of a graded ring R is said to be a graded irreducible ideal if whenever J_{1} and J_{2} are graded ideals of R with $I=J_{1} \cap J_{2}$, then either $I=J_{1}$ or $I=J_{2}$ [16]. The following theorem shows the relationship between the graded irreducible ideals and the 2-absorbing I-ideals of R.

Theorem 2.9. Let P be a graded irreducible ideal of R. If $Q^{2} \subseteq P$ and $(P: r)=\left(P: r^{2}\right)$ for all $r \in h(R)-Q$, then P is a graded 2-absorbing I-ideal of R.

Proof. Let $a b c \in P-I P$ for $a, b, c \in h(R)$ with $a b \notin P$. Then either $a \notin Q$ or $b \notin Q$. Now we can assume that $(P: a)=\left(P: a^{2}\right)$. Take $P_{1}=P+R a c$ and $P_{2}=P+R b c$. Then P_{1} and P_{2} are graded ideals of R containing P. We claim that $P=P_{1} \cap P_{2}$. Let $x \in P_{1} \cap P_{2}$. Then we can write

$$
x=m_{1}+r_{1} a c=m_{2}+r_{2} b c
$$

for some $m_{1}, m_{2} \in P$ and $r_{1}, r_{2} \in R$. Thus

$$
a x=a m_{1}+r_{1} a^{2} c=a m_{2}+r_{2} a b c
$$

Since $a b c \in P$, we conclude that $a x \in P$ and $r_{1} a^{2} c \in P$. Hence by our assumption $r_{1} a c \in P$, that is $x \in P$. It means that $P=P_{1} \cap P_{2}$. Since P is a graded irreducible ideal, we have $P=P_{1}$ or $P=P_{2}$ and so either $a c \in P$ or $b c \in P$. Therefore P is a graded 2-absorbing I-ideal of R.

Recall that a proper graded ideal I of a graded ring R is said to be a graded primary ideal if whenever $a, b \in h(R)$ with $a b \in I$, then $a \in I$ or $b \in G r(I)$ [16].

Lemma 2.10. [16, Lemma 1.8] Let R be a G-graded ring and I be a graded primary ideal of R. Then $P=G r(I)$ is a graded prime ideal of R.

Theorem 2.11. Let P be a graded primary ideal of R such that $(G r(P))^{2} \subseteq P$. Then P is a graded 2-absorbing I-ideal of R.

Proof. Assume that $a b c \in P-I P$ such that $a, b, c \in h(R)$. Let $a b \notin P$. If $c \in P$, then we are done. Now, suppose that $c \notin P$. Since P is a graded primary ideal, $c \in G r(P)$ and $a b \in G r(P)$. As $\operatorname{Gr}(P)$ is a graded prime ideal, by Lemma 2.10, we have $a, c \in G r(P)$ or $b, c \in G r(P)$. Since $(G r(P))^{2} \subseteq P$, we conclude that $a c \in P$ or $b c \in P$.

We say that a proper graded ideal P of a G-graded ring R is a graded I-primary ideal if $a, b \in h(R)$ with $a b \in P-I P$, then $a \in P$ or $b \in G r(P)$.

Theorem 2.12. If P is a graded I-primary ideal of R. Then $G r(P)$ is a graded $G r(I)$-prime ideal.

Proof. Let $a b \in G r(P)-G r(I) G r(P)=G r(P)-G r(I P)$ for $a, b \in h(R)$. Then $(a b)^{n}=$ $a^{n} b^{n} \in P$ for some $n \in \mathbb{N}$ and $(a b)^{m} \notin I P$ for all $m \in \mathbb{N}$. So $a^{n} b^{n} \in P-I P$ and as P is a graded I-primary, $a^{n} \in P$ or $b^{n} \in G r(P)$, this yields $a \in G r(P)$ or $b \in G r(P)$ which means $G r(P)$ is a graded $G r(I)$-prime ideal of R.

Remark 2.13. Let P be a graded primary ideal of a G-graded ring R and I be a graded ideal. Then $G r(P)$ is a graded I-prime ideal of R.

Theorem 2.14. Let P_{1} and P_{2} be graded primary ideals of R. Then $G r\left(P_{1} P_{2}\right)$ is a graded 2absorbing I-ideal of R.
Proof. By [15, Proposition 2.4], $G r\left(P_{1} P_{2}\right)=G r\left(P_{1} \cap P_{2}\right)=G r\left(P_{1}\right) \cap G r\left(P_{2}\right)$. Hence $G r\left(P_{1} P_{2}\right)$ is a graded 2-absorbing I-ideal of R, by Theorem 2.4 and Remark 2.13

In the following two results we characterize graded 2-absorbing I-ideals and graded I-prime ideals in decomposition rings.

Theorem 2.15. Let $R=R_{1} \times R_{2}$ be a $G=G_{1} \times G_{2}$-graded ring where R_{i} is a G_{i}-graded ring for $(i=1,2)$. Suppose I_{1} and I_{2} be two ideals of $\left(R_{1}\right)_{e}$ and $\left(R_{2}\right)_{e}$ respectively with $I=I_{1} \times I_{2}$. Then the following statements hold:
(i) If $I_{2} R_{2}=R_{2}$, then P_{1} is a graded 2-absorbing I_{1}-ideal of a G_{1}-graded ring R_{1} if and only if $P_{1} \times R_{2}$ is a graded 2-absorbing I-ideal of a G-graded ring R.
(ii) If $I_{1} R_{1}=R_{1}$, then P_{2} is a graded 2-absorbing I_{2}-ideal of a G_{2}-graded ring R_{2} if and only if $R_{1} \times P_{2}$ is a graded 2-absorbing I-ideal of a G-graded ring R.

Proof. (i) Let P_{1} be a graded 2-absorbing I_{1}-ideal of a G_{1}-graded ring R_{1}. Assume that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in h\left(R_{1}\right) \times h\left(R_{2}\right)$ such that

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right) \in P_{1} \times R_{2}-\left(I_{1} \times I_{2}\right)\left(P_{1} \times R_{2}\right) \\
=P_{1} \times R_{2}-\left(I_{1} P_{1} \times I_{2} R_{2}\right) \\
=P_{1} \times R_{2}-\left(I_{1} P_{1} \times R_{2}\right) \\
=\left(P_{1}-I_{1} P_{1}\right) \times R_{2} .
\end{gathered}
$$

This implies that $x_{1} x_{2} x_{2} \in P_{1}-I_{1} P_{1}$ and as P_{1} is a graded 2-absorbing I_{1}-ideal of R_{1}, we coclude that either $x_{1} x_{2} \in P_{1}$ or $x_{1} x_{3} \in P_{1}$ or $x_{2} x_{3} \in P_{1}$. Therefore, we have $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in P_{1} \times R_{2}$ or $\left(x_{1}, y_{1}\right)\left(x_{3}, y_{3}\right) \in P_{1} \times R_{2}$ or $\left(x_{2}, y_{2}\right)\left(x_{3}, y_{3}\right) \in P_{1} \times R_{2}$ which implies $P_{1} \times R_{2}$ is a graded 2-absorbing I-ideal of R. Conversely, on contrary we assume that $P_{1} \times R_{2}$ is a graded 2-absorbing I-ideal of a G-graded ring R and P_{1} is not a graded 2-absorbing I_{1}-ideal of R_{1}. Therefore, there exists $x y z \in P_{1}$ but neither $x y \in P_{1}$ nor $x z \in P_{1}$ nor $y z \in P_{1}$. Since

$$
\begin{aligned}
(x, 1)(y, 1)(z, 1) & \in\left(P_{1}-I_{1} P_{1}\right) \times R_{2}=P_{1} \times R_{2}-\left(I_{1} P_{1} \times R_{2}\right) \\
= & P_{1} \times R_{2}-\left(I_{1} \times I_{2}\right)\left(P_{1} \times R_{2}\right)
\end{aligned}
$$

and as $P_{1} \times R_{2}$ is a graded 2-absorbing I-ideal, this yields $(x, 1)(y, 1) \in P_{1} \times R_{2}$ or $(x, 1)(z, 1) \in P_{1} \times R_{2}$ or $(y, 1)(z, 1) \in P_{1} \times R_{2}$. So we have $x y \in P_{1}$ or $x z \in P_{1}$ or $y z \in P_{1}$, which is a contradiction to ourassumption. Consequently, P_{1} becomes a graded 2-absorbing I_{1}-ideal of R_{1}.
(ii) The proof is similar to part (1) and hence omitted.

Lemma 2.16. Let $R=R_{1} \times R_{2}$ be a $G=G_{1} \times G_{2}$-graded ring where R_{i} is a G_{i}-graded ring for $(i=1,2)$. Suppose I_{1} and I_{2} be two ideals of $\left(R_{1}\right)_{e}$ and $\left(R_{2}\right)_{e}$ respectively with $I=I_{1} \times I_{2}$. Then the following statements hold:
(i) If $I_{2} R_{2}=R_{2}$, then P_{1} is a graded I_{1}-prime ideal of a G_{1}-graded ring R_{1} if and only if $P_{1} \times R_{2}$ is a graded I-prime ideal of a G-graded ring R.
(ii) If $I_{1} R_{1}=R_{1}$, then P_{2} is a graded I_{2}-prime ideal of a G_{2}-graded ring R_{2} if and only if $R_{1} \times P_{2}$ is a graded I-prime ideal of a G-graded ring R.

Theorem 2.17. Let $R=R_{1} \times R_{2}$ be a $G=G_{1} \times G_{2}$-graded ring where R_{1}, R_{2} are G_{1}-graded ring and G_{2}-graded ring respectively. Suppose I_{1} and I_{2} be two ideals of $\left(R_{1}\right)_{e}$ and $\left(R_{2}\right)_{e}$ respectively with $I=I_{1} \times I_{2}$ and P be a proper graded ideal of R. Then the following statements are equivalent:
(i) P is a graded 2-absorbing I-ideal of a G-graded ring R;
(ii) Either $P=P_{1} \times R_{2}$ for some graded 2-absorbing I_{1}-ideal P_{1} of a G_{1}-graded ring R_{1} with $I_{2} R_{2}=R_{2}$ or $P=R_{1} \times P_{2}$ for some graded 2-absorbing I_{2}-ideal P_{2} of a G_{2}-graded ring R_{2} with $I_{1} R_{1}=R_{1}$ or $P=P_{1} \times P_{2}$ for some graded I_{1}-prime ideal P_{1} of a G_{1}-graded ring R_{1} and some graded I_{2}-prime ideal P_{2} of a G_{2}-graded ring R_{2}.
$P\left(r b \phi f f(2) \quad\right.$ Let P be a graded 2-absorbing I-ideal of a G-graded ring R. Then $P=P_{1} \times P_{2}$ for some graded ideal P_{1} of R_{1} and some graded ideal P_{2} of R_{2}. Assume that $P_{1}=R_{1}$. Since P is a proper graded ideal of $R, P_{2} \neq R_{2}$. Let $S=\frac{R}{R_{1} \times\{0\}}$. Then $Q=\frac{P}{R_{1} \times\{0\}}$ is a graded 2 -absorbing I-ideal of a G-graded ring S by Theorem 2.6 Since S is isomorphic to R_{2} and $P_{2}=Q, P_{2}$ is a graded 2-absorbing I_{2}-ideal of a G_{2}-graded ring R_{2}. Likewise, we can assume that $P_{2}=R_{2}$. Since P is a proper graded ideal of $R, P_{1} \neq R_{1}$. Now by a similar argument as in the previous case we can conclude that P_{1} is a graded 2-absorbing I_{1}-ideal of a G_{1}-graded ring R_{1}. Suppose that $P=P_{1} \times P_{2}$ and neither $P_{1}=R_{1}$ nor $P_{2}=R_{2}$. To establish the claim, suppose that P_{1} is not a I_{1}-prime ideal P_{1} of a G_{1}-graded ring R_{1}.Therefore, there exist $a, b \in h\left(R_{1}\right)$ with $a b \in P_{1}-I_{1} P_{1}$ but neither $a \in P_{1}$ nor $b \in P_{1}$. Assume that $x, y, z \in h\left(R_{1}\right)$ such that $x=(a, 1), y=(b, 1)$ and $z=(1,0)$. Hence $x y z=(a b, 0) \in P$ but neither $x y=(a b, 1) \in P$ nor $x z=(a, 0) \in P$ nor $y z=(b, 0) \in P$, which is a contradiction to our assumption. Therefore, P_{1} is a I_{1}-prime ideal of a G_{1}-graded ring R_{1}. Likewise, by similar argument we can conclude that P_{2} is a I_{2}-prime ideal of a G_{2}-graded ring R_{2}.
$(2) \Rightarrow(1) \quad$ If $P=P_{1} \times R_{2}$ for some graded 2-absorbing I_{1}-ideal P_{1} of a G_{1}-graded ring R_{1} or $P=R_{1} \times P_{2}$ for some graded 2-absorbing I_{2}-ideal P_{2} of a G_{2}-graded ring R_{2}, then by Theorem $2.15 P$ is a graded 2 -absorbing I-ideal of a G-graded ring R. Now, suppose $P=P_{1} \times P_{2}$ for some graded I_{1}-prime ideal P_{1} of a G_{1}-graded ring R_{1} and some graded I_{2}-prime ideal P_{2} of a G_{2}-graded ring R_{2}. Thus $Q_{1}=P_{1} \times R_{2}$ and $Q_{2}=R_{1} \times P_{2}$ are graded I-prime ideals of a G-graded ring R by Theorem 2.16. Therefore, $Q_{1} \cap Q_{2}=P_{1} \times P_{2}=P$ is a graded 2 -absorbing I-ideal of a G-graded ring R by Theorem 2.4.

Lemma 2.18. [10, Theorem 2.1, p.2] Let $I \subseteq P$ be ideals of a ring R, where P is a prime ideal. Then the following statements are equivalent:
(i) P is a minimal prime ideal of I;
(ii) For each $x \in P$, there is a $y \in R-P$ and a nonnegative integer n such that $y x^{n} \in I$.

Theorem 2.19. Let P be a graded 2-absorbing I-ideal of a G-graded ring R. Then there are at most two graded prime ideals of R that are minimal over P.

Proof. Assume that $F=\left\{P_{i} \mid P_{i}\right.$ is a graded prime ideal of R that is minimal over $\left.P\right\}$ and suppose that F has at least three elements. Let $P_{1}, P_{2} \in F$ be two distinct graded prime ideals. Hence there is an $x_{1} \in P_{1}-P_{2}$ and there is an $x_{2} \in P_{2}-P_{1}$ where $x_{1}, x_{2} \in h(R)$. First we show that $x_{1} x_{2} \in P$. By Lemma 2.18, there is a $c_{2} \notin P_{1}$ and a $c_{1} \notin P_{2}$ such that $c_{2} x_{1}^{n} \in P$ and $c_{1} x_{2}^{m} \in P$ for some $n, m \geq 1$. Now we prove that $c_{2} x_{1}^{n} \notin I P$ and $c_{1} x_{2}^{m} \notin I P$. So $c_{1}, c_{2} \notin I P$, if

$$
c_{2} x_{1}^{n} \in I P \subseteq P \subseteq P_{1} \cap P_{2} \subseteq P_{2}
$$

then $c_{2} x_{1}^{n} \in P_{2}$ we conclude that either $c_{2} \in P_{2}$ or $x_{1} \in P_{2}$ which is a contradiction. Also by similar way we get $c_{1} x_{2}^{m} \notin I P$. Since $x_{1}, x_{2} \notin P_{1} \cap P_{2}$ and being P graded 2-absorbing I-ideal of R, we conclude that $c_{1} x_{2} \in P$ and $c_{2} x_{1} \in P$. Since $x_{1}, x_{2} \notin P_{1} \cap P_{2}$ and $c_{1} x_{2}, c_{2} x_{1} \in P \subseteq P_{1} \cap P_{2}$, we obtain $c_{1} \in P_{1}-P_{2}$ and $c_{2} \in P_{2}-P_{1}$, and thus $c_{1}, c_{2} \notin P_{1} \cap P_{2}$. So $\left(c_{1}+c_{2}\right) x_{1} x_{2} \in P$, since $c_{1} x_{2} \in P$ and $c_{2} x_{1} \in P$. We have $c_{1}+c_{2} \notin P_{1}$ and $c_{1}+c_{2} \notin P_{2}$. Since $\left(c_{1}+c_{2}\right) x_{2} \notin P_{1}$ and $\left(c_{1}+c_{2}\right) x_{1} \notin P_{2}$, we conclude that neither $\left(c_{1}+c_{2}\right) x_{2} \in P$ and $\left(c_{1}+c_{2}\right) x_{1} \in P$, and hence $x_{1} x_{2} \in P$. Now suppose $P_{3} \in F$ such that P_{3} is neither P_{1} nor P_{2}. Then take $y_{1} \in P_{1}-\left(P_{2} \cup P_{3}\right)$, $y_{2} \in P_{2}-\left(P_{1} \cup P_{3}\right)$, and $y_{3} \in P_{3}-\left(P_{1} \cup P_{2}\right)$. By previous argument $y_{1} y_{2} \in P$. Since $P \subseteq P_{1} \cap P_{2} \cap P_{3}$ and $y_{1} y_{2} \in P$, we get that $y_{1} \in P_{3}$ or $y_{2} \in P_{3}$ which is a contradiction. Therefore F has at most two graded prime ideals that are minimal over P.

3 Graded \boldsymbol{n}-absorbing I-ideals

Definition 3.1. Let R be a G-graded ring and I be a fixed proper ideal of R_{e} and let $n \geq$ 1 be a positive integer. A proper graded ideal P of R is called an n-absorbing I-ideal if $a_{1}, a_{2}, \ldots, a_{n+1} \in h(R)$ with $a_{1} \ldots a_{n+1} \in P-I P$, then $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$.

Corollary 3.2. Let P be a graded n-absorbing I-ideal of R. Then P is a graded m-absorbing I-ideal of R for all $m \geq n$.

Lemma 3.3. A proper graded ideal P of a G-graded ring R is a graded n-absorbing I-ideal if and only if $\frac{P}{I P}$ is a graded n-absorbing 0-ideal.

Theorem 3.4. If P is a proper graded ideal of a G-graded ring R with $\operatorname{IGr}(P)=G r(I P)$, then $G r(P)$ is a graded n-absorbing I-ideal.

Proof. Suppose $x_{1} x_{2} \ldots x_{n+1} \in G r(P)-I G r(P)$ with $x_{1}, x_{2}, \ldots, x_{n+1} \in h(R)$. Then

$$
\left(x_{1} x_{2} \ldots x_{n+1}\right)^{m}=x_{1}{ }^{m} x_{2}{ }^{m} \ldots x_{n+1}{ }^{m} \in P-I P .
$$

Thus being graded n-absorbing I-ideal gives us

$$
x_{1}{ }^{m} x_{2}{ }^{m} \ldots x_{i-1}{ }^{m} x_{i+1}{ }^{m} \ldots x_{n+1}{ }^{m} \in P
$$

for some $i \in\{1,2, \ldots, n+1\}$. So $\left(x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}\right)^{m} \in P$ which implies that $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in \operatorname{Gr}(P)$ for some $i \in\{1,2, \ldots, n+1\}$. Therefore $\operatorname{Gr}(P)$ is a graded n-absorbing I-ideal of R.

Based on the following result, exploring that what occurs in a more generic case, in other terms, what is the intersection structure of m graded I-prime ideals of R.

Theorem 3.5. If P_{j} is a non zero graded I-prime ideal of a G-graded ring R for $1 \leq j \leq m$, then $\cap_{j=1}^{m} P_{j}$ is a graded n-absorbing I-ideal.

Proof. Let $a_{1} a_{2} \ldots a_{n+1} \in \cap_{j=1}^{m} P_{j}-I \cap_{j=1}^{m} P_{j}$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in h(R)$. Thus $a_{1} a_{2} \ldots a_{n+1} \in$ $P_{j}-I P_{j}$ for all $j=1, \ldots, m$ and so $a_{i}\left(a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n+1}\right) \in P_{j}-I P_{j}$ for all $j=$ $1, \ldots, m$ and for some $i \in\{1,2, \ldots, n+1\}$. Since P_{j} is a graded I-prime ideal for all $j=$ $1, \ldots, m$, we conclude that either $a_{i} \in P_{j}$ or $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in P_{j}$ for all $j=1, \ldots, m$. This yields $a_{i} \in \cap_{j=1}^{m} P_{j}$ or $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in \cap_{j=1}^{m} P_{j}$. If $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n+1} \in$ $\cap_{j=1}^{m} P_{j}$, then there is nothing to prove. Now in the other case we get $a_{i}\left(a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}\right) \in$ $\cap_{j=1}^{m} P_{j}$ for some $i \in\{1,2, \ldots, n\}$ and $a_{i}\left(a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n-1}\right) \in \cap_{j=1}^{m} P_{j}$ for $i=n+1$. Hence $\cap_{j=1}^{m} P_{j}$ is a graded n-absorbing I-ideal.

Theorem 3.6. Let P_{j} be a graded primary ideal of R for each $1 \leq j \leq n$. Then $G r\left(P_{1} P_{2} \ldots P_{n}\right)$ is a graded n-absorbing I-ideal of R.

Proof. The proof is straightforward by using a similar argument as in the Theorem 2.14.
Proposition 3.7. Let P be a graded n-absorbing I-ideal of a G-graded ring R and let $S \subseteq R$ be a multiplicative closed set of R such that $P \cap S=\emptyset$. Then $S^{-1} P$ is a graded n-absorbing $S^{-1} I$-ideal of $S^{-1} R$.

Proof. Assume $\frac{r_{1}}{x_{1}}, \ldots, \frac{r_{n+1}}{x_{n+1}} \in h\left(S^{-1} R\right)$ such that

$$
\frac{r_{1} r_{2} \ldots r_{n+1}}{x_{1} x_{2} \ldots x_{n+1}} \in S^{-1} P-S^{-1} I S^{-1} P=S^{-1}(P-I P)
$$

Then we have $y r_{1} r_{2} \ldots r_{n+1} \in P-I P$ for some $y \in S$. By taking $y r_{1}$ as one element, either $r_{2} r_{3} \ldots r_{n+1} \in P$ or $y r_{1} \ldots r_{i-1} r_{i+1} \ldots r_{n+1} \in P$ for $i=2,3, \ldots, n+1$. Hence

$$
\frac{r_{2} \ldots r_{n+1}}{x_{2} \ldots x_{n+1}}=\frac{r_{2}}{x_{2}} \cdots \frac{r_{n+1}}{x_{n+1}} \in S^{-1} P
$$

or

$$
\frac{y r_{1} \ldots r_{i-1} r_{i+1} \ldots r_{n+1}}{y x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}}=\frac{r_{1}}{x_{1}} \ldots \frac{r_{i-1}}{x_{i-1}} \frac{r_{i+1}}{x_{i+1}} \cdots \frac{r_{n+1}}{x_{n+1}} \in S^{-1} P
$$

this implies that $S^{-1} P$ is a graded n-absorbing $S^{-1} I$-ideal of $S^{-1} R$.
Theorem 3.8. Let P be a proper graded ideal of a G-graded ring R. If P is a graded n-absorbing I-ideal that is not a graded n-absorbing ideal, then $P^{n+1} \subseteq I P$.

Proof. Suppose that $P^{n+1} \nsubseteq I P$. Now we have to show that P is a graded n-absorbing ideal. Take $x_{1}, x_{2}, \ldots, x_{n+1} \in h(R)$ such that $x_{1} x_{2} \ldots x_{n+1} \in P$. If $x_{1} x_{2} \ldots x_{n+1} \notin I P$ and P is a graded n-absorbing I-ideal, then we are done. Now, for the case $x_{1} x_{2} \ldots x_{n+1} \in$ $I P$, we have $x_{1} x_{2} \ldots x_{n+1-k} P^{k} \subseteq I P$ for $k=1,2, \ldots, n$, since otherwise we conclude that $x_{1} x_{2} \ldots x_{n+1-k} p_{1} p_{2} \ldots p_{k} \notin I P$ for $p_{1}, p_{2}, \ldots, p_{k} \in P$ and so

$$
x_{1} x_{2} \ldots x_{n+1-k}\left(x_{n+2-k}+p_{1}\right) \ldots\left(x_{n+1}+p_{k}\right) \in P-I P
$$

As P is a graded n-absorbing I-ideal, $x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$. Similarly, we can assume that for all $i_{1}, i_{2} \ldots i_{n+1-k} \in\{1,2, \ldots, n+1\}, x_{i_{1}} \ldots x_{i_{n+1-k}} P^{k} \subseteq I P$ with $1 \leq k \leq n+1$. Since $P^{n+1} \nsubseteq I P$, there exist $r_{1}, r_{2}, \ldots, r_{n+1} \in P$ with $r_{1} r_{2} \ldots r_{n+1} \notin I P$. This yields

$$
\left(x_{1}+r_{1}\right)\left(x_{2}+r_{2}\right) \ldots\left(x_{n+1}+r_{n+1}\right) \in P-I P .
$$

Since P is a graded n-absorbing I-ideal, we get

$$
\left(x_{1}+r_{1}\right) \ldots\left(x_{i-1}+r_{i-1}\right)\left(x_{i+1}+r_{i+1}\right) \ldots\left(x_{n+1}+r_{n+1}\right) \in P
$$

and so $x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in P$ for some $i \in\{1,2, \ldots, n+1\}$. Consequently, P is a graded n-absorbing ideal.

We conclude from Theorem 3.8 that a graded n-absorbing I-ideal P with $P^{n+1} \nsubseteq I P$ is a graded n-absorbing ideal.

Corollary 3.9. Let R be a G-graded ring and P be a proper graded ideal of R. If P is a graded n-absorbing 0 -ideal that is not a graded n-absorbing ideal, then $P^{n+1}=0$.

Corollary 3.10. Let P be a graded n-absorbing I-ideal of a G-graded ring R with $I P \subseteq P^{n+2}$. Then P is a graded n-absorbing $\cap_{i=1}^{\infty} P^{i}$-ideal $(n \geq 1)$.

Proof. If P is a graded n-absorbing ideal, then P is a graded n-absorbing I-ideal and so is a graded n-absorbing $\cap_{i=1}^{\infty} P^{i}$-ideal. Suppose that P is not a graded n-absorbing ideal, then Theorem 3.8 gives us $P^{i=1} \subseteq I P \subseteq P^{n+1}$. Hence $I P=P^{k}$ for each $k \geq n+1$ and hence $\cap_{i=1}^{\infty} P^{i}=I P$. Therefore P is a graded n-absorbing $\cap_{i=1}^{\infty} P^{i}$-ideal.

Let R and S be two graded rings. If P is a graded n-absorbing 0 -ideal of R. Then $P \times S$ need not be a graded n-absorbing 0 -ideal of $R \times S$. For a particularly case see [6, Theorem 2]. However, $P \times S$ is a graded n-absorbing I-ideal for each $I=I_{1} \times I_{2}$ where I_{1} and I_{2} be two graded ideals of R and S respectively with $\cap_{i=1}^{\infty}(P \times S)^{i} \subseteq I(P \times S) \subseteq P \times S$.

Theorem 3.11. (i) Let R and S be two G-graded rings and let P be a graded n-absorbing 0 -ideal of R. Then $J=P \times S$ is a graded n-absorbing I-ideal of $R \times S$, for each I with $\cap_{i=1}^{\infty}(P \times S)^{i} \subseteq I(P \times S) \subseteq P \times S$.
(ii) Let R be a G-graded ring and J be a graded finitely generated proper ideal of R. Suppose that J is a graded n-absorbing I-ideal, where $I P \subseteq J^{n+2}$. Then either J is a graded n absorbing 0 -ideal or $J^{n+1} \neq 0$ is idempotent and R decomposes as $T \times S$, where $S=J^{n+1}$ and $J=P \times S$, where P is a graded n-absorbing 0 -ideal. Hence J is a graded n-absorbing I-ideal for each I with $\cap_{i=1}^{\infty} J^{i} \subseteq I J \subseteq J$.

Proof. (i) Let R and S be two G-graded rings and let P be a graded n-absorbing 0 -ideal of R. Then $P \times S$ need not be a graded n-absorbing 0 -ideal of $R \times S$. In fact, $P \times S$ is a graded n-absorbing 0 -ideal if and only if $P \times S$ is a graded prime ideal. However, $P \times S$ is a graded n-absorbing I-ideal for each

$$
\cap_{i=1}^{\infty}(P \times S)^{i} \subseteq I(P \times S)
$$

If P is a graded n-absorbing ideal, then $P \times S$ is a graded n-absorbing ideal and thus is a graded n-absorbing I-ideal. Assume that P is not a graded n-absorbing ideal. Then $P^{n+1}=0$ and $(P \times S)^{n+1}=0 \times S$. Therefore

$$
\cap_{i=1}^{\infty}(P \times S)^{i}=\cap_{i=1}^{\infty} P^{i} \times S=0 \times S
$$

Hence

$$
P \times S-\cap_{i=1}^{\infty}(P \times S)^{i}=P \times S-0 \times S=(P-0) \times S
$$

Since P is a graded n-absorbing 0 -ideal, $P \times S$ is a graded n-absorbing $\cap_{i=1}^{\infty}(P \times S)^{i}$-ideal and as

$$
\cap_{i=1}^{\infty}(P \times S)^{i} \subseteq I(P \times S)
$$

$P \times S$ is a graded n-absorbing I-ideal.
(ii) If J is a graded n-absorbing ideal, then J is a graded n-absorbing 0 -ideal. So we can assume that J is not a graded n-absorbing ideal. Then $J^{n+1} \subseteq I P$ and hence

$$
J^{n+1} \subseteq I P \subseteq J^{n+2}
$$

so $J^{n+1}=J^{n+2}$. Hence J^{n+1} is idempotent. Since J^{n+1} is finitely generated, $J^{n+1}=(e)$ for some idempotent $e \in R$. Suppose $J^{n+1}=0$. Then $I P=0$, and hence J is a graded n-absorbing 0-ideal. Assume that $J^{n+1} \neq 0$, and put $S=J^{n+1}=R e$ and $T=R(1-e)$, so R decomposes $T \times S$. Let $P=J(1-e)$; so $J=P \times S$, where

$$
P^{n+1}=(J(1-e))^{n+1}=J^{n+1}(1-e)^{n+1}=(e)(1-e)=0 .
$$

We claim that P is a graded n-absorbing 0 -ideal. Let $x_{1}, x_{2}, \ldots, x_{n+1} \in h(R)$ with $0 \neq$ $x_{1} x_{2} \ldots x_{n+1} \in P$. Then

$$
\begin{gathered}
\left(x_{1}, 0\right)\left(x_{2}, 0\right) \ldots\left(x_{n+1}, 0\right)=\left(x_{1} x_{2} \ldots x_{n+1}, 0\right) \in P \times S-(P \times S)^{n+1} \\
=P \times S-0 \times S \subseteq P-I P
\end{gathered}
$$

since $I P \subseteq J^{n+2}$, which implies that

$$
I P \subseteq J^{n+2}=(P \times S)^{n+2}=0 \times S
$$

Hence $J-J^{n+1} \subseteq J-I P$. As J is a graded n-absorbing I-ideal,

$$
\left(x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1}, 0\right) \in P \times S=J
$$

for some $i \in\{1,2, \ldots, n+1\}$. Thus $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in P$. Therefore P is a graded n-absorbing 0 -ideal of R.

Corollary 3.12. Let R be an indecomposable G-graded ring and let P be a graded finitely generated n-absorbing I-ideal of R, where $I P \subseteq P^{n+2}$. Then P is a graded n-absorbing 0-ideal. Furthermore, if R is a G-graded integral domain, then P is actually a graded n-absorbing ideal.

Corollary 3.13. A proper graded ideal P of a G-graded Noetherian integral domain R is a graded n-absorbing ideal if and only if P is a graded n-absorbing P^{n+1}-ideal for $n \geq 2$.

Theorem 3.14. Let P be a proper graded ideal of a G-graded ring R. Then the following conditions are equivalent.
(i) P is a graded n-absorbing I-ideal
(ii) For $x_{1}, x_{2}, \ldots, x_{n} \in h(R)-h(P)$:

$$
\left(P: x_{1} x_{2} \ldots x_{n}\right)=\cup_{i=1}^{n}\left(P: x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right) \cup\left(I P: x_{1} x_{2} \ldots x_{n}\right)
$$

Proof. (1) \Rightarrow (2) Suppose $x_{1}, x_{2}, \ldots, x_{n} \in h(R)-h(P)$ and $y \in\left(P: x_{1} x_{2} \ldots x_{n}\right)$. Then $x_{1} x_{2} \ldots x_{n} y \in P$. If $x_{1} x_{2} \ldots x_{n} y \notin I P$, then $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n} y \in P$ for some $i \in$ $\{1,2, \ldots, n\}$, and so $y \in\left(P: x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right)$. If $x_{1} x_{2} \ldots x_{n} y \in I P$, then $y \in(I P$: $\left.x_{1} x_{2} \ldots x_{n}\right)$. Hence

$$
\left(P: x_{1} x_{2} \ldots x_{n}\right) \subseteq \cup_{i=1}^{n}\left(P: x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right) \cup\left(I P: x_{1} x_{2} \ldots x_{n}\right)
$$

The other containment always holds.
(2) \Rightarrow (1) Suppose $x_{1} x_{2} \ldots x_{n+1} \in P-I P$. If $x_{1} x_{2} \ldots x_{n} \in P$, then we are done. Assume that $x_{1} x_{2} \ldots x_{n} \notin P$. Thus

$$
\left(P: x_{1} x_{2} \ldots x_{n}\right)=\cup_{i=1}^{n}\left(P: x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right) \cup\left(I P: x_{1} x_{2} \ldots x_{n}\right) .
$$

Since $x_{1} x_{2} \ldots x_{n+1} \in P, x_{n+1} \in\left(P: x_{1} x_{2} \ldots x_{n}\right)$ and the fact $x_{1} x_{2} \ldots x_{n+1} \notin I P$ gives us $x_{n+1} \notin\left(I P: x_{1} x_{2} \ldots x_{n}\right)$. Hence $x_{n+1} \in\left(P: x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right)$, for some $i \in$ $\{1,2, \ldots, n\}$, that is $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in P$. Thus P is a graded n-absorbing I-ideal.

In the following result we show that all components of graded n-absorbing I-ideals in decomposition rings is the product of graded n-absorbing ideals except one of the components is the whole ring.

Proposition 3.15. Let $R=R_{1} \times R_{2} \times \ldots \times R_{n+1}$, where R_{i} is a G-graded ring, for $i \in$ $\{1,2, \ldots, n+1\}$. If P is a graded n-absorbing I-ideal of R, then either $P=I P$ or $P=$ $P_{1} \times P_{2} \times \ldots \times P_{i-1} \times R_{i} \times P_{i+1} \times \ldots \times P_{n+1}$ for some $i \in\{1,2, \ldots, n+1\}$ and if $P_{j} \neq R_{i}$ for $j \neq i$, then P_{j} is a graded n-absorbing ideal in R_{j}.

Proof. Let $P=P_{1} \times P_{2} \times \ldots \times P_{n+1}$ be a graded n-absorbing I-ideal of R and $P \neq I P$. Then there exists $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in P-I P$, and so

$$
\left(x_{1}, 1, \ldots, 1\right)\left(1, x_{2}, \ldots, 1\right) \ldots\left(1,1, \ldots, x_{n+1}\right)=\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in P
$$

As P is a graded n-absorbing I-ideal, we have $\left(x_{1}, x_{2}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n+1}\right) \in P$ for some $i \in\{1,2, \ldots, n+1\}$. Thus $(0,0, \ldots, 0,1,0, \ldots, 0) \in P$ and hence

$$
P=P_{1} \times P_{2} \times \ldots \times P_{i-1} \times R_{i} \times P_{i+1} \times \ldots \times P_{n+1}
$$

If $P_{j} \neq R_{i}$ for $j \neq i$, then we have to prove P_{j} is a graded n-absorbing ideal in R_{j}. Let $i<j$ and let $y_{1} y_{2} \ldots y_{n+1} \in P_{j}$. Then

$$
\begin{gathered}
\left(0,0, \ldots, 0,1,0, \ldots, 0, y_{1} y_{2} \ldots y_{n}, 0, \ldots, 0\right) \\
=\left(0,0, \ldots, 1,0, \ldots, y_{1}, \ldots, 0\right)\left(0,0, \ldots, 1,0, \ldots, y_{2}, \ldots, 0\right) \\
\ldots\left(0,0, \ldots, 1,0, \ldots, y_{n+1}, \ldots, 0\right) \in P-I P
\end{gathered}
$$

and the graded n-absorbing I-ideal P gives that

$$
\left(0,0, \ldots, 0,1,0, \ldots, 0, y_{1} y_{2} \ldots y_{k-1} y_{k+1} \ldots y_{n+1}, 0, \ldots, 0\right) \in P
$$

for some $k \in\{1,2, \ldots, n+1\}$. Thus $y_{1} y_{2} \ldots y_{k-1} y_{k+1} \ldots y_{n+1} \in P_{j}$ and hence P_{j} is a graded n-absorbing ideal in R_{j}. We can do the same arguments for the case $j<i$.

We characterize G-graded rings in which every proper graded ideal is a graded n-absorbing I-ideal.

Theorem 3.16. Let R be a G-graded ring and let $|\operatorname{Max}(R)| \geq n+1 \geq 2$. Every proper graded ideal of R is a graded n-absorbing I-ideal if and only if every quotient of R is a product of $(n+1)$-fields.

Proof.

(\Rightarrow) : Let $m_{1}, m_{2}, \ldots, m_{n+1}$ be a distinct graded maximal ideals of R. Then $m=m_{1} m_{2} \ldots m_{n+1}$ is a graded n-absorbing I-ideal of R. We want to show that m is not a graded n-absorbing ideal. First to show that $m_{i} \nsubseteq \cup_{j \neq i} m_{j}$ for all $i \in\{1,2, \ldots, n+1\}$, we suppose by contrary that $m_{i} \subseteq \cup_{j \neq i} m_{j}$. Then there exists m_{j} with $m_{i} \subseteq m_{j}$ by prime avoidance lemma, which contradicts the fact that $m_{i}, i=1,2, \ldots, n+1$ are distinct graded maximal ideals. Hence there exists

$$
x_{i} \in m_{i}-\cup_{i \neq j=1}^{n+1} m_{j}
$$

and so $x_{1} x_{2} \ldots x_{n+1} \in m$. If there exists $j \in\{1,2, \ldots, n+1\}$ with $x_{1} x_{2} \ldots x_{j-1} x_{j+1} \ldots x_{n+1} \in$ $m \subseteq m_{j}$, then $x_{i} \in m_{j}$, for some $i \neq j$, a contradiction. Hence m is not a graded n-absorbing ideal and so $m^{n+1}=I m$. Thus by Chinese remainder theorem,

$$
\frac{R}{I m} \cong \frac{R}{m_{1}^{n+1}} \times \frac{R}{m_{2}^{n+1}} \times \ldots \times \frac{R}{m_{n+1}^{n+1}}
$$

Put $F_{i}=\frac{R}{m_{i}^{n+1}}$. If F_{i} is not field, then it has a nonzero proper graded ideal K and so

$$
0 \times 0 \times \ldots \times 0 \times K \times 0 \times \ldots \times 0
$$

is a graded n-absorbing 0 -ideal of $\frac{R}{I m}$. Thus by Proposition 3.15, we have $K=F_{i}$ or $K=0$, which is impossible. Hence F_{i} is a field.
(\Leftarrow) : Let P be a proper graded ideal of R. Then

$$
\frac{R}{I P} \cong F_{1} \times F_{2} \times \ldots \times F_{n+1}
$$

and

$$
\frac{P}{I P} \cong P_{1} \times P_{2} \times \ldots \times P_{n+1}
$$

where P_{i} is an ideal of $F_{i}, i=1,2, \ldots, n+1$. If $P=I P$, there is nothing to prove, otherwise we have $P_{j}=0$ for at least one $j \in\{1,2, \ldots, n+1\}$, since $\frac{P}{I P}$ is proper. Therefore $\frac{P}{I P}$ is a graded n-absorbing 0 -ideal of $\frac{R}{I P}$ and P is a graded n-absorbing I-ideal of R.

Corollary 3.17. Let R be a G-graded ring and let $|\operatorname{Max}(R)| \geq n+1 \geq 2$. Every proper graded ideal of R is a graded n-absorbing 0-ideal if and only if $R \cong F_{1} \times F_{2} \times \ldots \times F_{n+1}$, where $F_{1}, F_{2}, \ldots, F_{n+1}$ are fields.

Theorem 3.18. Let P be a graded n-absorbing I-ideal of a G-graded ring R. Then there are at most n graded prime ideals of R that are minimal over P.

Proof. Let $C=\left\{Q_{i} \mid Q_{i}\right.$ is a grade prime ideal of R that is minimal over $\left.P\right\}$ and let C has at least n elements. Assume $Q_{1}, Q_{2}, \ldots, Q_{n} \in C$ be distinct elements and $x_{i} \in Q_{i}-\cup_{i \neq j} Q_{j}$ where $x_{i} \in h(R)$ for $i=1,2, \ldots, n$. By Lemma 2.18 there is a $y_{i} \notin Q_{i}$ where $y_{i} \in h(R)$ for $i=1,2, \ldots, n$ such that $y_{i} x_{i}^{t_{i}} \in P$ for some positive integers $t_{1}, t_{2}, \ldots, t_{n}$. Since $x_{i} \notin \cap_{j=1}^{n} Q_{j}$ for all $i=1,2, \ldots, n$ and P is graded n-absorbing I-ideal we have $y_{i} x_{i}^{n-1} \in P$. As $x_{i} \notin \cap_{j=1}^{n} Q_{j}$ and $y_{i} x_{i}^{n-1} \in P \subseteq \cap_{j=1}^{n} Q_{j}$ we get that $y_{i} \in Q_{i}-\cup_{i \neq j} Q_{j}$ and so $y_{i} \notin \cap_{j=1}^{n} Q_{j}$ for all $i=1,2, \ldots, n$. Since $y_{i} x_{i}^{n-1} \in P, \sum_{j=1}^{n} y_{j} \prod_{i=1}^{n} x_{i}^{n-1} \in P$ and clearly $\sum_{j=1}^{n} y_{j} \notin Q_{i}$ for all $i=1,2, \ldots, n$. Also $\sum_{j=1}^{n} y_{j} \prod_{i \neq r}^{n} x_{r}^{n-1} \notin P$, since $\sum_{j=1}^{n} y_{j} \prod_{i \neq r}^{n} x_{r}^{n-1} \notin Q_{i}$, for $i=1,2, \ldots, n$, and being P graded n-absorbing I-ideal, we obtain $\prod_{i=1}^{n} x_{i}^{n-1} \in P$. Now, suppose $Q_{n+1} \in C$ such that $Q_{n+1} \neq Q_{i}$, for $i=1,2, \ldots, n$. Take $z_{i} \in Q_{i}-\cup_{i \neq j} Q_{j}$ for $i=1,2, \ldots, n+1$ and by previous argument, $\prod_{i=1}^{n} z_{i}^{n-1} \in P$. Since $P \subseteq \cap_{i=1}^{n+1} Q_{i}$ and $\prod_{i=1}^{n} z_{i}^{n-1} \in P$, we have $z_{i}^{n+1} \in Q_{n+1}$ for some $i=1,2, \ldots, n$ and consequently, $z_{i} \in Q_{n+1}$ for $i=1,2, \ldots, n$ which is a contraduction. Therefore C has at most n elements.

Theorem 3.19. Let P be a graded n-absorbing ideal of a G-graded ring R. Then one of the following statements must hold:
(i) $G r(P)=Q$ is a graded prime ideal of R such that $Q^{2} \subseteq P$.
(ii) $G r(P)=\cap_{i=1}^{n} Q_{i},\left(\prod_{i=1}^{n} Q_{i}\right)^{n-1} \subseteq P$ and $G r(P) \subseteq P$, where $Q_{i}, i=1,2, \ldots, n$ are the only distinct graded prime ideals of R that are minimal over P.

Proof. By Theorem 3.18 we conclude that either $G r(P)=Q$ is a graded prime ideal of R or $G r(P)=\cap_{i=1}^{n} Q_{i}$, where Q_{i} are the only distinct graded prime ideals of R that are minimal over P. Assume that $G r(P)=Q$ is a graded prime ideal of R and take $x, y \in Q$. By [8, Theorem 2.1], we get $x^{n}, y^{n} \in P$ and so $x\left(x^{n-1}+y^{n-1}\right) y \in P$. Since P is a graded n-absorbing ideal

$$
x\left(x^{n-1}+y^{n-1}\right)=x^{n}+x y^{n-1} \in P
$$

or

$$
\left(x^{n-1}+y^{n-1}\right) y=x^{n-1} y+y^{n} \in P \text { or } x y \in P
$$

Hence in either case, we have $Q^{n} \subseteq P$. For the second assertions, suppose $G r(P)=\cap_{i=1}^{n} Q_{i}$, where Q_{i} are the only distinct graded prime ideals of R that are minimal over P and take $x, y \in G r(P)$. By a bove argument $x y \in P$ and so $G r(P)^{2} \subseteq P$. To prove $\prod_{i=1}^{n} Q_{i} \subseteq P$, take $x_{i} \in P_{i}-\cup_{i \neq j}^{n} P_{j}$ and by the proof of Theorem 3.18, we have $x_{1}^{n-1} \ldots x_{n}^{n-1} \in P$. Let $r \in G r(P)$ and $z_{i} \in P_{i}-\cup_{i \neq j}^{n} P_{j}$. Then $z_{1}^{n-1} \ldots z_{n}^{n-1} \in P$ by the proof of Theorem 3.18 and $r+z_{1} \in P_{1}-\cup_{i \neq j}^{n} P_{j}$. Hence

$$
r z_{2}^{n-1} \ldots z_{n}^{n-1}+z_{1}^{n-1} \ldots z_{n}^{n-1}=\left(r+z_{1}^{n-1}\right) z_{2}^{n-1} \ldots z_{n}^{n-1} \in P
$$

and so $r z_{2}^{n-1} \ldots z_{n}^{n-1} \in P$.
Theorem 3.20. Let P be a graded n-absorbing I-ideal of a G-graded ring R and $Q_{1} \neq Q_{2}$ be distinct graded prime ideals of R and $I(P: a)=(I P: a)$ for all $a \in h(R)$. Then
(i) if $\operatorname{Gr}(P)=Q_{1}$, then $\left(P:_{R} a\right)$ is a graded n-absorbing I-ideal of R with $G r\left(P:_{R} a\right)=$ $Q_{1}, \forall a \in h(R)-Q_{1}$;
(ii) if $G r(P)=Q_{1} \cap Q_{2}$, then $\left(P:_{R} a\right)$ is a graded n-absorbing I-ideal of R with $G r\left(P:_{R}\right.$ $a)=Q_{1} \cap Q_{2}, \forall a \in h(R)-\left\{Q_{1} \cup Q_{2}\right\}$.

Proof. (i) Let $a \in h(R)-Q_{1}$ and $x_{1}, \ldots, x_{n+1} \in h(R)$ with

$$
x_{1} \ldots x_{n+1} \in\left(P:_{R} a\right)-I\left(P:_{R} a\right)
$$

Then $x_{1} \ldots x_{n+1} a \in P-I P$ since

$$
I P \subseteq I\left(P:_{R} a\right)=\left(I P:_{R} a\right)
$$

So $x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} a \in P$ or $x_{1} \ldots x_{n-1} a \in P$ or $x_{1} \ldots x_{n+1} \in P$ for $i=1,2, \ldots, n-$ 1 , since P is a graded n-absorbing I-ideal. If one of the first two cases holds, then we are done. If $x_{1} \ldots x_{n+1} \in P$, then

$$
x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in P
$$

for $i=1,2, \ldots, n+1$ which implies

$$
x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} a \in P
$$

Thus $\left(P:_{R} a\right)$ is graded n-absorbing I-ideal of a R and as $P \subseteq\left(P:_{R} a\right) \subseteq Q_{1}$, we have $\operatorname{Gr}\left(P:_{R} a\right)=Q_{1}$.
(ii) By similar arguments to that of (1), we can prove $\left(P:_{R} a\right)$ is graded n-absorbing I-ideal.

References

[1] I. Akray, I-prime ideals, Journal of Algebra and Related Topics, 4(2), 41-47, (2016).
[2] I. Akray and M. B. Mirkhan, n-absorbing I-ideals, Khayyam J. Math. 6, no. 2, 174-179, (2020).
[3] K. Al-Zoubi, R. Abu-Dawwas and S. Ceken, On graded 2-absorbing and graded weakly 2-absorbing ideals, Hacet. J. Math. Stat., 48, 724-731, (2019).
[4] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39, 1646 1672, (2011).
[5] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36, 686-696, (2008).
[6] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29, 831-840, (2003).
[7] S. E. Atani, On graded weakly prime ideals, Turk. J. Math, 30 (4), 351-358, (2006).
[8] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429, (2007).
[9] A. Barnard, Multiplication modules, Journal of algebra, 71(1), 174-178, (1981).
[10] J. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, Basel, (1988).
[11] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Communications in Algebra, 20(12), 3593-3602, (1992).
[12] R. K. Mishra and R. Mohan. A report on graded rings and graded modules, Global Journal of Pure and Applied Mathematics, 13(9), 6827-6853, (2017).
[13] S. R. Naghani and H. F. Moghimi, On graded 2-absorbing and graded weakly 2-absorbing ideals of a commutative ring, Cankaya. Uni. J. Science. Eng, 13 (2), 11-17, (2016).
[14] D. G. Northcott, On Homogenous Ideals, Proc. Glasgow Math. Assoc, 2, 105-111, (1955).
[15] M. Refai, M. Hailat and S. Obiedat, Graded radicals and graded prime spectra, Far East Journal of Mathematical Sciences, part I, 59-73, (2000).
[16] M. Refai and K. Al-Zoubi, On graded primary ideals, Turk. J. Math, 28 (3), 217-229, (2004).
[17] M. Yoshida, On homogenous ideals of graded Noetherian rings, J. Sci. Hiroshima Univ. Ser. A.19, 43-49, (1955).

Author information

I. Akray, Department of Mathematics, College of Education, Akre University for Applied Sciences, Duhok city, Kurdistan region, Iraq.
E-mail: akray.ismael@gmail.com, ismaeelhmd@yahoo.com
Adil K. Jabbar, Department of Mathematics, College of Science, University of Sulaimani, Sulaimani city, Kurdistan region, Iraq.
E-mail: adilkj@gmail.com, adil.jabbar@univsul.edu.iq
Shadan A. Othman, Department of Mathematics, College of Science, Salahaddin University, Erbil city, Kurdistan region, Iraq.
E-mail: shadanmath@gmail.com, shadan.othman@su.edu.krd
Received: 2022-10-23
Accepted: 2023-08-23

